Access the full text.
Sign up today, get DeepDyve free for 14 days.
A numerical solution for the dynamic response of train-track-bridge coupled system taking into account the influence of soil-structure interaction is studied and verified by field experiments. A three-dimensional vehicle–track-bridge coupling dynamics model is developed, in which the vehicle subsystem, the track subsystem and the bridge subsystem are coupled through wheel-rail interaction and track-bridge interaction, respectively. The soil-structure interaction between the bridge foundation and the soil is simulated by spring stiffness exerted on group-pile foundation. In a case study, the dynamic responses of a high-speed train and a continuous beam bridge are calculated by three models, that is fixed-base model, equivalent-stiffness model and the proposed whole-pile model. The comparison of simulated and experimental results show that soil-structure interaction has significant influence on the lateral dynamic response of the bridge; The whole-pile model is proposed to study the coupled vibration of bridge and vehicle, which gives more reasonable simulation result than the other two models.
Advances in Structural Engineering – SAGE
Published: Aug 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.