Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this study, the effects of different fiber types on shear behavior (cracking pattern, shear cracking strength, ultimate shear strength, and post-cracking deformability) of ultrahigh-performance fiber-reinforced concrete beams were investigated experimentally. For this purpose, 15 ultrahigh-performance fiber-reinforced concrete beams including different steel fiber types (two straight, two hooked, and one double hooked) with three volume fractions (0.5%, 1.0%, and 1.5%) were casted without shear reinforcement and tested under four-point loading until the failure. In addition to the experimental program, three existing numerical models proposed for the shear capacity of fiber-reinforced concrete beams were investigated to show the applicability of these models to the ultrahigh-performance fiber-reinforced concrete beams. The experimental results demonstrated that the straight fiber of 13 mm is the most effective fiber type in terms of the considered parameters. However, the addition of 13-mm straight fiber with 1.5% by volume into the ultrahigh-performance fiber-reinforced concrete beam changed the failure mode from the shear to flexure without shear reinforcement.
Advances in Structural Engineering – SAGE
Published: May 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.