Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Medical History, Lifestyle, Family History, and Occupational Risk Factors for Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: The InterLymph Non-Hodgkin Lymphoma Subtypes Project

Medical History, Lifestyle, Family History, and Occupational Risk Factors for Chronic Lymphocytic... Abstract Background Chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) are two subtypes of non-Hodgkin lymphoma. A number of studies have evaluated associations between risk factors and CLL/SLL risk. However, these associations remain inconsistent or lacked confirmation. This may be due, in part, to the inadequate sample size of CLL/SLL cases. Methods We performed a pooled analysis of 2440 CLL/SLL cases and 15186 controls from 13 case-control studies from Europe, North America, and Australia. We evaluated associations of medical history, family history, lifestyle, and occupational risk factors with CLL/SLL risk. Multivariate logistic regression analyses were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Results We confirmed prior inverse associations with any atopic condition and recreational sun exposure. We also confirmed prior elevated associations with usual adult height, hepatitis C virus seropositivity, living or working on a farm, and family history of any hematological malignancy. Novel associations were identified with hairdresser occupation (OR = 1.77, 95% CI = 1.05 to 2.98) and blood transfusion history (OR = 0.79, 95% CI = 0.66 to 0.94). We also found smoking to have modest protective effect (OR = 0.9, 95% CI = 0.81 to 0.99). All exposures showed evidence of independent effects. Conclusions We have identified or confirmed several independent risk factors for CLL/SLL supporting a role for genetics (through family history), immune function (through allergy and sun), infection (through hepatitis C virus), and height, and other pathways of immune response. Given that CLL/SLL has more than 30 susceptibility loci identified to date, studies evaluating the interaction among genetic and nongenetic factors are warranted. Chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) are two subtypes of non-Hodgkin lymphoma (NHL). They are clinically defined by the presence of a clonal population of B-cell lymphocytes that have a characteristic immunophenotype (1). Because of their common immunophenotype and their similar clinical course, CLL and SLL are typically combined together despite the more prominent nodal involvement in SLL. CLL/SLL is one of the most common B-cell malignancies in individuals of Caucasian descent and is very rare in individuals of Asian descent. The incidence of CLL/SLL has remained fairly constant over time with an annual incidence between 4 and 10 per 100000 (2–6). However, recent incidence studies of CLL in Asian populations have shown an increase in incidence suggesting an environmental role (7,8). CLL/SLL incidence is nearly twice as high in men as in women, and CLL/SLL incidence increases with age, with a median age at CLL/SLL diagnosis of 73 years (3–5,9). A number of studies have been conducted to identify risk factors for CLL/SLL. The strongest and most consistent risk factor for CLL/SLL is family history of hematologic malignancy, regardless of how it is defined (i.e., defined by any family history of lymphoma, or focused on a family history of NHL, or specifically on a family history of CLL/SLL) (10–12). However, with other risk factors, these finding have yet to be confirmed (e.g., atopic associations), lacked consistency (e.g., smoking associations), or have not been assessed in a multivariate setting to explore relative independence. The lack of consistency may be due, in part, to inadequate sample size of CLL/SLL cases, especially for those factors that may be more modestly linked to CLL/SLL. To advance our understanding of the etiology of CLL/SLL, we conducted one of the largest epidemiological studies of CLL/SLL to date by investigating associations with lifestyle, medical history, family history, and selected occupational risk factors in a pooled analysis of 2440 cases and 15186 controls from 13 case-control studies from Europe, North America, and Australia as part of the International Lymphoma Epidemiology Consortium (InterLymph) NHL Subtypes Project. Moreover, we considered exposures not only individually but also jointly to assess independence among exposures. Methods Study Population Detailed methodology for the InterLymph NHL Subtypes Project is provided elsewhere in this issue. Studies eligible for inclusion in this pooled analysis fulfilled the following criteria: 1) case-control design; 2) inclusion of incident CLL/SLL cases with the clonality of the circulating B-cell lymphocytes confirmed by flow cytometry; and 3) availability of individual-level data for at least several risk factors of interest by December 31, 2011. Most studies excluded individuals with a known history of solid organ transplantation or HIV/AIDS. Contributing studies were approved by local ethics review committees, and all participants provided written, informed consent before interview. NHL Subtype Ascertainment and Harmonization Cases were classified according to the World Health Organization classification (13,14) using guidelines from the InterLymph Pathology Working Group (15,16). Most studies had some form of centralized pathology review by at least one expert hematopathologist to confirm the diagnoses. Each participating study’s pathology review procedures, rules for NHL subtype classification, and NHL subtype distribution were then reviewed independently by an interdisciplinary team of pathologists and epidemiologists from InterLymph. Risk Factor Ascertainment and Harmonization Each study collected data on putative CLL/SLL risk factors in a standardized, structured format by in-person or telephone interviews (typically computer-assisted) or self-administered questionnaires. Risk factors selected for inclusion in this analysis were lifestyle, medical history, family history, and occupational risk factors with data from at least four studies. Centralized harmonization of de-identified, individual-level data from each study was a key element of the project. Each exposure variable was harmonized individually; data were then reviewed for consistency among related exposure variables. Details of the collected data and data harmonization rules are provided elsewhere in this issue. Statistical Analysis We first performed analyses to evaluate risk of CLL/SLL with each exposure variable using unconditional logistic regression models adjusted for age, race/ethnicity, sex, and study (i.e., the “basic model”). The statistical significance of each exposure was evaluated by a likelihood ratio test, comparing models with and without the exposure variable of interest, with P values less than 0.05 identifying putatively influential factors. Individuals with missing data for the exposure variable of interest were excluded. To evaluate effect heterogeneity among the 13 studies, we performed a separate logistic regression within each study and then quantified the variability of the coefficients by the H statistic, adapting the definition by Higgins and Thompson to categorical variables (17). No meaningful heterogeneity was observed (results not shown). We then examined the relationship between CLL/SLL risk and each putative risk factor considering possible effect modification and accounting for other potential confounders. To consider possible effect modification, we repeated the above logistic regression analyses, but now stratified individuals by age, sex, race/ethnicity, region, study, study design (i.e., population-based versus hospital- or clinic-based), or other putative risk factors identified in the analysis. Forest plots illustrated the results from the stratified analyses to identify possible modifiers of the effect of an exposure variable of interest. No evidence of effect modification was observed (results not shown). To account for other potential confounders, we conducted two analyses. First, we evaluated the risk estimate for each putative risk factor in a series of models that adjusted for one other putative risk factor individually as well as age, race/ethnicity, sex, and study (pairwise adjustment modeling). Second, we conducted a single logistic regression model including all putative risk factors, this time including a separate missing category for each variable to ensure that the whole study population was included in the analysis (i.e., not dropped due to missing data). Finally, we conducted a forward step-wise logistic regression with all putative risk factors, adjusting for age, sex, race/ethnicity, and study, to identify our “full model.” Because controls for most of the 13 studies were frequency matched by age and sex to all cases (e.g., all NHL subtypes) rather than just to CLL/SLL, we conducted sensitivity analyses using a subset of controls from each study that were frequency matched by age and sex to CLL/SLL cases. The results from these sensitivity analyses were very similar to the results obtained using the full set of controls (results not shown); thus, we retained the full set of controls for our main analyses to increase statistical power. Results Table 1 shows the distribution of the 2440 CLL/SLL cases and 15186 controls across the 13 participating studies, along with characteristics for age, race/ethnicity, sex, and social economic status. Relative to controls, cases tended to be older (over the age of 60 years) and were more likely to be men. Cases had a median age at diagnosis of 64 years (range 28–93) compared with 60 years (range 17–97) at interview in controls. The majority (>95%) of cases and controls were non-Hispanic whites. There was no evidence of a difference in distribution of social economic status across cases and controls (P = .19). Table 1. Characteristics of