Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Development and Application of an Analytical Model for Horizontally Curved Bridge Decks

Development and Application of an Analytical Model for Horizontally Curved Bridge Decks This paper presents a reliable closed form analytical solution without any major simplification which can be used with confidence by designers for the analysis of statically indeterminate horizontally curved bridges idealized as curved girders. The unit load method, a method extracted from the Castigliano's second theorem is used to derive the proposed closed form analytical solution which is then used to obtain the influence line diagram of shear force, bending moment and torsion of the curved bridge girder and it is validated with the published test results and also with the finite element solution of a curved girder. Moreover, an extensive parametric study is conducted using the proposed analytical model to investigate the effect of various parameters such as curvature ratio, span length, number of cells and number of loading lanes on bending moment and torsion of the curved bridges subjected to Australian bridge design loads where the effect of all these parameters except the number of cells is found to be significant. Finally, a comparative study of the behaviour of horizontally curved bridges subjected to loads recommended by three different international bridge design codes is undertaken which concludes that the Eurocode LM1 predicts higher bending moment as well as torsion with respect to other codes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Development and Application of an Analytical Model for Horizontally Curved Bridge Decks

Loading next page...
 
/lp/sage/development-and-application-of-an-analytical-model-for-horizontally-4GBo0YW7Rd
Publisher
SAGE
Copyright
© 2015 SAGE Publications
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1260/1369-4332.18.1.107
Publisher site
See Article on Publisher Site

Abstract

This paper presents a reliable closed form analytical solution without any major simplification which can be used with confidence by designers for the analysis of statically indeterminate horizontally curved bridges idealized as curved girders. The unit load method, a method extracted from the Castigliano's second theorem is used to derive the proposed closed form analytical solution which is then used to obtain the influence line diagram of shear force, bending moment and torsion of the curved bridge girder and it is validated with the published test results and also with the finite element solution of a curved girder. Moreover, an extensive parametric study is conducted using the proposed analytical model to investigate the effect of various parameters such as curvature ratio, span length, number of cells and number of loading lanes on bending moment and torsion of the curved bridges subjected to Australian bridge design loads where the effect of all these parameters except the number of cells is found to be significant. Finally, a comparative study of the behaviour of horizontally curved bridges subjected to loads recommended by three different international bridge design codes is undertaken which concludes that the Eurocode LM1 predicts higher bending moment as well as torsion with respect to other codes.

Journal

Advances in Structural EngineeringSAGE

Published: Jan 1, 2015

There are no references for this article.