Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Stability analysis of newly developed polygonal cross-sections for lattice wind towers

Stability analysis of newly developed polygonal cross-sections for lattice wind towers The pursuit for cheaper energy is leading the current wind tower design to increased heights. Common wind turbine tower designs would generate unjustified costs for transportation and erection leading to inefficient use of materials. In order to reduce these costs, several simplified erection methods have been proposed. One of such is the hybrid lattice-tubular steel tower. For economic feasibility, built-up cold-formed polygonal cross-sections have been proposed for the lattice part. This article presents a numerical investigation of the failure modes of closed polygonal cross-sections. The first part contains a presentation of structural systems which incorporate elements composed of plates and cold-formed members. The evaluation of the polygonal sections is done by means of finite element analysis considering local and global geometrical imperfections and residual stresses generated in the fabrication procedure. A comparative study is performed between several finite element models to propose a corresponding European buckling curve for calculating the flexural buckling resistance. The results show that the design of polygonal sections can be done according to European buckling curves methodology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wind Engineering SAGE

Stability analysis of newly developed polygonal cross-sections for lattice wind towers

Loading next page...
 
/lp/sage/stability-analysis-of-newly-developed-polygonal-cross-sections-for-If1pYq66U4

References (16)

Publisher
SAGE
Copyright
© The Author(s) 2018
ISSN
0309-524X
eISSN
2048-402X
DOI
10.1177/0309524X18777366
Publisher site
See Article on Publisher Site

Abstract

The pursuit for cheaper energy is leading the current wind tower design to increased heights. Common wind turbine tower designs would generate unjustified costs for transportation and erection leading to inefficient use of materials. In order to reduce these costs, several simplified erection methods have been proposed. One of such is the hybrid lattice-tubular steel tower. For economic feasibility, built-up cold-formed polygonal cross-sections have been proposed for the lattice part. This article presents a numerical investigation of the failure modes of closed polygonal cross-sections. The first part contains a presentation of structural systems which incorporate elements composed of plates and cold-formed members. The evaluation of the polygonal sections is done by means of finite element analysis considering local and global geometrical imperfections and residual stresses generated in the fabrication procedure. A comparative study is performed between several finite element models to propose a corresponding European buckling curve for calculating the flexural buckling resistance. The results show that the design of polygonal sections can be done according to European buckling curves methodology.

Journal

Wind EngineeringSAGE

Published: Aug 1, 2018

There are no references for this article.