Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper proposes a frequency-domain method of substructure identification for local health monitoring using substructure isolation method (SIM). The first key step of SIM is the numerical construction of the isolated substructure, which is a virtual and independent structure that has the same physical parameters as the real substructure. Damage identification and local monitoring can be then performed using the responses of the simple isolated substructure and any of the classical methods aimed originally at global structural analysis. This paper extends the SIM to frequency domain, which allows the computational efficiency of the method to be significantly increased in comparison to time domain. The mass-spring numerical model is used to introduce the method. Two aluminum beams with the same substructure are then used in experimental verification. In both cases the method performs efficiently and accurately.
Advances in Structural Engineering – SAGE
Published: Jan 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.