Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

PET Imaging of Hepatocellular Carcinomas: 18F-Fluoropropionic Acid as a Complementary Radiotracer for 18F-Fluorodeoxyglucose:

PET Imaging of Hepatocellular Carcinomas: 18F-Fluoropropionic Acid as a Complementary Radiotracer... Objective: To evaluate the preclinical value of 18F-fluoropropionic acid (18F-FPA) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) for imaging HCCs. Methods: The 18F-FPA and 18F-FDG uptake patterns in 3 HCC cell lines (Hep3B, HepG2, and SK-Hep1) were assessed in vitro and in vivo. The 18F-FPA uptake mechanism was investigated using inhibition experiments with orlistat and 5-tetradecyloxy-2-furoic acid. The 18F-FPA PET imaging was performed in different tumor animal models and compared with 18F-FDG. We also evaluated the expressions of glucose transporter-1 (GLUT1), fatty acid synthase (FASN), and matrix metalloproteinase-2 (MMP2) in these cell lines. Results: In vitro experiments showed that the radiotracer uptake patterns were complementary in the HCC cell lines. Orlistat and 5-tetradecyloxy-2-furoic acid decreased the uptake of 18F-FPA. The tumor-to-liver ratio of 18F-FPA was superior to that of 18F-FDG in the SK-Hep1 and HepG2 tumors (P < .05). However, in the Hep3B tumors, the tumor-to-liver normalized uptake of 18F-FDG was higher than 18F-FPA (P < .01). FASN was highly expressed in cell lines with high 18F-FPA uptake, whereas GLUT1 was highly expressed in cell lines with high 18F-FDG uptake. The 18F-FPA uptake correlated with FASN (r = 0.89, P = .014) and MMP2 (r = 0.77, P = .002) expressions. Conclusions: PET imaging with 18F-FPA combined with 18F-FDG can be an alternative for detecting HCC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Imaging SAGE

PET Imaging of Hepatocellular Carcinomas: 18F-Fluoropropionic Acid as a Complementary Radiotracer for 18F-Fluorodeoxyglucose:

Loading next page...
 
/lp/sage/pet-imaging-of-hepatocellular-carcinomas-18f-fluoropropionic-acid-as-a-ku2O3oE1x0
Publisher
SAGE
Copyright
Copyright © 2019 by SAGE Publications Inc, unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses
ISSN
1536-0121
eISSN
1536-0121
DOI
10.1177/1536012118821032
Publisher site
See Article on Publisher Site

Abstract

Objective: To evaluate the preclinical value of 18F-fluoropropionic acid (18F-FPA) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) for imaging HCCs. Methods: The 18F-FPA and 18F-FDG uptake patterns in 3 HCC cell lines (Hep3B, HepG2, and SK-Hep1) were assessed in vitro and in vivo. The 18F-FPA uptake mechanism was investigated using inhibition experiments with orlistat and 5-tetradecyloxy-2-furoic acid. The 18F-FPA PET imaging was performed in different tumor animal models and compared with 18F-FDG. We also evaluated the expressions of glucose transporter-1 (GLUT1), fatty acid synthase (FASN), and matrix metalloproteinase-2 (MMP2) in these cell lines. Results: In vitro experiments showed that the radiotracer uptake patterns were complementary in the HCC cell lines. Orlistat and 5-tetradecyloxy-2-furoic acid decreased the uptake of 18F-FPA. The tumor-to-liver ratio of 18F-FPA was superior to that of 18F-FDG in the SK-Hep1 and HepG2 tumors (P < .05). However, in the Hep3B tumors, the tumor-to-liver normalized uptake of 18F-FDG was higher than 18F-FPA (P < .01). FASN was highly expressed in cell lines with high 18F-FPA uptake, whereas GLUT1 was highly expressed in cell lines with high 18F-FDG uptake. The 18F-FPA uptake correlated with FASN (r = 0.89, P = .014) and MMP2 (r = 0.77, P = .002) expressions. Conclusions: PET imaging with 18F-FPA combined with 18F-FDG can be an alternative for detecting HCC.

Journal

Molecular ImagingSAGE

Published: Jan 4, 2019

Keywords: hepatocellular carcinoma (HCC),positron emission tomography (PET),18F-fluoropropionic acid (18F-FPA),18F-fluorodeoxyglucose (18F-FDG)

There are no references for this article.