Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Modelling Static and Dynamic FRP-Concrete Bond Behaviour Using a Local Concrete Damage Model

Modelling Static and Dynamic FRP-Concrete Bond Behaviour Using a Local Concrete Damage Model This paper presents a study on the bond behaviour of FRP-concrete bonded joints under static and dynamic loadings, by developing a meso-scale finite element model using the K&C concrete damage model in LS-DYNA. A significant number of single shear experiments under static pull-off loading were modelled with an extensive parametric study covering key factors in the K&C model, including the crack band width, the compressive fracture energy and the shear dilatation factor. It is demonstrated that the developed model can satisfactorily simulate the static debonding behaviour, in terms of mesh objectivity, the load-carrying capacity and the local bond-slip behaviour, provided that proper consideration is given to the selection of crack band width and shear dilatation factor. A preliminary study of the effect of the dynamic loading rate on the debonding behaviour was also conducted by considering a dynamic increase factor (DIF) for the concrete strength as a function of strain rate. It is shown that a higher loading rate leads to a higher load-carrying capacity, a longer effective bond length, and a larger damaged area of concrete in the single shear loading scenario. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Modelling Static and Dynamic FRP-Concrete Bond Behaviour Using a Local Concrete Damage Model

Loading next page...
 
/lp/sage/modelling-static-and-dynamic-frp-concrete-bond-behaviour-using-a-local-iCEBLrW64F
Publisher
SAGE
Copyright
© 2015 SAGE Publications
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1260/1369-4332.18.1.45
Publisher site
See Article on Publisher Site

Abstract

This paper presents a study on the bond behaviour of FRP-concrete bonded joints under static and dynamic loadings, by developing a meso-scale finite element model using the K&C concrete damage model in LS-DYNA. A significant number of single shear experiments under static pull-off loading were modelled with an extensive parametric study covering key factors in the K&C model, including the crack band width, the compressive fracture energy and the shear dilatation factor. It is demonstrated that the developed model can satisfactorily simulate the static debonding behaviour, in terms of mesh objectivity, the load-carrying capacity and the local bond-slip behaviour, provided that proper consideration is given to the selection of crack band width and shear dilatation factor. A preliminary study of the effect of the dynamic loading rate on the debonding behaviour was also conducted by considering a dynamic increase factor (DIF) for the concrete strength as a function of strain rate. It is shown that a higher loading rate leads to a higher load-carrying capacity, a longer effective bond length, and a larger damaged area of concrete in the single shear loading scenario.

Journal

Advances in Structural EngineeringSAGE

Published: Jan 1, 2015

There are no references for this article.