Access the full text.
Sign up today, get DeepDyve free for 14 days.
The behavior of fiber-reinforced polymer (FRP)–confined recycled aggregate concrete-filled steel tube (RACFT) columns is barely studied. Especially, that of slender specimens has not been investigated so far. In this article, an experimental test of FRP-confined RACFT slender square columns was conducted to study the influences of recycled aggregate (RA) replacement ratios, FRP thicknesses, and wrapping schemes on their axial behavior. Results in this article suggest that the RA replacement ratio barely affects the initial stiffness of load-deflection curves of specimens. Moreover, the specimen with a higher RA replacement ratio has a lower axial stress but larger strain at the peak point. The external FRP jackets (either partial or full wrap) can effectively improve the performance of axially loaded RACFT columns, and the improvement of ductility due to the increase of the FRP thickness is more significant than that of axial compressive strength. Additionally, it was found that the axial strength and ultimate axial strain decrease with increasing slenderness ratios. Furthermore, the influences of slenderness ratios on the behavior of such columns are more significant for the column with a larger length-to-width ratio. Finally, a design model for FRP-confined RACFT slender square columns is developed, which can predict the results of the present test accurately.
Advances in Structural Engineering – SAGE
Published: Nov 1, 2021
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.