CLL/SLL cases and controls included in the InterLymph NHL Subtypes Project*   Controls  Cases  No. (%)  No. (%)  Total  15186 (86.2)  2440 (13.8)  Study   North America  5848 (38.5)  881 (36.1)   British Columbia  845 (5.6)  42 (1.7)   Iowa/Minnesota  1245 (8.2)  244 (10.0)   Mayo Clinic  1314 (8.7)  376 (15.4)   NCI-SEER   1055 (6.9)  133 (5.5)   Nebraska (newer)  533 (3.5)  29 (1.2)   University of Rochester  139 (0.9)  7 (0.3)   Yale  717 (4.7)  50 (2.0)   Europe  8644 (56.9)  1530 (62.7)   Engela  722 (4.8)  132 (5.4)   EpiLymph  2460 (16.2)  414 (17.0)   Italy multicenter  1771 (11.7)  214 (8.8)   Italy (Aviano-Naples)  504 (3.3)  18 (0.7)   SCALE  3187 (21.0)  752 (30.8)   Australia   New South Wales  694 (4.6)  29 (1.2)   Design   Population based  11093 (73.0)  1656 (67.9)   Hospital based  4093 (27.0)  784 (32.1)   Age   <30  831 (5.5)  1 (0.0)   30–39  1190 (7.8)  29 (1.2)   40–49  2044 (13.5)  205 (8.4)   50–59  3326 (21.9)  603 (24.7)   60–69  4386 (28.9)  925 (37.9)   70–79  2974 (19.6)  565 (23.2)   ≥80  435 (2.9)  84 (3.4)   Missing  0 (0.0)  28 (1.1)   Sex   Men  8472 (55.8)  1614 (66.1)   Women  6714 (44.2)  826 (33.9)   Race/ethnicity   White, non-Hispanic  14303 (94.2)  2336 (95.7)   Black  199 (1.3)  16 (0.7)   Asian  189 (1.2)  5 (0.2)   Hispanic  95 (0.6)  9 (0.4)   Other/unknown/missing  400 (2.6)  74 (3.0)   Social economic status   Low  6141 (40.4)  1076 (44.1)   Medium  4655 (30.7)  684 (28.0)   High  4139 (27.3)  560 (23.0)   Other/missing  251 (1.7)  120 (4.9)   NHL classification   World Health Organization    1982 (81.2)   Working Formulation    458 (18.8)    Controls  Cases  No. (%)  No. (%)  Total  15186 (86.2)  2440 (13.8)  Study   North America  5848 (38.5)  881 (36.1)   British Columbia  845 (5.6)  42 (1.7)   Iowa/Minnesota  1245 (8.2)  244 (10.0)   Mayo Clinic  1314 (8.7)  376 (15.4)   NCI-SEER   1055 (6.9)  133 (5.5)   Nebraska (newer)  533 (3.5)  29 (1.2)   University of Rochester  139 (0.9)  7 (0.3)   Yale  717 (4.7)  50 (2.0)   Europe  8644 (56.9)  1530 (62.7)   Engela  722 (4.8)  132 (5.4)   EpiLymph  2460 (16.2)  414 (17.0)   Italy multicenter  1771 (11.7)  214 (8.8)   Italy (Aviano-Naples)  504 (3.3)  18 (0.7)   SCALE  3187 (21.0)  752 (30.8)   Australia   New South Wales  694 (4.6)  29 (1.2)   Design   Population based  11093 (73.0)  1656 (67.9)   Hospital based  4093 (27.0)  784 (32.1)   Age   <30  831 (5.5)  1 (0.0)   30–39  1190 (7.8)  29 (1.2)   40–49  2044 (13.5)  205 (8.4)   50–59  3326 (21.9)  603 (24.7)   60–69  4386 (28.9)  925 (37.9)   70–79  2974 (19.6)  565 (23.2)   ≥80  435 (2.9)  84 (3.4)   Missing  0 (0.0)  28 (1.1)   Sex   Men  8472 (55.8)  1614 (66.1)   Women  6714 (44.2)  826 (33.9)   Race/ethnicity   White, non-Hispanic  14303 (94.2)  2336 (95.7)   Black  199 (1.3)  16 (0.7)   Asian  189 (1.2)  5 (0.2)   Hispanic  95 (0.6)  9 (0.4)   Other/unknown/missing  400 (2.6)  74 (3.0)   Social economic status   Low  6141 (40.4)  1076 (44.1)   Medium  4655 (30.7)  684 (28.0)   High  4139 (27.3)  560 (23.0)   Other/missing  251 (1.7)  120 (4.9)   NHL classification   World Health Organization    1982 (81.2)   Working Formulation    458 (18.8)  * CLL/SLL = chronic lymphocytic leukemia/small lymphocytic lymphoma; NCI-SEER = National Cancer Institute--Surveillance, Epidemiology, and End Results; NHL = non-Hodgkin lymphoma; SCALE = Scandinavian Lymphoma Etiology Study. View Large Basic Model Results Medical History. Suffering from any atopic condition (including allergy, hay fever, asthma, or eczema) was inversely associated with CLL/SLL risk (odds ratio [OR] = 0.86, 95% confidence interval [CI] = 0.78 to 0.95; Table 2). Within specific atopic conditions, similar effect sizes were noted for allergy, food allergy, and hay fever conditions, although not statistically significant for the latter two (Table 2). Little to no evidence of a reduced risk was observed for asthma (OR = 0.99, 95% CI = 0.83 to 1.17) and eczema (OR = 0.96, 95% CI = 0.82 to 1.13). When we excluded individuals who had atopic conditions diagnosed within 2 years of age of CLL/SLL diagnosis or interview, the effects sizes remained consistent for any atopy, (OR = 0.82, 95% CI = 0.72 to 0.93), allergy (OR = 0.83, 95% CI = 0.67 to 1.03), and hay fever (OR = 0.83, 95% CI = 0.69 to 0.99). Having a history of transfusion also was inversely associated with CLL/SLL (OR = 0.79, 95% CI = 0.66 to 0.94; Table 2). When we stratified the study sample based on study design, we observed nonsignificant differences in effects between population-based case-control studies (OR = 0.89, 95% CI = 0.68 to 1.16) and hospital-based case-control studies (OR = 0.71, 95% CI = 0.56 to 0.91). Further, the association was more notable for those who received transfusion after 1990 (OR = 0.68, 95% CI = 0.49 to 0.94). There was also a weak upward trend with adult height (per 10cm change) when considered as a continuous variable (OR = 1.10, 95% CI = 1.02 to 1.19). We observed no significant associations with