Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this article, the seismic control of towers incorporated with fluid viscous dampers between sub-towers is investigated experimentally. To replace one entire tower, an alternative scheme consisting of four separate sub-towers is first proposed. Fluid viscous dampers are utilized as energy dissipation devices to be installed between sub-towers. Experimental tests are conducted to study the damping force characteristics. Three control strategies with various distributions of these dampers between sub-towers are developed. Then, a series of shaking table tests are carried out to evaluate the control performance of the proposed control strategies. Different earthquake records are adopted as seismic loadings. Experimental results clearly show a remarkable reduction in the towers seismic responses, including the accelerations, relative displacements, and strains. Rather than attaching dampers in concentrated ways, the strategy of distributing dampers uniformly behaves better.
Advances in Structural Engineering – SAGE
Published: Jul 1, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.