Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Non-dimensional pressure–impulse diagrams for blast-loaded reinforced concrete beam columns referred to different failure modes

Non-dimensional pressure–impulse diagrams for blast-loaded reinforced concrete beam columns... The pressure–impulse diagram is commonly used to assess the damage level of structural components under explosion. Non-dimensional pressure–impulse diagrams referred to different failure modes was obtained using a new methodology in this article. Nine non-dimensional key parameters were first proposed on basis of the Euler beam theory. Considering the shear failure, an elastic–plastic method to calculate the dynamic response of reinforced concrete beam columns was then proposed for different failure modes. Three failure categories, for example, bending failure, shear failure, and combined shear and bending failure, were considered. The threshold between the three failure modes was determined using non-dimensional pressure–impulse curves. A systematic parametric study was conducted to investigate the effects of different non-dimensional parameters on the dynamic response and the failure modes of reinforced concrete beam column. Parametric study shows that the nine non-dimensional key parameters are sufficient to calculate the dynamic response of reinforced concrete beam columns. Moreover, present study shows that the tangent modulus of direct shear stress–slip relation has a great influence on the failure modes. Beam columns with a smaller tangent modulus are more likely to generate combined shear and bending failure mode. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Non-dimensional pressure–impulse diagrams for blast-loaded reinforced concrete beam columns referred to different failure modes

Loading next page...
 
/lp/sage/non-dimensional-pressure-impulse-diagrams-for-blast-loaded-reinforced-NUM4S8Frnf
Publisher
SAGE
Copyright
© The Author(s) 2018
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/1369433218768085
Publisher site
See Article on Publisher Site

Abstract

The pressure–impulse diagram is commonly used to assess the damage level of structural components under explosion. Non-dimensional pressure–impulse diagrams referred to different failure modes was obtained using a new methodology in this article. Nine non-dimensional key parameters were first proposed on basis of the Euler beam theory. Considering the shear failure, an elastic–plastic method to calculate the dynamic response of reinforced concrete beam columns was then proposed for different failure modes. Three failure categories, for example, bending failure, shear failure, and combined shear and bending failure, were considered. The threshold between the three failure modes was determined using non-dimensional pressure–impulse curves. A systematic parametric study was conducted to investigate the effects of different non-dimensional parameters on the dynamic response and the failure modes of reinforced concrete beam column. Parametric study shows that the nine non-dimensional key parameters are sufficient to calculate the dynamic response of reinforced concrete beam columns. Moreover, present study shows that the tangent modulus of direct shear stress–slip relation has a great influence on the failure modes. Beam columns with a smaller tangent modulus are more likely to generate combined shear and bending failure mode.

Journal

Advances in Structural EngineeringSAGE

Published: Oct 1, 2018

There are no references for this article.