Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Finite element analysis on eccentric compression of reinforced concrete columns strengthened by prestressed polyethylene terephthalate straps and angle steel

Finite element analysis on eccentric compression of reinforced concrete columns strengthened by... To overcome the lagged strain and insufficient stiffness of conventional reinforced structures, this article proposes a reinforcement method realized by combining prestressed polyethylene terephthalate (PET) straps and angle steel. This combined reinforcement method relies on the active restraint force provided by the PET straps and the vertical bearing capacity provided by the angle steel to improve the bearing capacity and ductility of reinforced structures. This article introduces the experimental process applied to the combined reinforced columns. Thereafter, a finite element simulation model of the columns strengthened by prestressed PET straps and angle steel was established on the basis of the experiment. A plastic damage model was used for the concrete. An ideal elastoplastic model was used for the PET straps, angle steel, and steel bars. In the finite element simulation analysis, a multiparameter analysis was conducted on the eccentric distance, packaging distance, and packaging method. The research results showed that as the packing spacing of the PET straps decreases, the confinement area of the column increases, and the load-bearing capacity and ductility of the specimens increase to some extent. With the increase in the eccentricity, the increase in the bearing capacity of the combined reinforced column is less. Nevertheless, there is significant improvement in the ductility performance. Considering the economy and reinforcement effects, the mesh packing method produces the best results. This article introduces parameters such as the restraint stress of the PET straps and the utilization rate of the angle steel. A calculation formula for the small-eccentric bearing capacity of the combined reinforced column was established, providing a theoretical basis for engineering applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Finite element analysis on eccentric compression of reinforced concrete columns strengthened by prestressed polyethylene terephthalate straps and angle steel

Loading next page...
 
/lp/sage/finite-element-analysis-on-eccentric-compression-of-reinforced-IM9hzgMaM6
Publisher
SAGE
Copyright
© The Author(s) 2021
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/13694332211033961
Publisher site
See Article on Publisher Site

Abstract

To overcome the lagged strain and insufficient stiffness of conventional reinforced structures, this article proposes a reinforcement method realized by combining prestressed polyethylene terephthalate (PET) straps and angle steel. This combined reinforcement method relies on the active restraint force provided by the PET straps and the vertical bearing capacity provided by the angle steel to improve the bearing capacity and ductility of reinforced structures. This article introduces the experimental process applied to the combined reinforced columns. Thereafter, a finite element simulation model of the columns strengthened by prestressed PET straps and angle steel was established on the basis of the experiment. A plastic damage model was used for the concrete. An ideal elastoplastic model was used for the PET straps, angle steel, and steel bars. In the finite element simulation analysis, a multiparameter analysis was conducted on the eccentric distance, packaging distance, and packaging method. The research results showed that as the packing spacing of the PET straps decreases, the confinement area of the column increases, and the load-bearing capacity and ductility of the specimens increase to some extent. With the increase in the eccentricity, the increase in the bearing capacity of the combined reinforced column is less. Nevertheless, there is significant improvement in the ductility performance. Considering the economy and reinforcement effects, the mesh packing method produces the best results. This article introduces parameters such as the restraint stress of the PET straps and the utilization rate of the angle steel. A calculation formula for the small-eccentric bearing capacity of the combined reinforced column was established, providing a theoretical basis for engineering applications.

Journal

Advances in Structural EngineeringSAGE

Published: Nov 1, 2021

There are no references for this article.