Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

An effective model for analysis of reinforced concrete members and structures under blast loading

An effective model for analysis of reinforced concrete members and structures under blast loading The traditional fiber beam model has been widely used in the seismic analysis of reinforced concrete members and structures. However, the inability to capture shear failure restricts its application to blast loadings. In this article, a numerical model that considers both rate-dependent shear behavior and damage effect is proposed based on the traditional fiber beam element. This is achieved using the modified compression-field theory with a concrete damage model and bilinear steel model in the principal directions. Meanwhile, a condensed three-dimensional stress–strain relation from the isotropic hardening plasticity model is implemented to simulate longitudinal reinforcement bars, as large shear strain would be produced under severe blast loads. The proposed model is validated by comparing the numerical and test results. The high-fidelity physics-based finite element model, validated by the same experiment, is also used in the study to prove the efficiency of the proposed model. Case studies of a reinforced concrete beam and a six-story reinforced concrete frame structure subjected to blast loads are then carried out. The results indicate that the proposed model is reliable compared with the high-fidelity physics-based model. In addition to the accuracy, comparisons of the computational time show an excellent performance with respect to the efficiency of the proposed model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

An effective model for analysis of reinforced concrete members and structures under blast loading

Loading next page...
 
/lp/sage/an-effective-model-for-analysis-of-reinforced-concrete-members-and-54lyJ7Hycd

References (46)

Publisher
SAGE
Copyright
© The Author(s) 2016
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/1369433216649393
Publisher site
See Article on Publisher Site

Abstract

The traditional fiber beam model has been widely used in the seismic analysis of reinforced concrete members and structures. However, the inability to capture shear failure restricts its application to blast loadings. In this article, a numerical model that considers both rate-dependent shear behavior and damage effect is proposed based on the traditional fiber beam element. This is achieved using the modified compression-field theory with a concrete damage model and bilinear steel model in the principal directions. Meanwhile, a condensed three-dimensional stress–strain relation from the isotropic hardening plasticity model is implemented to simulate longitudinal reinforcement bars, as large shear strain would be produced under severe blast loads. The proposed model is validated by comparing the numerical and test results. The high-fidelity physics-based finite element model, validated by the same experiment, is also used in the study to prove the efficiency of the proposed model. Case studies of a reinforced concrete beam and a six-story reinforced concrete frame structure subjected to blast loads are then carried out. The results indicate that the proposed model is reliable compared with the high-fidelity physics-based model. In addition to the accuracy, comparisons of the computational time show an excellent performance with respect to the efficiency of the proposed model.

Journal

Advances in Structural EngineeringSAGE

Published: Dec 1, 2016

There are no references for this article.