Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Bond performance between SFCBs and grouted sleeves for precast concrete structures

Bond performance between SFCBs and grouted sleeves for precast concrete structures A precast concrete structure reinforced by steel-fiber-reinforced polymer (FRP) composite bars (SFCBs) shows good durability and controllable post-yield stiffness, which makes this kind of structure suitable for marine infrastructure. The connection technology is one of the critical issues of a precast concrete structure with hybrid reinforcement. This paper presents an experimental study on the bond-slip testing (27 pullout specimens) of composite bars connected by a grouted deformed pipe splice (GDPS) connector with different bond lengths. The reinforcement included SFCBs and pure FRP bars. The test results showed that the failure modes could be classified into three categories: rebar pullout before or after the inner steel bar yielded, rupture of the FRP wrapped on the SFCB, and mixed failure of bar pullout with a partial fiber fracture. The average bond strength of the ordinary steel bar was approximately 146.8% that of the SFCB connector with the same anchored length. When the anchored length of the SFCB specimen was 15d (d: bar diameter), the specimen could be fully anchored to fracture. An explicit hardening bond-slip model considering the post-yield stiffness of the SFCB was used to predict the bond-slip behavior of the GDPS connector, and the experimental and analytical results agreed well with each other, which demonstrates that the proposed model could provided a reference for the analysis and design of connectors for SFCB-reinforced precast concrete structures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Bond performance between SFCBs and grouted sleeves for precast concrete structures

Loading next page...
 
/lp/sage/bond-performance-between-sfcbs-and-grouted-sleeves-for-precast-Yu6RMFqTo2
Publisher
SAGE
Copyright
© The Author(s) 2021
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/13694332211001505
Publisher site
See Article on Publisher Site

Abstract

A precast concrete structure reinforced by steel-fiber-reinforced polymer (FRP) composite bars (SFCBs) shows good durability and controllable post-yield stiffness, which makes this kind of structure suitable for marine infrastructure. The connection technology is one of the critical issues of a precast concrete structure with hybrid reinforcement. This paper presents an experimental study on the bond-slip testing (27 pullout specimens) of composite bars connected by a grouted deformed pipe splice (GDPS) connector with different bond lengths. The reinforcement included SFCBs and pure FRP bars. The test results showed that the failure modes could be classified into three categories: rebar pullout before or after the inner steel bar yielded, rupture of the FRP wrapped on the SFCB, and mixed failure of bar pullout with a partial fiber fracture. The average bond strength of the ordinary steel bar was approximately 146.8% that of the SFCB connector with the same anchored length. When the anchored length of the SFCB specimen was 15d (d: bar diameter), the specimen could be fully anchored to fracture. An explicit hardening bond-slip model considering the post-yield stiffness of the SFCB was used to predict the bond-slip behavior of the GDPS connector, and the experimental and analytical results agreed well with each other, which demonstrates that the proposed model could provided a reference for the analysis and design of connectors for SFCB-reinforced precast concrete structures.

Journal

Advances in Structural EngineeringSAGE

Published: Oct 1, 2021

There are no references for this article.