Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Experimental and theoretical study on the internal pressure induced by the transient local failure of low-rise building roofs

Experimental and theoretical study on the internal pressure induced by the transient local... A case study on the internal pressure induced by a local failure on the vulnerable gable roof of a low-rise building was extensively conducted experimentally and numerically. Five roof opening configurations were tested in the wind tunnel under three different boundary layer conditions, based on 1:40 scaled models. The effects of opening shape, opening position, opening ratio, building internal volume, and wind speed on peak transient and steady-state internal pressures were studied. The study results indicate that the peak transient and steady-state internal pressures and the corresponding transient overshoot ratio all increase with an increasing opening ratio. The peak steady-state internal pressure is little affected by the approaching wind speed; while the peak transient internal pressure coefficient shows a significant linear relationship with the wind speed. The coupling effect of vortex shedding and Helmholtz resonance in double building volume compensation situation may cause larger fluctuating internal pressure. Both the vortex shedding and Helmholtz resonance reduce the internal pressure coherence to some extent. The agreement between the numerical and experimental results is much better for the mean internal pressure than that for fluctuating internal pressure or peak internal pressure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Experimental and theoretical study on the internal pressure induced by the transient local failure of low-rise building roofs

Loading next page...
 
/lp/sage/experimental-and-theoretical-study-on-the-internal-pressure-induced-by-Efg40U09Xr
Publisher
SAGE
Copyright
© The Author(s) 2021
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/13694332211022069
Publisher site
See Article on Publisher Site

Abstract

A case study on the internal pressure induced by a local failure on the vulnerable gable roof of a low-rise building was extensively conducted experimentally and numerically. Five roof opening configurations were tested in the wind tunnel under three different boundary layer conditions, based on 1:40 scaled models. The effects of opening shape, opening position, opening ratio, building internal volume, and wind speed on peak transient and steady-state internal pressures were studied. The study results indicate that the peak transient and steady-state internal pressures and the corresponding transient overshoot ratio all increase with an increasing opening ratio. The peak steady-state internal pressure is little affected by the approaching wind speed; while the peak transient internal pressure coefficient shows a significant linear relationship with the wind speed. The coupling effect of vortex shedding and Helmholtz resonance in double building volume compensation situation may cause larger fluctuating internal pressure. Both the vortex shedding and Helmholtz resonance reduce the internal pressure coherence to some extent. The agreement between the numerical and experimental results is much better for the mean internal pressure than that for fluctuating internal pressure or peak internal pressure.

Journal

Advances in Structural EngineeringSAGE

Published: Oct 1, 2021

There are no references for this article.