Access the full text.
Sign up today, get DeepDyve free for 14 days.
The presence of buildings that surround the wind environment adversely affects at the pedestrian level. The present study investigates the effect of different arrangement of two buildings on wind flow structure and modification of wind speed conditions at the pedestrian level. The investigation was carried out for parallel, tandem, and staggered arrangement of two buildings using computational fluid dynamics simulations. The wind tunnel experiments were conducted to validate the computational fluid dynamics results. The computational fluid dynamics simulations were performed using the standard k−ε model with LK modification and revised closure coefficients. Different flow features such as skew-symmetric vortex structure for parallel arrangement, reattachment of shear layer on the surfaces of the downstream building for tandem arrangement, and deviation of wake region behind the upstream building to leftward of the flow direction for staggered arrangement were observed. It was observed that the strong wind conditions were mostly affected by tandem and parallel location of the twin buildings. The results of numerical simulation obtained using the modified SKE model were found to be in good agreement with the experimental results.
Advances in Structural Engineering – SAGE
Published: Sep 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.