Access the full text.
Sign up today, get DeepDyve free for 14 days.
The two-dimensional finite element method can be used to calculate the thermal field distribution of prestressed concrete bridge girders. However, this method is not appropriate for the concrete box-girder arch bridges, because they have different azimuth and dip angles at the top and bottom flanges along arch axis. Thus, an experimental and analytical study was conducted on a concrete box-girder arch bridge located in Guizhou, China, to investigate the thermal behavior under convection and the solar radiations. To determine the vertical temperature gradients, a two-dimensional plane finite element model was used to calculate the thermal field based on meteorological parameter methods. In addition, the three-dimensional beam finite element model was proposed to study the thermal stress and displacement of arch bridges using the vertical temperature gradients. Finally, the thermal behavior of the concrete box-girder arch bridges determined by the two-dimensional plane and three-dimensional beam finite element model was verified by three-dimensional solid finite element model.
Advances in Structural Engineering – SAGE
Published: Jul 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.