Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

In Vitro Tests within the REACH Information Strategies

In Vitro Tests within the REACH Information Strategies Tonnage-based information requirements are specified in the proposal on the regulation on the Registration, Evaluation and Authorisation of Chemicals (REACH) in the European Union. The hazard assessment for toxic endpoints should be performed by using a tiered approach, i.e. as an information strategy (IS), starting with an evaluation of all of the data already available, including animal in vivo and in vitro data, and human evidence and case reports, as well as data from (Quantitative)-Structure Activity Relationships ([Q]SARs) or read-across, before any further testing is suggested. To contribute to the implementation of the REACH system, the Nordic countries launched two projects: 1) a review of currently used testing strategies, including a comparison with the REACH requirements; and 2) the development of detailed ISs for skin and eye irritation/corrosion. The review showed that the ISs and classification criteria for the selected endpoints are inconsistent in many cases. In the classification criteria, human data and in vivo test results are usually the prerequisites. Other types of information, such as data from in vitro studies, can sometimes be used, but usually as supportive evidence only. This differs from the REACH ISs, where QSARs, read-across and in vitro testing are important elements. In the other part of the project, an IS for skin and eye irritation/corrosion was proposed. The strategy was “tested” by using four high production volume (HPV) chemicals: hydrogen peroxide, methyl tertiary-butyl ether (MTBE), trivalent chromium, and diantimony trioxide, but only MTBE and trivalent chromium are dealt with in this paper. The “test” revealed that in vivo data, human case reports and physical-chemical data were available and could be used in the evaluation. Classification could be based on the proposed IS and the existing data in all cases, except for the eye irritation/corrosion of trivalent chromium. Weight-of-evidence analysis appeared to be a useful step in the ISs proposed, and including it in the REACH strategies should be considered. For these chemicals, few in vitro and (Q)SAR data were available — more of these data would be generated, if the relevant guidance and legislation on classification were updated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Alternatives to Laboratory Animals SAGE

In Vitro Tests within the REACH Information Strategies

Loading next page...
 
/lp/sage/in-vitro-tests-within-the-reach-information-strategies-rHjRTQk4SF

References (3)

Publisher
SAGE
Copyright
© 2006 Fund for the Replacement of Animals in Medical Experiments
ISSN
0261-1929
eISSN
2632-3559
DOI
10.1177/026119290603400408
Publisher site
See Article on Publisher Site

Abstract

Tonnage-based information requirements are specified in the proposal on the regulation on the Registration, Evaluation and Authorisation of Chemicals (REACH) in the European Union. The hazard assessment for toxic endpoints should be performed by using a tiered approach, i.e. as an information strategy (IS), starting with an evaluation of all of the data already available, including animal in vivo and in vitro data, and human evidence and case reports, as well as data from (Quantitative)-Structure Activity Relationships ([Q]SARs) or read-across, before any further testing is suggested. To contribute to the implementation of the REACH system, the Nordic countries launched two projects: 1) a review of currently used testing strategies, including a comparison with the REACH requirements; and 2) the development of detailed ISs for skin and eye irritation/corrosion. The review showed that the ISs and classification criteria for the selected endpoints are inconsistent in many cases. In the classification criteria, human data and in vivo test results are usually the prerequisites. Other types of information, such as data from in vitro studies, can sometimes be used, but usually as supportive evidence only. This differs from the REACH ISs, where QSARs, read-across and in vitro testing are important elements. In the other part of the project, an IS for skin and eye irritation/corrosion was proposed. The strategy was “tested” by using four high production volume (HPV) chemicals: hydrogen peroxide, methyl tertiary-butyl ether (MTBE), trivalent chromium, and diantimony trioxide, but only MTBE and trivalent chromium are dealt with in this paper. The “test” revealed that in vivo data, human case reports and physical-chemical data were available and could be used in the evaluation. Classification could be based on the proposed IS and the existing data in all cases, except for the eye irritation/corrosion of trivalent chromium. Weight-of-evidence analysis appeared to be a useful step in the ISs proposed, and including it in the REACH strategies should be considered. For these chemicals, few in vitro and (Q)SAR data were available — more of these data would be generated, if the relevant guidance and legislation on classification were updated.

Journal

Alternatives to Laboratory AnimalsSAGE

Published: Aug 1, 2006

There are no references for this article.