Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A generalized Pareto distribution–based extreme value model of thermal gradients in a long-span bridge combining parameter updating

A generalized Pareto distribution–based extreme value model of thermal gradients in a long-span... Estimating extreme value models with high reliability for thermal gradients is a significant task that must be completed before reasonable thermal loads and possible thermal stress in long-span bridges are evaluated. In this article, a generalized Pareto distribution–based extreme value model combining parameter updating has been developed to describe the statistical characteristics of thermal gradients in a long-span bridge. The procedure of excluding correlation and the approach of selecting a proper threshold are suggested to prepare samples for generalized Pareto distribution estimation. A Bayesian estimation, which has the capability of updating model parameters by fusing prior information and incoming monitoring data, is proposed to fit the generalized Pareto distribution–based model. Furthermore, the Gibbs sampling, which is a Markov chain Monte Carlo algorithm, is adopted to derive the Bayesian posterior distribution. Finally, the proposed method is applied to the field monitoring data of thermal gradients in the Jiubao Bridge. The extreme value models of thermal gradients for the Jiubao Bridge are established, and the extreme thermal gradients with different return periods are extrapolated. The results indicate that the generalized Pareto distribution–based extreme value model has a strong ability to represent the statistical features of thermal gradients for the Jiubao Bridge, and the Bayesian estimation combining parameter updating provides high-precision generalized Pareto distribution–based models for predicting extreme thermal gradients. The predicted extreme thermal gradients are expected to evaluate and design long-span bridges. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

A generalized Pareto distribution–based extreme value model of thermal gradients in a long-span bridge combining parameter updating

Loading next page...
 
/lp/sage/a-generalized-pareto-distribution-based-extreme-value-model-of-thermal-921ImRxQHH
Publisher
SAGE
Copyright
© The Author(s) 2016
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/1369433216660010
Publisher site
See Article on Publisher Site

Abstract

Estimating extreme value models with high reliability for thermal gradients is a significant task that must be completed before reasonable thermal loads and possible thermal stress in long-span bridges are evaluated. In this article, a generalized Pareto distribution–based extreme value model combining parameter updating has been developed to describe the statistical characteristics of thermal gradients in a long-span bridge. The procedure of excluding correlation and the approach of selecting a proper threshold are suggested to prepare samples for generalized Pareto distribution estimation. A Bayesian estimation, which has the capability of updating model parameters by fusing prior information and incoming monitoring data, is proposed to fit the generalized Pareto distribution–based model. Furthermore, the Gibbs sampling, which is a Markov chain Monte Carlo algorithm, is adopted to derive the Bayesian posterior distribution. Finally, the proposed method is applied to the field monitoring data of thermal gradients in the Jiubao Bridge. The extreme value models of thermal gradients for the Jiubao Bridge are established, and the extreme thermal gradients with different return periods are extrapolated. The results indicate that the generalized Pareto distribution–based extreme value model has a strong ability to represent the statistical features of thermal gradients for the Jiubao Bridge, and the Bayesian estimation combining parameter updating provides high-precision generalized Pareto distribution–based models for predicting extreme thermal gradients. The predicted extreme thermal gradients are expected to evaluate and design long-span bridges.

Journal

Advances in Structural EngineeringSAGE

Published: Feb 1, 2017

There are no references for this article.