Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Flexural behaviour of reinforced concrete beams strengthened with pre-stressed and near surface mounted steel–basalt-fibre composite bars

Flexural behaviour of reinforced concrete beams strengthened with pre-stressed and near surface... Fibre-reinforced polymer bars have been widely used for strengthening concrete members due to their high strength, light weight and strong corrosion resistance. A near-surface mounted strengthening system has been adopted to protect the fibre-reinforced polymer bars from external hazards. To make up the lower stiffness and ductility of fibre-reinforced polymer bar compared to steel rebar, this study proposed to use a pre-stressed near-surface mounted steel–basalt-fibre-reinforced polymer composite bar. The steel–basalt-fibre-reinforced polymer composite bar is manufactured through wrapping a steel rod by a basalt-fibre-reinforced polymer cover. A total of nine reinforced concrete beams, including one control or calibration and eight others strengthened by pre-stressed near-surface mounted steel–basalt-fibre-reinforced polymer composite bars, are fabricated and tested. Results show that the proposed steel–basalt-fibre-reinforced polymer composite bar strengthening method can improve both the strength and ductility of the reinforced concrete beams. Pre-stressing of the steel–basalt-fibre-reinforced polymer composite bars further increases substantially the beams’ load-carrying capacity by restraining crack propagation in concrete. Standard-based load analysis correctly predicts the cracking load, however, underestimates the ultimate strength of the beams. Finite element method modelling is conducted to provide a more effective load-carrying capacity prediction and a case study is carried out with regard to the amount of the strengthening steel–basalt-fibre-reinforced polymer composite bars. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Flexural behaviour of reinforced concrete beams strengthened with pre-stressed and near surface mounted steel–basalt-fibre composite bars

Loading next page...
 
/lp/sage/flexural-behaviour-of-reinforced-concrete-beams-strengthened-with-pre-OmI4I4jM2i

References (30)

Publisher
SAGE
Copyright
© The Author(s) 2019
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/1369433219891595
Publisher site
See Article on Publisher Site

Abstract

Fibre-reinforced polymer bars have been widely used for strengthening concrete members due to their high strength, light weight and strong corrosion resistance. A near-surface mounted strengthening system has been adopted to protect the fibre-reinforced polymer bars from external hazards. To make up the lower stiffness and ductility of fibre-reinforced polymer bar compared to steel rebar, this study proposed to use a pre-stressed near-surface mounted steel–basalt-fibre-reinforced polymer composite bar. The steel–basalt-fibre-reinforced polymer composite bar is manufactured through wrapping a steel rod by a basalt-fibre-reinforced polymer cover. A total of nine reinforced concrete beams, including one control or calibration and eight others strengthened by pre-stressed near-surface mounted steel–basalt-fibre-reinforced polymer composite bars, are fabricated and tested. Results show that the proposed steel–basalt-fibre-reinforced polymer composite bar strengthening method can improve both the strength and ductility of the reinforced concrete beams. Pre-stressing of the steel–basalt-fibre-reinforced polymer composite bars further increases substantially the beams’ load-carrying capacity by restraining crack propagation in concrete. Standard-based load analysis correctly predicts the cracking load, however, underestimates the ultimate strength of the beams. Finite element method modelling is conducted to provide a more effective load-carrying capacity prediction and a case study is carried out with regard to the amount of the strengthening steel–basalt-fibre-reinforced polymer composite bars.

Journal

Advances in Structural EngineeringSAGE

Published: Apr 1, 2020

There are no references for this article.