CLL/SLL risk with history of any of the specific autoimmune diseases, weight, body mass index, reproductive history, oral contraceptive use, and hormone replacement therapy (results not shown). Table 2. Basic model results for medical exposures*   Controls  Cases  OR (95% CI)†  P  No. (%)  No. (%)  Any atopic disorder‡   No  9733 (64.1)  1640 (67.2)  1.00 (referent)  .003   Yes  5192 (34.2)  705 (28.9)  0.86 (0.78 to 0.95)    Allergy§   No  9796 (70.9)  1720 (72.7)  1.00 (referent)  .020   Yes  3165 (22.9)  462 (19.5)  0.87 (0.77 to 0.98)    Food allergy   No  11708 (84.7)  1988 (84.1)  1.00 (referent)  .176   Yes  899 (6.5)  104 (4.4)  0.86 (0.69 to 1.07)    Asthma   No  12507 (83.1)  2012 (82.7)  1.00 (referent)  .859   Yes  1150 (7.6)  176 (7.2)  0.99 (0.83 to 1.17)    Hay fever   No  9984 (68.7)  1639 (67.9)  1.00 (referent)  .056   Yes  2513 (17.3)  311 (12.9)  0.88 (0.76 to 1.01)    Eczema   No  12486 (85.0)  2057 (84.9)  1.00 (referent)  .650   Yes  1426 (9.7)  203 (8.4)  0.96 (0.82 to 1.13)    Blood transfusion   No  7419 (73.5)  1000 (68.2)  1.00 (referent)  .008   Yes  1459 (14.5)  168 (11.5)  0.79 (0.66 to 0.94)    Age at first transfusion   No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .133   First transfusion at age <25  338 (3.4)  32 (2.2)  0.80 (0.55 to 1.16)     First transfusion at age 25–39  419 (4.2)  45 (3.1)  0.81 (0.59 to 1.12)     First transfusion at age 40–54  338 (3.4)  40 (2.7)  0.79 (0.56 to 1.11)     First transfusion at age 55+  364 (3.6)  51 (3.5)  0.77 (0.56 to 1.05)    Total number of blood transfusions   No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .036   1 transfusion  961 (9.5)  118 (8.0)  0.81 (0.66 to 0.99)     2 transfusions  273 (2.7)  35 (2.4)  0.90 (0.62 to 1.30)     3+ transfusions  170 (1.7)  13 (0.9)  0.61 (0.34 to 1.10)     Transfusion, but number unknown  55 (0.5)  2 (0.1)  0.32 (0.08 to 1.34)    Number of years from first transfusion to date of diagnosis           No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .038   <20 y  646 (6.4)  72 (4.9)  0.71 (0.55 to 0.92)     20–39 y  563 (5.6)  67 (4.6)  0.89 (0.68 to 1.16)     40+ y  250 (2.5)  29 (2.0)  0.80 (0.53 to 1.19)    Transfusion before 1990   No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .020   Transfusion before 1990  985 (9.8)  115 (7.8)  0.81 (0.66 to 1.01)     Transfusion 1990+  369 (3.7)  45 (3.1)  0.68 (0.49 to 0.94)     Transfusion year unknown  105 (1.0)  8 (0.5)  1.45 (0.62 to 3.38)     Missing, no transfusion data  1211 (12.0)  299 (20.4)      Adult height   Quartile 1 (low)  2763 (24.1)  398 (20.4)  1.00 (referent)  .079   Quartile 2  2752 (24.0)  471 (24.1)  1.12 (0.96 to 1.30)     Quartile 3  2649 (23.1)  450 (23.0)  1.14 (0.97 to 1.33)     Quartile 4 (high)  2740 (23.9)  475 (24.3)  1.23 (1.05 to 1.44)    Adult height (10cm)   Continuous  10904 (100.0)  1794 (100.0)  1.10 (1.02 to 1.19)  .015  Serology hepatitis C virus infection   No  5259 (68.4)  973 (77.5)  1.00 (referent)  .009   Yes  95 (1.2)  21 (1.7)  2.08 (1.23 to 3.49)      Controls  Cases  OR (95% CI)†  P  No. (%)  No. (%)  Any atopic disorder‡   No  9733 (64.1)  1640 (67.2)  1.00 (referent)  .003   Yes  5192 (34.2)  705 (28.9)  0.86 (0.78 to 0.95)    Allergy§   No  9796 (70.9)  1720 (72.7)  1.00 (referent)  .020   Yes  3165 (22.9)  462 (19.5)  0.87 (0.77 to 0.98)    Food allergy   No  11708 (84.7)  1988 (84.1)  1.00 (referent)  .176   Yes  899 (6.5)  104 (4.4)  0.86 (0.69 to 1.07)    Asthma   No  12507 (83.1)  2012 (82.7)  1.00 (referent)  .859   Yes  1150 (7.6)  176 (7.2)  0.99 (0.83 to 1.17)    Hay fever   No  9984 (68.7)  1639 (67.9)  1.00 (referent)  .056   Yes  2513 (17.3)  311 (12.9)  0.88 (0.76 to 1.01)    Eczema   No  12486 (85.0)  2057 (84.9)  1.00 (referent)  .650   Yes  1426 (9.7)  203 (8.4)  0.96 (0.82 to 1.13)    Blood transfusion   No  7419 (73.5)  1000 (68.2)  1.00 (referent)  .008   Yes  1459 (14.5)  168 (11.5)  0.79 (0.66 to 0.94)    Age at first transfusion   No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .133   First transfusion at age <25  338 (3.4)  32 (2.2)  0.80 (0.55 to 1.16)     First transfusion at age 25–39  419 (4.2)  45 (3.1)  0.81 (0.59 to 1.12)     First transfusion at age 40–54  338 (3.4)  40 (2.7)  0.79 (0.56 to 1.11)     First transfusion at age 55+  364 (3.6)  51 (3.5)  0.77 (0.56 to 1.05)    Total number of blood transfusions   No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .036   1 transfusion  961 (9.5)  118 (8.0)  0.81 (0.66 to 0.99)     2 transfusions  273 (2.7)  35 (2.4)  0.90 (0.62 to 1.30)     3+ transfusions  170 (1.7)  13 (0.9)  0.61 (0.34 to 1.10)     Transfusion, but number unknown  55 (0.5)  2 (0.1)  0.32 (0.08 to 1.34)    Number of years from first transfusion to date of diagnosis           No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .038   <20 y  646 (6.4)  72 (4.9)  0.71 (0.55 to 0.92)     20–39 y  563 (5.6)  67 (4.6)  0.89 (0.68 to 1.16)     40+ y  250 (2.5)  29 (2.0)  0.80 (0.53 to 1.19)    