Access the full text.
Sign up today, get DeepDyve free for 14 days.
Reinforced concrete flexural members inherently rely on member ductility to ensure a safe design by allowing for: redistribution of applied stress resultants; quantification of drift for determining magnified moments; and for the absorption of seismic, blast and impact energy. Structural engineers have recognised that much of the member rotation is concentrated in a small region referred to as the plastic hinge and because of the complexity of the problem this has been quantified mainly through testing. In this paper, a new plastic hinge approach that is based on well established shear-friction theory is postulated. The generic behaviour of this novel shear-friction hinge is shown to agree with that exhibited in tests. Furthermore, the shear-friction hinge explains the mechanics of the benefits of confinement, such as that due to FRP encasement or steel stirrups, on the rotational capacity of RC members.
Advances in Structural Engineering – SAGE
Published: Jun 1, 2008
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.