Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Experimental study and numerical model calibration of full-scale superimposed reinforced concrete walls with I-shaped cross sections

Experimental study and numerical model calibration of full-scale superimposed reinforced concrete... The superimposed reinforced concrete wall in which both the walls and slabs are semi-precast superimposed reinforced concrete components has been widely used to construct high-rise residential buildings in some seismic regions of China. This article aims to investigate the seismic performance and reveal the inherent damage mechanism of this wall. Quasi-static tests of two full-scale superimposed reinforced concrete walls with I-shaped cross sections, consisting of the walls in orthogonal directions and two T-shaped cast-in-place boundary elements, were conducted. Through the test, the behavior of the horizontal joints between the wall panels and the foundation; the behavior of the vertical connections between the wall panels of orthogonal direction; the reliability of the connections between precast and cast-in-place concrete; and the lateral load, deformation, and energy dissipation capacities of the specimens are evaluated. In addition, a refined numerical model based on the multi-spring model was adopted to assess the seismic performance of the superimposed reinforced concrete walls with I-shaped cross sections. The reliability of this model was validated through comparison with the experimental data. This study offers valuable experimental data and numerical model references for future seismic performance assessments of superimposed reinforced concrete wall structures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Experimental study and numerical model calibration of full-scale superimposed reinforced concrete walls with I-shaped cross sections

Loading next page...
 
/lp/sage/experimental-study-and-numerical-model-calibration-of-full-scale-bLsCAE80z1
Publisher
SAGE
Copyright
© The Author(s) 2016
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/1369433216649392
Publisher site
See Article on Publisher Site

Abstract

The superimposed reinforced concrete wall in which both the walls and slabs are semi-precast superimposed reinforced concrete components has been widely used to construct high-rise residential buildings in some seismic regions of China. This article aims to investigate the seismic performance and reveal the inherent damage mechanism of this wall. Quasi-static tests of two full-scale superimposed reinforced concrete walls with I-shaped cross sections, consisting of the walls in orthogonal directions and two T-shaped cast-in-place boundary elements, were conducted. Through the test, the behavior of the horizontal joints between the wall panels and the foundation; the behavior of the vertical connections between the wall panels of orthogonal direction; the reliability of the connections between precast and cast-in-place concrete; and the lateral load, deformation, and energy dissipation capacities of the specimens are evaluated. In addition, a refined numerical model based on the multi-spring model was adopted to assess the seismic performance of the superimposed reinforced concrete walls with I-shaped cross sections. The reliability of this model was validated through comparison with the experimental data. This study offers valuable experimental data and numerical model references for future seismic performance assessments of superimposed reinforced concrete wall structures.

Journal

Advances in Structural EngineeringSAGE

Published: Dec 1, 2016

There are no references for this article.