Transfusion before 1990   No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .020   Transfusion before 1990  985 (9.8)  115 (7.8)  0.81 (0.66 to 1.01)     Transfusion 1990+  369 (3.7)  45 (3.1)  0.68 (0.49 to 0.94)     Transfusion year unknown  105 (1.0)  8 (0.5)  1.45 (0.62 to 3.38)     Missing, no transfusion data  1211 (12.0)  299 (20.4)      Adult height   Quartile 1 (low)  2763 (24.1)  398 (20.4)  1.00 (referent)  .079   Quartile 2  2752 (24.0)  471 (24.1)  1.12 (0.96 to 1.30)     Quartile 3  2649 (23.1)  450 (23.0)  1.14 (0.97 to 1.33)     Quartile 4 (high)  2740 (23.9)  475 (24.3)  1.23 (1.05 to 1.44)    Adult height (10cm)   Continuous  10904 (100.0)  1794 (100.0)  1.10 (1.02 to 1.19)  .015  Serology hepatitis C virus infection   No  5259 (68.4)  973 (77.5)  1.00 (referent)  .009   Yes  95 (1.2)  21 (1.7)  2.08 (1.23 to 3.49)    * CI = confidence interval; OR = odds ratio. † OR (95% CI) adjusted for age, sex, race/ethnicity, and study. ‡ Atopic disorders include asthma, eczema, hay fever, or other allergies, excluding drug allergies. § Allergy excluding drug allergies and other atopic conditions, including hay fever, asthma, and eczema. View Large As previously published by InterLymph, having a hepatitis C virus seropositivity was strongly associated with CLL/SLL (OR = 2.08, 95% CI = 1.23 to 3.49; Table 2). Family History. As expected, having a family history of any hematological malignancy among first-degree relatives was strongly associated with CLL/SLL risk (OR = 2.17, 95% CI = 1.77 to 2.65; Table 3). Risks were also elevated when looking at family history of NHL (OR = 1.92, 95% CI = 1.41 to 2.61) and family history of leukemia (OR = 2.41, 95% CI = 1.85 to 3.14). The risk increased slightly for first-degree relatives who were men compared with women for any family history hematological malignancy. Although not statistically significant (P > .05), the effects were elevated when looking at family history of myeloma (OR = 2.00, 95% CI = 0.92 to 4.34). Table 3. Basic model results for family history*   Controls  Cases  OR (95% CI)*  P  No. (%)  No. (%)  Any hematologic malignancy   No  8362 (74.0)  1178 (71.0)  1.00 (referent)  <.001   Yes  493 (4.4)  153 (9.2)  2.17 (1.77 to 2.65)    Family history of non-Hodgkin lymphoma           No  7924 (74.9)  1137 (74.5)  1.00 (referent)  <.001   Yes  210 (2.1)  62 (4.1)  1.92 (1.42 to 2.61)    Family history of leukemia   No  7777 (74.5)  1109 (73.0)  1.00 (referent)  <.001   Yes  237 (2.3)  84 (5.5)  2.41 (1.85 to 3.14)    Any hematologic malignancy, male relative   No  7785 (74.5)  1112 (73.2)  1.00 (referent)  <.001   Yes  229 (2.2)  81 (5.3)  2.32 (1.77 to 3.04)    Any hematologic malignancy, female relative   No  7782 (74.5)  1133 (74.5)  1.00 (referent)  <.001   Yes  232 (2.2)  60 (3.9)  1.79 (1.32 to 2.43)      Controls  Cases  OR (95% CI)*  P  No. (%)  No. (%)  Any hematologic malignancy   No  8362 (74.0)  1178 (71.0)  1.00 (referent)  <.001   Yes  493 (4.4)  153 (9.2)  2.17 (1.77 to 2.65)    Family history of non-Hodgkin lymphoma           No  7924 (74.9)  1137 (74.5)  1.00 (referent)  <.001   Yes  210 (2.1)  62 (4.1)  1.92 (1.42 to 2.61)    Family history of leukemia   No  7777 (74.5)  1109 (73.0)  1.00 (referent)  <.001   Yes  237 (2.3)  84 (5.5)  2.41 (1.85 to 3.14)    Any hematologic malignancy, male relative   No  7785 (74.5)  1112 (73.2)  1.00 (referent)  <.001   Yes  229 (2.2)  81 (5.3)  2.32 (1.77 to 3.04)    Any hematologic malignancy, female relative   No  7782 (74.5)  1133 (74.5)  1.00 (referent)  <.001   Yes  232 (2.2)  60 (3.9)  1.79 (1.32 to 2.43)    * CI = confidence interval; OR = odds ratio. † OR (95% CI) adjusted for age, sex, race/ethnicity, and study. View Large Occupation. History of living or working on a farm was significantly associated with CLL/SLL risk (OR = 1.21, 95% CI = 1.07 to 1.36; Table 4). However, the association slightly attenuated when evaluating separately history of working on a farm (OR = 1.16, 95% CI = 1.00 to 1.35) or history of living on a farm (OR = 1.12, 95% CI = 0.97 to 1.30). These data were further corroborated with the occupational data. Here, we observed an association with farming occupation (OR = 1.23, 95% CI = 1.04 to 1.45). The effects vary, however, when we further classified farm work into animal farmers (OR = 0.64, 95% CI = 0.43 to 0.96) or crop farmers (OR = 1.19, 95% CI = 0.93 to 1.52); the mixed animal and crop farmer had elevated risks (OR = 1.32, 95% CI = 1.08 to 1.61). Of all other occupations evaluated, only hairdressers had an increased CLL/SLL risk (OR = 1.77, 95% CI = 1.05 to 2.98), although this and other occupations analyses were based on limited numbers of cases (Table 4). Table 4. Basic model results for occupational exposures*   Controls  Cases  OR (95% CI)†  P  No. (%)  No. (%)  Ever lived or worked on a farm           No  7088 (59.8)  760 (45.2)  1.00 (referent)  .002   Yes  4514 (38.1)  835 (49.7)  1.21 (1.07 to 1.36)    Ever lived on a farm   No  