Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Experimental and theoretical investigations on crack spacing and stiffness of textile-reinforced concrete–strengthened reinforced concrete beams

Experimental and theoretical investigations on crack spacing and stiffness of textile-reinforced... To improve the theory of the bending cracks spacing and the deformation of the reinforced concrete beam strengthened with textile-reinforced concrete, the experimental research was conducted first on the cracks spacing and bending performance of reinforced concrete beams with reinforced concrete through four-point bending test. Then, two theoretical derivations were conducted, analyzing the average crack spacing and the stiffness of the strengthened beam through the transformed-section method and the effective moment of inertia approach, respectively. Experimental results showed that no matter using the single-sided or U-type strengthening form, the flexural bearing capacity and crack forms of reinforced concrete beams were improved. Distribution characteristics of cracks in the strengthened beam were presented “multiple and dense” at the bottom and “few and sparse” on the top. The stiffness development of the strengthened beam could be divided into three phases: before-cracking phase, after-cracking phase, and after-yield phase, and the stiffness could be considered as unchanged in every phase. Results of average crack spacing calculated by transformed-section method corresponded with experimental results. By the effective moment of inertia approach, the calculated stiffness of the strengthened beam was slightly bigger than experimental values, which suggested that these calculating solutions may be applied into practical engineering design. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Experimental and theoretical investigations on crack spacing and stiffness of textile-reinforced concrete–strengthened reinforced concrete beams

Loading next page...
 
/lp/sage/experimental-and-theoretical-investigations-on-crack-spacing-and-0AESKrdDSD

References (16)

Publisher
SAGE
Copyright
© The Author(s) 2018
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/1369433218754333
Publisher site
See Article on Publisher Site

Abstract

To improve the theory of the bending cracks spacing and the deformation of the reinforced concrete beam strengthened with textile-reinforced concrete, the experimental research was conducted first on the cracks spacing and bending performance of reinforced concrete beams with reinforced concrete through four-point bending test. Then, two theoretical derivations were conducted, analyzing the average crack spacing and the stiffness of the strengthened beam through the transformed-section method and the effective moment of inertia approach, respectively. Experimental results showed that no matter using the single-sided or U-type strengthening form, the flexural bearing capacity and crack forms of reinforced concrete beams were improved. Distribution characteristics of cracks in the strengthened beam were presented “multiple and dense” at the bottom and “few and sparse” on the top. The stiffness development of the strengthened beam could be divided into three phases: before-cracking phase, after-cracking phase, and after-yield phase, and the stiffness could be considered as unchanged in every phase. Results of average crack spacing calculated by transformed-section method corresponded with experimental results. By the effective moment of inertia approach, the calculated stiffness of the strengthened beam was slightly bigger than experimental values, which suggested that these calculating solutions may be applied into practical engineering design.

Journal

Advances in Structural EngineeringSAGE

Published: Aug 1, 2018

There are no references for this article.