Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

High-velocity impact behaviour of a new hybrid fibre-reinforced cementitious composite

High-velocity impact behaviour of a new hybrid fibre-reinforced cementitious composite In this article, a new engineered cementitious composite reinforced with 0.6% volume steel fibres and 1.5% volume polyvinyl-alcohol fibres is developed aiming for enhanced impact resistance compared to other construction materials. Fundamental mechanical properties of the new composite including the compressive strength, Young’s modulus, tensile strength and flexural behaviour were tested. To calibrate the impact resistance of the new composite, high-velocity impact tests of panels made of the new material were conducted when subjected to impact from a standard 7.62 mm round in-service bullet fired from a knight armament SR-25 military rifle. For comparison, plain concrete panels and concrete panels reinforced with 2% volume steel fibres were also tested. The post-impact responses of the panels in terms of crater sizes, damage failure mode, fragmentation size, weight and regress velocity are analysed and compared to characterize the impact resistance of the new engineered cementitious composite. The test results demonstrate significantly enhanced impact and shatter resistance of the new hybrid fibre-reinforced cementitious composite with reduced spalling and fragmentation, localized damage areas and improved cracking resistance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

High-velocity impact behaviour of a new hybrid fibre-reinforced cementitious composite

Loading next page...
 
/lp/sage/high-velocity-impact-behaviour-of-a-new-hybrid-fibre-reinforced-QhpNgcQtfv
Publisher
SAGE
Copyright
© The Author(s) 2017
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/1369433217732667
Publisher site
See Article on Publisher Site

Abstract

In this article, a new engineered cementitious composite reinforced with 0.6% volume steel fibres and 1.5% volume polyvinyl-alcohol fibres is developed aiming for enhanced impact resistance compared to other construction materials. Fundamental mechanical properties of the new composite including the compressive strength, Young’s modulus, tensile strength and flexural behaviour were tested. To calibrate the impact resistance of the new composite, high-velocity impact tests of panels made of the new material were conducted when subjected to impact from a standard 7.62 mm round in-service bullet fired from a knight armament SR-25 military rifle. For comparison, plain concrete panels and concrete panels reinforced with 2% volume steel fibres were also tested. The post-impact responses of the panels in terms of crater sizes, damage failure mode, fragmentation size, weight and regress velocity are analysed and compared to characterize the impact resistance of the new engineered cementitious composite. The test results demonstrate significantly enhanced impact and shatter resistance of the new hybrid fibre-reinforced cementitious composite with reduced spalling and fragmentation, localized damage areas and improved cracking resistance.

Journal

Advances in Structural EngineeringSAGE

Published: Mar 1, 2018

There are no references for this article.