3230 (53.1)  511 (47.1)  1.00 (referent)  .130   Yes  2617 (43.0)  487 (44.9)  1.12 (0.97 to 1.30)    Ever worked on a farm   No  8081 (81.6)  1019 (73.5)  1.00 (referent)  .051   Yes  1626 (16.4)  290 (20.9)  1.16 (1.00 to 1.35)    Farmer   No  7544 (85.8)  806 (77.3)  1.00 (referent)  .019   Yes  2151 (14.2)  236 (22.6)  1.23 (1.04 to 1.45)    Animal farmer   No  8517 (96.8)  1013 (97.1)  1.00 (referent)  .024   Yes  278 (3.2)  29 (2.8)  0.64 (0.43 to 0.96)    Crop farmer   No  8304 (94.4)  952 (91.3)  1.00 (referent)  .185   Yes  491 (5.6)  90 (8.6)  1.19 (0.93 to 1.52)    Mixed animal and crop farmer   No  7597 (91.9)  867 (85.5)  1.00 (referent)  .008   Yes  665 (8.1)  146 (14.4)  1.32 (1.08 to 1.61)    Hairdresser   No  8690 (98.8)  1024 (98.2)  1.00 (referent)  .044   Yes  105 (1.2)  18 (1.7)  1.77 (1.05 to 2.98)      Controls  Cases  OR (95% CI)†  P  No. (%)  No. (%)  Ever lived or worked on a farm           No  7088 (59.8)  760 (45.2)  1.00 (referent)  .002   Yes  4514 (38.1)  835 (49.7)  1.21 (1.07 to 1.36)    Ever lived on a farm   No  3230 (53.1)  511 (47.1)  1.00 (referent)  .130   Yes  2617 (43.0)  487 (44.9)  1.12 (0.97 to 1.30)    Ever worked on a farm   No  8081 (81.6)  1019 (73.5)  1.00 (referent)  .051   Yes  1626 (16.4)  290 (20.9)  1.16 (1.00 to 1.35)    Farmer   No  7544 (85.8)  806 (77.3)  1.00 (referent)  .019   Yes  2151 (14.2)  236 (22.6)  1.23 (1.04 to 1.45)    Animal farmer   No  8517 (96.8)  1013 (97.1)  1.00 (referent)  .024   Yes  278 (3.2)  29 (2.8)  0.64 (0.43 to 0.96)    Crop farmer   No  8304 (94.4)  952 (91.3)  1.00 (referent)  .185   Yes  491 (5.6)  90 (8.6)  1.19 (0.93 to 1.52)    Mixed animal and crop farmer   No  7597 (91.9)  867 (85.5)  1.00 (referent)  .008   Yes  665 (8.1)  146 (14.4)  1.32 (1.08 to 1.61)    Hairdresser   No  8690 (98.8)  1024 (98.2)  1.00 (referent)  .044   Yes  105 (1.2)  18 (1.7)  1.77 (1.05 to 2.98)    * CI = confidence interval; OR = odds ratio. † OR (95% CI) adjusted for age, sex, race/ethnicity, and study. View Large Lifestyle Factors. As in previous InterLymph reports, a moderate inverse association was noted between sun exposure and CLL/SLL risk, especially for recreational sun exposure (Table 5). We also observed a modest reduced risk of CLL/SLL in ever cigarette smoking (OR = 0.90, 95% CI = 0.81 to 0.99). This effect was further reduced when looking at current cigarette smoking (OR = 0.82, 95% CI = 0.71 to 0.94; Table 5), with a weak nonsignificant inverse trend with cigarettes smoked per day and with duration of smoking. Regular use of hair dyes (by men and women) did not modify the risk of CLL/SLL when evaluating ever use, type of hair dye, color, duration, or frequency (Table 5). However, use of hair dyes before 1980 had an increased risk of CLL/SLL (OR = 1.36, 95% CI = 1.0 to 1.86). No evidence of an association was noted for alcohol consumption and physical activity (results not shown). Table 5. Basic model results for lifestyle exposures*   Controls  Cases  OR (95% CI)†  P  No. (%)  No. (%)  Total sun exposure (h/wk)   Quartile 1 (low)  1241 (18.0)  162 (15.6)  1.00 (referent)  .005   Quartile 2  1326 (19.2)  148 (14.3)  0.82 (0.64 to 1.05)     Quartile 3  1339 (19.4)  202 (19.5)  1.09 (0.86 to 1.37)     Quartile 4 (high)  1437 (20.8)  173 (16.7)  0.75 (0.59 to 0.96)    Recreational sun exposure (h/wk)   Quartile 1 (low)  1987 (20.5)  380 (24.5)  1.00 (referent)  .029   Quartile 2  2141 (22.1)  295 (19.0)  0.81 (0.68 to 0.96)     Quartile 3  1789 (18.5)  270 (17.4)  0.88 (0.74 to 1.05)     Quartile 4 (high)  2653 (27.4)  428 (27.6)  0.80 (0.69 to 0.94)    History of cigarette smoking‡   No  5721 (39.9)  945 (39.4)  1.00 (referent)  .038   Yes  7406 (51.6)  1246 (52.0)  0.90 (0.81 to 0.99)    Smoking status as of ~1 y before diagnosis/interview   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .026   Former smoker  3976 (27.7)  769 (32.1)  0.93 (0.83 to 1.04)     Current smoker  2945 (20.5)  378 (15.8)  0.82 (0.71 to 0.94)     Smoker, status unknown  485 (3.4)  99 (4.1)  1.05 (0.79 to 1.38)    Age started smoking cigarettes   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .105   <14 y  667 (4.7)  100 (4.2)  0.84 (0.66 to 1.06.)     14 to <18 y  2804 (19.6)  449 (18.7)  0.87 (0.76 to 0.99)     18 to <20 y  1466 (10.2)  240 (10)  0.83 (0.71 to 0.98)     20+ y  1950 (13.6)  367 (15.3)  0.96 (0.84 to 1.11)     Smoker, age start unknown  519 (3.6)  90 (3.8)  1.07 (0.82 to 1.39)    Frequency of cigarette smoking   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .068   1–10 cigarettes/day  2547 (17.8)  426 (17.8)  0.93 (0.82 to 1.06)     11–20 cigarettes/day  3105 (21.7)  545 (22.7)   0.9 (0.80 to 1.02)     21–30 cigarettes/day  771 (5.4)  121 (5)   0.9 (0.72 to 1.11)     30+ cigarettes/day  742 (5.2)  107 (4.5)  0.72 (0.57 to 0.90)     Smoker, cigarettes/day unknown  241 (1.7)  47 (2)  1.06 (0.76 to 1.48)    Duration of cigarette smoking   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .165   