Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Seismic capacity estimation of a reinforced concrete containment building considering bidirectional cyclic effect

Seismic capacity estimation of a reinforced concrete containment building considering... This study serves to estimate the seismic capacity of the reinforced concrete containment building considering its bidirectional cyclic effect and variations of energy. The implementation of the capacity estimation has been performed by extending two well-known methods: nonlinear static pushover and incremental dynamic analysis. The displacement and dissipated energy demands are obtained from the static pushover analysis considering bidirectional cyclic effect. In total, 18 bidirectional earthquake intensity parameters are developed to perform the incremental dynamic analysis for the reinforced concrete containment building. Results show that the bidirectional static pushover analysis tends to decrease the capacity of the reinforced concrete containment building in comparison with unidirectional static pushover analysis. The 5% damped first-mode geometric mean spectral acceleration strongly correlates with the maximum top displacement of the containment building. The comparison of the incremental dynamic analysis and static pushover curves is employed to determine the seismic capacity of the reinforced concrete containment building. It is concluded that bidirectional static pushover and incremental dynamic analysis studies can be used in performance evaluation and capacity estimation of reinforced concrete containment buildings under bidirectional earthquake excitations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Seismic capacity estimation of a reinforced concrete containment building considering bidirectional cyclic effect

Loading next page...
 
/lp/sage/seismic-capacity-estimation-of-a-reinforced-concrete-containment-WsD0dPeq9C

References (26)

Publisher
SAGE
Copyright
© The Author(s) 2018
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/1369433218806034
Publisher site
See Article on Publisher Site

Abstract

This study serves to estimate the seismic capacity of the reinforced concrete containment building considering its bidirectional cyclic effect and variations of energy. The implementation of the capacity estimation has been performed by extending two well-known methods: nonlinear static pushover and incremental dynamic analysis. The displacement and dissipated energy demands are obtained from the static pushover analysis considering bidirectional cyclic effect. In total, 18 bidirectional earthquake intensity parameters are developed to perform the incremental dynamic analysis for the reinforced concrete containment building. Results show that the bidirectional static pushover analysis tends to decrease the capacity of the reinforced concrete containment building in comparison with unidirectional static pushover analysis. The 5% damped first-mode geometric mean spectral acceleration strongly correlates with the maximum top displacement of the containment building. The comparison of the incremental dynamic analysis and static pushover curves is employed to determine the seismic capacity of the reinforced concrete containment building. It is concluded that bidirectional static pushover and incremental dynamic analysis studies can be used in performance evaluation and capacity estimation of reinforced concrete containment buildings under bidirectional earthquake excitations.

Journal

Advances in Structural EngineeringSAGE

Published: Apr 1, 2019

There are no references for this article.