Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Shear strength of fiber-reinforced high-strength steel ultra-high-performance concrete beams based on refined calculation of compression zone depth considering concrete tension

Shear strength of fiber-reinforced high-strength steel ultra-high-performance concrete beams... This article presents an experimental and theoretical investigation on the shear behavior of fiber-reinforced ultra-high-performance concrete beams reinforced with high-strength steel. The test parameters included the fiber volume fraction, fiber type, and stirrup ratio. The test results indicate that the shear failure in ultra-high-performance concrete beams is not brittle and catastrophic but has ductility characteristics. A moderate quantity of stirrups can significantly improve the shear behavior of ultra-high-performance concrete beams, as reflected in the thorough propagation of cracks in both shear span and pure bending zone. The depth of the compression zone considering concrete tension was derived based on the deformation compatibility and force equilibrium equations for both serviceability limit state and ultimate limit state. The comparison of the proposed method and classical beam theory shows that the concrete tension should not be neglected in the serviceability limit state analysis. After cracking, the concrete tension can be neglected for simplicity when the beam is heavily reinforced and should be considered when the beam is lightly reinforced. Then, a shear strength model was established based on Rankine’s failure criteria, the truss model, and Association Francaise de Génie Civil-Sétra. Finally, the proposed shear strength equation was verified by the test results and compared with other shear strength equations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Shear strength of fiber-reinforced high-strength steel ultra-high-performance concrete beams based on refined calculation of compression zone depth considering concrete tension

Loading next page...
 
/lp/sage/shear-strength-of-fiber-reinforced-high-strength-steel-ultra-high-gqH1itbtge

References (26)

Publisher
SAGE
Copyright
© The Author(s) 2019
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/1369433219829805
Publisher site
See Article on Publisher Site

Abstract

This article presents an experimental and theoretical investigation on the shear behavior of fiber-reinforced ultra-high-performance concrete beams reinforced with high-strength steel. The test parameters included the fiber volume fraction, fiber type, and stirrup ratio. The test results indicate that the shear failure in ultra-high-performance concrete beams is not brittle and catastrophic but has ductility characteristics. A moderate quantity of stirrups can significantly improve the shear behavior of ultra-high-performance concrete beams, as reflected in the thorough propagation of cracks in both shear span and pure bending zone. The depth of the compression zone considering concrete tension was derived based on the deformation compatibility and force equilibrium equations for both serviceability limit state and ultimate limit state. The comparison of the proposed method and classical beam theory shows that the concrete tension should not be neglected in the serviceability limit state analysis. After cracking, the concrete tension can be neglected for simplicity when the beam is heavily reinforced and should be considered when the beam is lightly reinforced. Then, a shear strength model was established based on Rankine’s failure criteria, the truss model, and Association Francaise de Génie Civil-Sétra. Finally, the proposed shear strength equation was verified by the test results and compared with other shear strength equations.

Journal

Advances in Structural EngineeringSAGE

Published: Jun 1, 2019

There are no references for this article.