1–20 y  2414 (16.8)  336 (14)  0.97 (0.84 to 1.12)     21–30 y  1535 (10.7)  246 (10.3)  0.92 (0.79 to 1.08)     30–39 y  1560 (10.9)  274 (11.4)  0.82 (0.71 to 0.96)     40+ y  1757 (12.3)  359 (15)  0.88 (0.76 to 1.01)     Smoking duration unknown  140 (1)  31 (1.3)  1.00 (0.67 to 1.51)    Years since quitting cigarette smoking   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  <.001   Former smoker, quit >25 y ago  1236 (8.6)  261 (10.9)  0.90 (0.77 to 1.05)     Former smoker, quit >15 to 25 y ago  1023 (7.1)  212 (8.8)  1.00 (0.85 to 1.19)     Former smoker, quit >5 to 15 y ago  1097 (7.6)  190 (7.9)  0.91 (0.76 to 1.09)     Former smoker, quit ≤5 y ago  561 (3.9)  80 (3.3)  0.80 (0.62 to 1.03)     Former smoker, unknown when quit  59 (0.4)  26 (1.1)  2.54 (1.53 to 4.21)    Lifetime cigarette exposure   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .023   1–10 pack-years  2175 (15.2)  341 (14.2)  1.03 (0.90 to 1.19)     >10–20 pack-years  1487 (10.4)  238 (9.9)  0.88 (0.75 to 1.04)     >20–35 pack-years  1613 (11.2)  275 (11.5)  0.84 (0.72 to 0.98)     >35 pack-years  1827 (12.7)  335 (14)  0.82 (0.70 to 0.95)     Smoker, pack-years unknown  304 (2.1)  57 (2.4)  0.96 (0.71 to 1.31)    Ever used hair dyes   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .502   Ever hair dye  2881 (35.6)  284 (28.0)  1.08 (0.86 to 1.37)     Men  3950 (48.7)  602 (59.4)      Type of hair dye used   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .072   Temporary only  206 (2.5)  14 (1.4)  0.74 (0.41 to 1.34)     Permanent  2380 (29.4)  259 (25.5)  1.16 (0.91 to 1.48)     Ever hair dye, type unknown  295 (3.6)  11 (1.1)  0.52 (0.23 to 1.15)     Men  3950 (48.7)  602 (59.4)      Color of hair dye used   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .375   Light  894 (11.0)  98 (9.7)  1.13 (0.84 to 1.51)     Dark  1677 (20.7)  172 (17.0)  1.11 (0.86 to 1.44)     Ever hair dye, color unknown  310 (3.8)  14 (1.4)  0.65 (0.32 to 1.30)     Men  3950 (48.7)  602 (59.4)      Duration of hair dye use   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .459   1–8 y  921 (11.4)  72 (7.1)  1.00 (0.71 to 1.42)     9–19 y  677 (8.4)  71 (7.0)  1.22 (0.86 to 1.72)     20+ y  770 (9.5)  95 (9.4)  1.26 (0.92 to 1.73)     Ever hair dye, duration unknown  513 (6.3)  46 (4.5)  0.89 (0.57 to 1.36)     Men  3950 (48.7)  602 (59.4)      Frequency of hair dye use   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .096   1–5 times/y  835 (10.3)  64 (6.3)  1.08 (0.76 to 1.53)     6–11 times/y  849 (10.5)  82 (8.1)  1.03 (0.74 to 1.43)     12+ times/y  507 (6.3)  78 (7.7)  1.51 (1.09 to 2.10)     Ever hair dye, frequency unknown  690 (8.5)  60 (5.9)  0.89 (0.62 to 1.28)     Men  3950 (48.7)  602 (59.4)      Used hair dyes before 1980   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .152   Ever hair dye use <1980  895 (11.0)  127 (12.5)  1.36 (1.00 to 1.86)     Hair dye use only 1980+  990 (12.2)  96 (9.5)  1.06 (0.76 to 1.46)     Hair dye use, time period unknown  996 (12.3)  61 (6.0)  0.85 (0.57 to 1.27)     Men  3950 (48.7)  602 (59.4)        Controls  Cases  OR (95% CI)†  P  No. (%)  No. (%)  Total sun exposure (h/wk)   Quartile 1 (low)  1241 (18.0)  162 (15.6)  1.00 (referent)  .005   Quartile 2  1326 (19.2)  148 (14.3)  0.82 (0.64 to 1.05)     Quartile 3  1339 (19.4)  202 (19.5)  1.09 (0.86 to 1.37)     Quartile 4 (high)  1437 (20.8)  173 (16.7)  0.75 (0.59 to 0.96)    Recreational sun exposure (h/wk)   Quartile 1 (low)  1987 (20.5)  380 (24.5)  1.00 (referent)  .029   Quartile 2  2141 (22.1)  295 (19.0)  0.81 (0.68 to 0.96)     Quartile 3  1789 (18.5)  270 (17.4)  0.88 (0.74 to 1.05)     Quartile 4 (high)  2653 (27.4)  428 (27.6)  0.80 (0.69 to 0.94)    History of cigarette smoking‡   No  5721 (39.9)  945 (39.4)  1.00 (referent)  .038   Yes  7406 (51.6)  1246 (52.0)  0.90 (0.81 to 0.99)    Smoking status as of ~1 y before diagnosis/interview   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .026   Former smoker  3976 (27.7)  769 (32.1)  0.93 (0.83 to 1.04)     Current smoker  2945 (20.5)  378 (15.8)  0.82 (0.71 to 0.94)     Smoker, status unknown  485 (3.4)  99 (4.1)  1.05 (0.79 to 1.38)    Age started smoking cigarettes   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .105   <14 y  667 (4.7)  100 (4.2)  0.84 (0.66 to 1.06.)     