Access the full text.
Sign up today, get DeepDyve free for 14 days.
This article presents an exploratory study on the flexural behavior of carbon fiber–reinforced polymer–reinforced concrete beams subjected to acidic loading effect. To this end, an artificial acid rain with a pH level of 1.5 was prepared by mixing sulfate and nitric acid solutions. Eight reinforced concrete beams with/without carbon fiber–reinforced polymer applications were constructed and conditioned using the artificial acid rain. During conditioning, bending loads were applied to the top surfaces of the beams to simulate the acidic loading action. Three carbon fiber–reinforced polymer reinforcement schemes (corrosion reinforcement, reinforcement corrosion, and cracking reinforcement) were considered. After conditioning, the length and quantity of initial cracks in the beams were recorded. A combined ultrasonic–rebound method was then adopted to measure the strength and corrosion depth of the concrete and evaluate the beams’ integrity. Next, four-point bending tests were conducted to study the beams’ flexural behavior. It can be concluded that all beams deteriorated with the increase of the corrosion time. Carbon fiber–reinforced polymer–reinforced concrete beams performed better than normal reinforced concrete beams under the acidic loading effect. The initial cracks can influence the flexural behavior of carbon fiber–reinforced polymer–reinforced concrete beams.
Advances in Structural Engineering – SAGE
Published: Oct 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.