Access the full text.
Sign up today, get DeepDyve free for 14 days.
Dynamic tensile strength is one of the key factors of concrete material that needs to be accurately defined in analysis of concrete structures subjected to high-rate loadings such as blast and impact. It is commonly agreed that dynamic testing results of concrete material are influenced by the inertia effect, which is very much dependent on the specimen size and loading rate. It is therefore very important to remove the inertia effect in testing data to derive the true dynamic concrete material properties. On the other hand, coarse aggregates in concrete material are usually neglected due to testing limitation or numerical simplification. It has been acknowledged that neglecting coarse aggregates might not necessarily give accurate concrete dynamic material properties. In this study, a three-dimensional mesoscale model of concrete specimen consisting of cement mortar and coarse aggregates is developed to simulate splitting tensile tests and investigate the behaviour of concrete material at high strain rate. The commercial software LS-DYNA is used to carry out the numerical simulations of dynamic splitting tensile tests. The reliability of the numerical model in simulating the dynamic splitting tensile tests is verified by comparing the numerical results with the laboratory test data from the literature. The influence of inertia effect in dynamic splitting tensile tests is investigated and removed. An empirical formula to represent the true dynamic increase factor relations obtained from dynamic splitting tensile test is proposed and verified.
Advances in Structural Engineering – SAGE
Published: Jun 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.