Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Comparison of interpolating methods for image resampling.

Comparison of interpolating methods for image resampling. When resampling an image to a new set of coordinates (for example, when rotating an image), there is often a noticeable loss in image quality. To preserve image quality, the interpolating function used for the resampling should be an ideal low-pass filter. To determine which limited extent convolving functions would provide the best interpolation, five functions were compared: A) nearest neighbor, B) linear, C) cubic B-spline, D) high-resolution cubic spline with edge enhancement (a = -1), and E) high-resolution cubic spline (a = -0.5). The functions which extend over four picture elements (C, D, E) were shown to have a better frequency response than those which extend over one (A) or two (B) pixels. The nearest neighbor function shifted the image up to one-half a pixel. Linear and cubic B-spline interpolation tended to smooth the image. The best response was obtained with the high-resolution cubic spline functions. The location of the resampled points with respect to the initial coordinate system has a dramatic effect on the response of the sampled interpolating function the data are exactly reproduced when the points are aligned, and the response has the most smoothing when the resampled points are equidistant from the original coordinate points. Thus, at the expense of some increase in computing time, image quality can be improved by resampled using the high-resolution cubic spline function as compared to the nearest neighbor, linear, or cubic B-spline functions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png IEEE transactions on medical imaging Pubmed

Comparison of interpolating methods for image resampling.

IEEE transactions on medical imaging , Volume 2 (1): 9 – Oct 2, 2012

Comparison of interpolating methods for image resampling.


Abstract

When resampling an image to a new set of coordinates (for example, when rotating an image), there is often a noticeable loss in image quality. To preserve image quality, the interpolating function used for the resampling should be an ideal low-pass filter. To determine which limited extent convolving functions would provide the best interpolation, five functions were compared: A) nearest neighbor, B) linear, C) cubic B-spline, D) high-resolution cubic spline with edge enhancement (a = -1), and E) high-resolution cubic spline (a = -0.5). The functions which extend over four picture elements (C, D, E) were shown to have a better frequency response than those which extend over one (A) or two (B) pixels. The nearest neighbor function shifted the image up to one-half a pixel. Linear and cubic B-spline interpolation tended to smooth the image. The best response was obtained with the high-resolution cubic spline functions. The location of the resampled points with respect to the initial coordinate system has a dramatic effect on the response of the sampled interpolating function the data are exactly reproduced when the points are aligned, and the response has the most smoothing when the resampled points are equidistant from the original coordinate points. Thus, at the expense of some increase in computing time, image quality can be improved by resampled using the high-resolution cubic spline function as compared to the nearest neighbor, linear, or cubic B-spline functions.

Loading next page...
 
/lp/pubmed/comparison-of-interpolating-methods-for-image-resampling-z2qRgbf25t

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0278-0062
DOI
10.1109/TMI.1983.4307610
pmid
18234586

Abstract

When resampling an image to a new set of coordinates (for example, when rotating an image), there is often a noticeable loss in image quality. To preserve image quality, the interpolating function used for the resampling should be an ideal low-pass filter. To determine which limited extent convolving functions would provide the best interpolation, five functions were compared: A) nearest neighbor, B) linear, C) cubic B-spline, D) high-resolution cubic spline with edge enhancement (a = -1), and E) high-resolution cubic spline (a = -0.5). The functions which extend over four picture elements (C, D, E) were shown to have a better frequency response than those which extend over one (A) or two (B) pixels. The nearest neighbor function shifted the image up to one-half a pixel. Linear and cubic B-spline interpolation tended to smooth the image. The best response was obtained with the high-resolution cubic spline functions. The location of the resampled points with respect to the initial coordinate system has a dramatic effect on the response of the sampled interpolating function the data are exactly reproduced when the points are aligned, and the response has the most smoothing when the resampled points are equidistant from the original coordinate points. Thus, at the expense of some increase in computing time, image quality can be improved by resampled using the high-resolution cubic spline function as compared to the nearest neighbor, linear, or cubic B-spline functions.

Journal

IEEE transactions on medical imagingPubmed

Published: Oct 2, 2012

There are no references for this article.