Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this paper, an improved direct power command strategy based on backstepping was designed to ensure the proper operation of DFIG during the electrical grid faults and to control the stator powers through the injection of the reactive power into the electrical grid to guarantee the voltage return. This strategy contributes to the elimination of high peak currents and stabilizes the active power at its desired optimal value. The backstepping controller used to develop this command is based on the lyapunov function in order to guarantee the stability and robustness of the aero-generator. A Matlab/Simulink simulation and a comparative study were carried out to prove the robustness and efficiency of our developed command. Moreover, despite the variable wind speed, the obtained results prove the validation of the developed command with a total harmonic distortion (THD) that does not exceed 0.33%.
Wind Engineering – SAGE
Published: Oct 1, 2022
Keywords: Backstepping command; DFIG; DPC; MPPT; wind turbine
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.