Access the full text.
Sign up today, get DeepDyve free for 14 days.
This study introduces a shape memory alloy (SMA)-spring damper which is composed of SMA bars and elastic springs arranged in perpendicular. The damper depicts a curved flag-shape hysteretic behavior that is endowed with self-centering capacities and large deformation capabilities but uses reduced amount of SMA material. A design procedure is proposed to apply the SMA-spring damper to the bridge with laminated rubber bearings which would slide under seismic excitations. Analytical results validate the effectiveness of SMA-spring dampers in seismic control of the bridge: (1) The damper provides trivial stiffness to the bridge at small displacement, and the isolation efficiency of the bridge is maintained; (2) large horizontal force is provided for the structures at large deformation of the bearings, which alleviates the excessive displacement of bearings and prevents span collapse; and (3) the damper helps recenter the bearings and reduce the residual displacement of the bridge.
Advances in Structural Engineering – SAGE
Published: Nov 1, 2021
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.