Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Arrhythmia Recognition and Classification Using ECG Morphology and Segment Feature Analysis.

Arrhythmia Recognition and Classification Using ECG Morphology and Segment Feature Analysis. In this work, arrhythmia appearing with the presence of abnormal heart electrical activity is efficiently recognized and classified. A novel method is proposed for accurate recognition and classification of cardiac arrhythmias. Firstly, P-QRS-T waves is segmented from ECG waveform; secondly, morphological features are extracted from P-QRS-T waves, and ECG segment features are extracted from the selected ECG segment by using PCA and dynamic time warping(DTW); finally, SVM is applied to the features and automatic diagnosis results is presented. ECG data set used is derived from the MIT-BIH in which ECG signals are divided into the four classes: normal beats(N), supraventricular ectopic beats (SVEBs), ventricular ectopic beats (VEBs) and fusion of ventricular and normal (F). Our proposed method can distinguish N, SVEBs, VEBs and F with an accuracy of 97.80 percent. The sensitivities for the classes N, SVEBs, VEBs and F are 99.27, 87.47, 94.71, and 73.88 percent and the positive predictivities are 98.48, 95.25, 95.22 and 86.09 percent respectively. The detection sensitivity of SVEBs and VEBs has a better performance by combining proposed features than by using the ECG morphology or ECG segment features separately. The proposed method is compared with four selected peer algorithms and delivers solid results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png IEEE/ACM transactions on computational biology and bioinformatics Pubmed

Arrhythmia Recognition and Classification Using ECG Morphology and Segment Feature Analysis.

IEEE/ACM transactions on computational biology and bioinformatics , Volume 16 (1): 8 – Aug 2, 2019

Arrhythmia Recognition and Classification Using ECG Morphology and Segment Feature Analysis.


Abstract

In this work, arrhythmia appearing with the presence of abnormal heart electrical activity is efficiently recognized and classified. A novel method is proposed for accurate recognition and classification of cardiac arrhythmias. Firstly, P-QRS-T waves is segmented from ECG waveform; secondly, morphological features are extracted from P-QRS-T waves, and ECG segment features are extracted from the selected ECG segment by using PCA and dynamic time warping(DTW); finally, SVM is applied to the features and automatic diagnosis results is presented. ECG data set used is derived from the MIT-BIH in which ECG signals are divided into the four classes: normal beats(N), supraventricular ectopic beats (SVEBs), ventricular ectopic beats (VEBs) and fusion of ventricular and normal (F). Our proposed method can distinguish N, SVEBs, VEBs and F with an accuracy of 97.80 percent. The sensitivities for the classes N, SVEBs, VEBs and F are 99.27, 87.47, 94.71, and 73.88 percent and the positive predictivities are 98.48, 95.25, 95.22 and 86.09 percent respectively. The detection sensitivity of SVEBs and VEBs has a better performance by combining proposed features than by using the ECG morphology or ECG segment features separately. The proposed method is compared with four selected peer algorithms and delivers solid results.

Loading next page...
 
/lp/pubmed/arrhythmia-recognition-and-classification-using-ecg-morphology-and-YCjkRgswEG

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1545-5963
eISSN
1557-9964
DOI
10.1109/TCBB.2018.2846611
pmid
29994263

Abstract

In this work, arrhythmia appearing with the presence of abnormal heart electrical activity is efficiently recognized and classified. A novel method is proposed for accurate recognition and classification of cardiac arrhythmias. Firstly, P-QRS-T waves is segmented from ECG waveform; secondly, morphological features are extracted from P-QRS-T waves, and ECG segment features are extracted from the selected ECG segment by using PCA and dynamic time warping(DTW); finally, SVM is applied to the features and automatic diagnosis results is presented. ECG data set used is derived from the MIT-BIH in which ECG signals are divided into the four classes: normal beats(N), supraventricular ectopic beats (SVEBs), ventricular ectopic beats (VEBs) and fusion of ventricular and normal (F). Our proposed method can distinguish N, SVEBs, VEBs and F with an accuracy of 97.80 percent. The sensitivities for the classes N, SVEBs, VEBs and F are 99.27, 87.47, 94.71, and 73.88 percent and the positive predictivities are 98.48, 95.25, 95.22 and 86.09 percent respectively. The detection sensitivity of SVEBs and VEBs has a better performance by combining proposed features than by using the ECG morphology or ECG segment features separately. The proposed method is compared with four selected peer algorithms and delivers solid results.

Journal

IEEE/ACM transactions on computational biology and bioinformaticsPubmed

Published: Aug 2, 2019

There are no references for this article.