Access the full text.
Sign up today, get DeepDyve free for 14 days.
The current codes and standards concerning wind loads on roof-mounted solar panels are discussed and summarized. Wind pressures on flat- and slope-roof-mounted solar arrays obtained from wind tunnel tests are compared with the recommended design values in ASCE 7-16 and JIS C 8955: 2017. Different parameters, including building side ratio, aspect ratio and parapet height, are examined. Results show that the largest wind pressures on flat-roof-mounted solar panels of all zones in ASCE 7-16 tend to be 10% to 26% smaller than the experimental results when normalized tributary area An is larger than 103. Uplift wind forces on flat-roof-mounted solar panels in downstream regions obtained from experiments can be larger than the recommended values in JIS C 8955: 2017 for adverse wind, but downward force coefficients are basically smaller than those in JIS C 8955: 2017 for fair wind. 40% to 60% increase on the pressure equalization factor for slope-roof-mounted solar panels is suggested for the potential refinement of ASCE 7-16 based on this study. Meanwhile, proposed pressures of slope-roof-mounted solar panels in JIS C 8955: 2017 might be too conservative according of experimental results.
Advances in Structural Engineering – SAGE
Published: Mar 1, 2021
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.