Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Seismic yield displacement of reinforced concrete bridge pier columns in saline soil environment

Seismic yield displacement of reinforced concrete bridge pier columns in saline soil environment Corrosion of bridge pier columns in saline soil environment is inevitable, resulting in a gradual decrease in seismic yield displacement. In this study, 10 reinforced concrete bridge pier columns were fabricated, and seismic yield displacement in the saline soil environment was studied. Electrochemical corrosion tests and low-cycle repeated loading tests were carried out. The axial compression ratio and corrosion rate are the main parameters considered in this article. The seismic yield displacement test value of the pier column is determined based on the energy method. Using the static method, the theoretical expression of the earthquake yield displacement is derived. According to our results, when the corrosion rate is constant, the axial compression ratio is within a certain range, and the seismic yield displacement of the pier increases with the increase in the axial compression ratio. Similarly, when the axial compression ratio is constant, the seismic yield displacement decreases as the corrosion rate increases. By comparing experimental results with calculation results, our mathematical expressions have been shown to be effective in predicting seismic yield displacements of pier columns at different times in saline soil environments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Seismic yield displacement of reinforced concrete bridge pier columns in saline soil environment

Loading next page...
 
/lp/sage/seismic-yield-displacement-of-reinforced-concrete-bridge-pier-columns-cKeH0lpneB
Publisher
SAGE
Copyright
© The Author(s) 2019
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/1369433219846962
Publisher site
See Article on Publisher Site

Abstract

Corrosion of bridge pier columns in saline soil environment is inevitable, resulting in a gradual decrease in seismic yield displacement. In this study, 10 reinforced concrete bridge pier columns were fabricated, and seismic yield displacement in the saline soil environment was studied. Electrochemical corrosion tests and low-cycle repeated loading tests were carried out. The axial compression ratio and corrosion rate are the main parameters considered in this article. The seismic yield displacement test value of the pier column is determined based on the energy method. Using the static method, the theoretical expression of the earthquake yield displacement is derived. According to our results, when the corrosion rate is constant, the axial compression ratio is within a certain range, and the seismic yield displacement of the pier increases with the increase in the axial compression ratio. Similarly, when the axial compression ratio is constant, the seismic yield displacement decreases as the corrosion rate increases. By comparing experimental results with calculation results, our mathematical expressions have been shown to be effective in predicting seismic yield displacements of pier columns at different times in saline soil environments.

Journal

Advances in Structural EngineeringSAGE

Published: Sep 1, 2019

There are no references for this article.