Access the full text.
Sign up today, get DeepDyve free for 14 days.
Fire is a critical risk in reinforced concrete (RC) structures and appropriate structural resistance against it has to be ensured. In this contribution, an approach using corotational layered beam finite elements is employed in which the cross-section temperature is derived from a low-cost closed form model, as opposed to the more commonly used fully computational thermal analysis. The effect of geometrical and material nonlinearities (constitutive behavior fitted to experimental data for concrete and steel), material degradation as a function of temperature rise, and the contributions of thermal, transient, and creep strains are incorporated in the structural analysis. The computational results are favorably compared to experimental data from the literature for an RC beam and for a larger RC frame. Taking benefit of the layered beam formulation offering local insight into the cross-sectional and material behavior, the relationship between the structural degradation and data extracted from the cross-sectional behavior is successfully established. Noteworthy originalities of the contribution are the use of ultimate strain and its evolution as a function of temperature for both materials and the explanation of the observed structural response in fire conditions from cross-sectional data.
Advances in Structural Engineering – SAGE
Published: Nov 1, 2021
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.