Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Contrafreeloading in Rats Is Adaptive and Flexible: Support for an Animal Model of Compulsive Checking:

Contrafreeloading in Rats Is Adaptive and Flexible: Support for an Animal Model of Compulsive... Contrafreeloading involves working unnecessarily to obtain a reward that is otherwise freely available. It has been observed in numerous species and can be adaptive when it provides an organism with updated information about available resources. Humans frequently update their knowledge of the environment through checking behaviors. Compulsive checking occurs when such actions are performed with excessive frequency. In a putative animal model of compulsive checking, rats treated chronically with the dopamine agonist quinpirole display exaggerated contrafreeloading for water. Although this effect has been attributed to behavioral rigidity, some evidence suggests the behavior remains somewhat flexible and may be adaptive under certain conditions. We assessed the ability of quinpirole-treated rats with contrafreeloading experience to adapt to changing contingencies by requiring them to alternate between response levers. Rats treated with quinpirole or saline were first trained to obtain water by pressing either of two levers. Next, free water was made available for 8 days, and contrafreeloading was measured. Rates of contrafreeloading were significantly higher in the drug-treated rats than in controls. On the following 5 days, each reward caused the associated lever to become inactive until a reward was earned from the alternate lever. Quinpirole-treated rats learned this new response requirement more quickly than controls. Thus, exaggerated checking behavior induced by chronic quinpirole treatment can be advantageous when environmental contingencies change. These results provide support for this animal model of compulsive checking and hint at the presence of a specialized neural checking module involving the dopamine system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Evolutionary Psychology SAGE

Contrafreeloading in Rats Is Adaptive and Flexible: Support for an Animal Model of Compulsive Checking:

Evolutionary Psychology , Volume 15 (4): 1 – Oct 26, 2017

Contrafreeloading in Rats Is Adaptive and Flexible: Support for an Animal Model of Compulsive Checking:

Evolutionary Psychology , Volume 15 (4): 1 – Oct 26, 2017

Abstract

Contrafreeloading involves working unnecessarily to obtain a reward that is otherwise freely available. It has been observed in numerous species and can be adaptive when it provides an organism with updated information about available resources. Humans frequently update their knowledge of the environment through checking behaviors. Compulsive checking occurs when such actions are performed with excessive frequency. In a putative animal model of compulsive checking, rats treated chronically with the dopamine agonist quinpirole display exaggerated contrafreeloading for water. Although this effect has been attributed to behavioral rigidity, some evidence suggests the behavior remains somewhat flexible and may be adaptive under certain conditions. We assessed the ability of quinpirole-treated rats with contrafreeloading experience to adapt to changing contingencies by requiring them to alternate between response levers. Rats treated with quinpirole or saline were first trained to obtain water by pressing either of two levers. Next, free water was made available for 8 days, and contrafreeloading was measured. Rates of contrafreeloading were significantly higher in the drug-treated rats than in controls. On the following 5 days, each reward caused the associated lever to become inactive until a reward was earned from the alternate lever. Quinpirole-treated rats learned this new response requirement more quickly than controls. Thus, exaggerated checking behavior induced by chronic quinpirole treatment can be advantageous when environmental contingencies change. These results provide support for this animal model of compulsive checking and hint at the presence of a specialized neural checking module involving the dopamine system.

Loading next page...
 
/lp/sage/contrafreeloading-in-rats-is-adaptive-and-flexible-support-for-an-Gca1bR0vOu

References (35)

Publisher
SAGE
Copyright
Copyright © 2022 by SAGE Publications Inc., unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses
ISSN
1474-7049
eISSN
1474-7049
DOI
10.1177/1474704917735937
Publisher site
See Article on Publisher Site

Abstract

Contrafreeloading involves working unnecessarily to obtain a reward that is otherwise freely available. It has been observed in numerous species and can be adaptive when it provides an organism with updated information about available resources. Humans frequently update their knowledge of the environment through checking behaviors. Compulsive checking occurs when such actions are performed with excessive frequency. In a putative animal model of compulsive checking, rats treated chronically with the dopamine agonist quinpirole display exaggerated contrafreeloading for water. Although this effect has been attributed to behavioral rigidity, some evidence suggests the behavior remains somewhat flexible and may be adaptive under certain conditions. We assessed the ability of quinpirole-treated rats with contrafreeloading experience to adapt to changing contingencies by requiring them to alternate between response levers. Rats treated with quinpirole or saline were first trained to obtain water by pressing either of two levers. Next, free water was made available for 8 days, and contrafreeloading was measured. Rates of contrafreeloading were significantly higher in the drug-treated rats than in controls. On the following 5 days, each reward caused the associated lever to become inactive until a reward was earned from the alternate lever. Quinpirole-treated rats learned this new response requirement more quickly than controls. Thus, exaggerated checking behavior induced by chronic quinpirole treatment can be advantageous when environmental contingencies change. These results provide support for this animal model of compulsive checking and hint at the presence of a specialized neural checking module involving the dopamine system.

Journal

Evolutionary PsychologySAGE

Published: Oct 26, 2017

Keywords: contrafreeloading; compulsive checking; animal model; dopamine

There are no references for this article.