Access the full text.
Sign up today, get DeepDyve free for 14 days.
As image acquisition devices have outstanding potential for gathering vibration information, computer vision has received a lot of interest in structural health monitoring (SHM). In this work, a fully automated peak picking methodology based on computer vision in tandem with deep learning is proposed to realize vibration measurements and identify natural frequencies from the plot of the power spectral density transmissibility (PSDT). A deep-learning-enhanced image processing technology was used to extract the vibration signals with automatic active pixel selection, while a convolutional neural network was used to further process the vibration measurements so that the frequencies could be identified from PSDT-based functions. The proposed method was verified by three case studies, including the dynamic testing of two laboratory models and the field testing of the stay cable. The findings showed that the proposed deep-learning-enhanced approach has a high potential for use in SHM by automatically performing vibration measurement and frequency extraction.
Advances in Structural Engineering – SAGE
Published: Oct 1, 2022
Keywords: optical flow; vibration measurement; computer vision; automated peak picking; deep learning
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.