Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Seismic fragility assessment of long-span cable-stayed bridges in China

Seismic fragility assessment of long-span cable-stayed bridges in China In the existing fragility assessment, most bridges are short-span bridges and a few bridges have long spans such as cable-stayed bridges. In this study, a procedure is proposed to conduct the component and system seismic fragility analysis of long-span cable-stayed bridges. Three critical issues are addressed in the procedure: (1) the optimal intensity measure of cable-stayed bridges, (2) limit state models of various components, and (3) contribution of individual components to the entire system failure of bridges. This study chooses a long-span cable-stayed bridge with the most common configuration in China and builds the numerical model of its multiple components using OpenSEES that can account for their nonlinear response and uncertainties in the ground motion and material properties. Four typical intensity measures are compared with respect to four characteristic properties including efficiency, practicality, sufficiency, and proficiency. Peak ground velocity turns out to be the optimal intensity measure. Limit states of pylon sections are derived by a numerical simulation based on pushover analysis and China’s guidelines. The pushover results indicate that the limit state of their section curvature depends highly on the section type and axial compression coefficient. A joint probabilistic seismic demand model and Monte Carlo simulation are employed to obtain an accurate system fragility estimate of cable-stayed bridges by accounting for the contribution of each component to the overall bridge system. The system fragility curves based on Monte Carlo simulation lie much closer to the upper bound fragilities given small correlation coefficients, implying that seismic demands of various components conditioned on the peak ground velocity are not correlated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Seismic fragility assessment of long-span cable-stayed bridges in China

Loading next page...
 
/lp/sage/seismic-fragility-assessment-of-long-span-cable-stayed-bridges-in-cBkWh0e5oU
Publisher
SAGE
Copyright
© The Author(s) 2016
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/1369433216649380
Publisher site
See Article on Publisher Site

Abstract

In the existing fragility assessment, most bridges are short-span bridges and a few bridges have long spans such as cable-stayed bridges. In this study, a procedure is proposed to conduct the component and system seismic fragility analysis of long-span cable-stayed bridges. Three critical issues are addressed in the procedure: (1) the optimal intensity measure of cable-stayed bridges, (2) limit state models of various components, and (3) contribution of individual components to the entire system failure of bridges. This study chooses a long-span cable-stayed bridge with the most common configuration in China and builds the numerical model of its multiple components using OpenSEES that can account for their nonlinear response and uncertainties in the ground motion and material properties. Four typical intensity measures are compared with respect to four characteristic properties including efficiency, practicality, sufficiency, and proficiency. Peak ground velocity turns out to be the optimal intensity measure. Limit states of pylon sections are derived by a numerical simulation based on pushover analysis and China’s guidelines. The pushover results indicate that the limit state of their section curvature depends highly on the section type and axial compression coefficient. A joint probabilistic seismic demand model and Monte Carlo simulation are employed to obtain an accurate system fragility estimate of cable-stayed bridges by accounting for the contribution of each component to the overall bridge system. The system fragility curves based on Monte Carlo simulation lie much closer to the upper bound fragilities given small correlation coefficients, implying that seismic demands of various components conditioned on the peak ground velocity are not correlated.

Journal

Advances in Structural EngineeringSAGE

Published: Nov 1, 2016

There are no references for this article.