Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Inelastic displacement spectra for Chinese highway bridges characterized by single-degree-of-freedom bilinear systems

Inelastic displacement spectra for Chinese highway bridges characterized by... As for the inelastic displacement demand of a single-degree-of-freedom system, previous studies usually focus on the strength reduction factor, R, or the inelastic displacement ratio, C. Only a little literature reports the direct statistical results of the mean inelastic displacement spectra, Sd. Based on 308 earthquake records selected from three types of site soil, differences between the direct mean Sd and the indirect ones that respectively derived from mean R and mean Cμ are investigated, in which Cμ refers to the constant ductility inelastic displacement ratio. It is found the indirect Sd will introduce errors for using mean R and mean Cμ, while the dispersion of the direct spectra need to be reduced before putting into practice. Two methods, the period normalized method and the spectra-matching method, are employed to address the dispersion problem, and the latter one that modified a record to make its acceleration response spectra compatible with the specified standard, Chinese highway bridge seismic design guidelines in this study, works with more acceptable performance. Finally, a comprehensive equation is proposed to characterize the spectra-matching mean Sd, the practicality and efficiency of the identified parameters in the equation are verified. It is advisable to use the proposed equation to assess the inelastic displacement demand of Chinese highway bridges characterized by single-degree-of-freedom bilinear system, and the procedures to obtain the displacement spectra can also be utilized for other corresponding researches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Inelastic displacement spectra for Chinese highway bridges characterized by single-degree-of-freedom bilinear systems

Advances in Structural Engineering , Volume 22 (14): 20 – Oct 1, 2019

Loading next page...
 
/lp/sage/inelastic-displacement-spectra-for-chinese-highway-bridges-z8Xu5D0OeX
Publisher
SAGE
Copyright
© The Author(s) 2019
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/1369433219857845
Publisher site
See Article on Publisher Site

Abstract

As for the inelastic displacement demand of a single-degree-of-freedom system, previous studies usually focus on the strength reduction factor, R, or the inelastic displacement ratio, C. Only a little literature reports the direct statistical results of the mean inelastic displacement spectra, Sd. Based on 308 earthquake records selected from three types of site soil, differences between the direct mean Sd and the indirect ones that respectively derived from mean R and mean Cμ are investigated, in which Cμ refers to the constant ductility inelastic displacement ratio. It is found the indirect Sd will introduce errors for using mean R and mean Cμ, while the dispersion of the direct spectra need to be reduced before putting into practice. Two methods, the period normalized method and the spectra-matching method, are employed to address the dispersion problem, and the latter one that modified a record to make its acceleration response spectra compatible with the specified standard, Chinese highway bridge seismic design guidelines in this study, works with more acceptable performance. Finally, a comprehensive equation is proposed to characterize the spectra-matching mean Sd, the practicality and efficiency of the identified parameters in the equation are verified. It is advisable to use the proposed equation to assess the inelastic displacement demand of Chinese highway bridges characterized by single-degree-of-freedom bilinear system, and the procedures to obtain the displacement spectra can also be utilized for other corresponding researches.

Journal

Advances in Structural EngineeringSAGE

Published: Oct 1, 2019

There are no references for this article.