14 to <18 y  2804 (19.6)  449 (18.7)  0.87 (0.76 to 0.99)     18 to <20 y  1466 (10.2)  240 (10)  0.83 (0.71 to 0.98)     20+ y  1950 (13.6)  367 (15.3)  0.96 (0.84 to 1.11)     Smoker, age start unknown  519 (3.6)  90 (3.8)  1.07 (0.82 to 1.39)    Frequency of cigarette smoking   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .068   1–10 cigarettes/day  2547 (17.8)  426 (17.8)  0.93 (0.82 to 1.06)     11–20 cigarettes/day  3105 (21.7)  545 (22.7)   0.9 (0.80 to 1.02)     21–30 cigarettes/day  771 (5.4)  121 (5)   0.9 (0.72 to 1.11)     30+ cigarettes/day  742 (5.2)  107 (4.5)  0.72 (0.57 to 0.90)     Smoker, cigarettes/day unknown  241 (1.7)  47 (2)  1.06 (0.76 to 1.48)    Duration of cigarette smoking   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .165   1–20 y  2414 (16.8)  336 (14)  0.97 (0.84 to 1.12)     21–30 y  1535 (10.7)  246 (10.3)  0.92 (0.79 to 1.08)     30–39 y  1560 (10.9)  274 (11.4)  0.82 (0.71 to 0.96)     40+ y  1757 (12.3)  359 (15)  0.88 (0.76 to 1.01)     Smoking duration unknown  140 (1)  31 (1.3)  1.00 (0.67 to 1.51)    Years since quitting cigarette smoking   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  <.001   Former smoker, quit >25 y ago  1236 (8.6)  261 (10.9)  0.90 (0.77 to 1.05)     Former smoker, quit >15 to 25 y ago  1023 (7.1)  212 (8.8)  1.00 (0.85 to 1.19)     Former smoker, quit >5 to 15 y ago  1097 (7.6)  190 (7.9)  0.91 (0.76 to 1.09)     Former smoker, quit ≤5 y ago  561 (3.9)  80 (3.3)  0.80 (0.62 to 1.03)     Former smoker, unknown when quit  59 (0.4)  26 (1.1)  2.54 (1.53 to 4.21)    Lifetime cigarette exposure   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .023   1–10 pack-years  2175 (15.2)  341 (14.2)  1.03 (0.90 to 1.19)     >10–20 pack-years  1487 (10.4)  238 (9.9)  0.88 (0.75 to 1.04)     >20–35 pack-years  1613 (11.2)  275 (11.5)  0.84 (0.72 to 0.98)     >35 pack-years  1827 (12.7)  335 (14)  0.82 (0.70 to 0.95)     Smoker, pack-years unknown  304 (2.1)  57 (2.4)  0.96 (0.71 to 1.31)    Ever used hair dyes   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .502   Ever hair dye  2881 (35.6)  284 (28.0)  1.08 (0.86 to 1.37)     Men  3950 (48.7)  602 (59.4)      Type of hair dye used   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .072   Temporary only  206 (2.5)  14 (1.4)  0.74 (0.41 to 1.34)     Permanent  2380 (29.4)  259 (25.5)  1.16 (0.91 to 1.48)     Ever hair dye, type unknown  295 (3.6)  11 (1.1)  0.52 (0.23 to 1.15)     Men  3950 (48.7)  602 (59.4)      Color of hair dye used   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .375   Light  894 (11.0)  98 (9.7)  1.13 (0.84 to 1.51)     Dark  1677 (20.7)  172 (17.0)  1.11 (0.86 to 1.44)     Ever hair dye, color unknown  310 (3.8)  14 (1.4)  0.65 (0.32 to 1.30)     Men  3950 (48.7)  602 (59.4)      Duration of hair dye use   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .459   1–8 y  921 (11.4)  72 (7.1)  1.00 (0.71 to 1.42)     9–19 y  677 (8.4)  71 (7.0)  1.22 (0.86 to 1.72)     20+ y  770 (9.5)  95 (9.4)  1.26 (0.92 to 1.73)     Ever hair dye, duration unknown  513 (6.3)  46 (4.5)  0.89 (0.57 to 1.36)     Men  3950 (48.7)  602 (59.4)      Frequency of hair dye use   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .096   1–5 times/y  835 (10.3)  64 (6.3)  1.08 (0.76 to 1.53)     6–11 times/y  849 (10.5)  82 (8.1)  1.03 (0.74 to 1.43)     12+ times/y  507 (6.3)  78 (7.7)  1.51 (1.09 to 2.10)     Ever hair dye, frequency unknown  690 (8.5)  60 (5.9)  0.89 (0.62 to 1.28)     Men  3950 (48.7)  602 (59.4)      Used hair dyes before 1980   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .152   Ever hair dye use <1980  895 (11.0)  127 (12.5)  1.36 (1.00 to 1.86)     Hair dye use only 1980+  990 (12.2)  96 (9.5)  1.06 (0.76 to 1.46)     Hair dye use, time period unknown  996 (12.3)  61 (6.0)  0.85 (0.57 to 1.27)     Men  3950 (48.7)  602 (59.4)      * CI = confidence interval; OR = odds ratio. † OR (95% CI) adjusted for age, sex, race/ethnicity, and study. ‡ Smoked longer than 6 months or more than 100 cigarettes in lifetime. View Large Full Model Results. To develop our full model, we selected risk factors that had statistical significance of P values less than .05 in the basic model analyses. However, for those risk factors that had additional variables that captured duration and intensity, we only selected those that had consistent evidence of association across the additional variables. The full model results are shown in Table 6. There is clear evidence that the selected risk factors are independent of one another with minimal evidence of confounding and interaction. This is evidenced by the minimal change in effect size obtained from the basic models (adjusted only for design variables) compared with that obtained from the full model (adjusted for the design variables and the other selected variables). This is also evidenced by our pairwise adjustment modeling. Table 6. Basic and full model results*   Controls  Cases  Basic model  P  Full model  P  No. (%)  No. (%)  OR (95% CI)†  OR (95% CI)‡  Any atopic disorder§   No  9733 (64.1)  1640 (67.2)  1.00 (referent)  .003  1.00 (referent)  .002   Yes  5192 (34.2)  705 (28.9)  0.86 (0.78 to 0.95)    0.85 (0.77 to 0.94)    Blood transfusion   No  7419 (73.5)  1000 (68.2)  1.00 (referent)  .008  1.00 (referent)  .011   Yes  1459 (14.5)  168 (11.5)  0.79 (0.66 to 0.94)    0.79 (0.66 to 0.95)    Adult height   Continuous (10cm)  10904 (100)  1794 (100)  1.10 (1.02 to 1.19)  .015  1.09 (1.01 to 1.17)  .020  Serology hepatitis C virus infection   No  5259 (68.4)  973 (77.5)  1.00 (referent)  .009  1.00 (referent)  .011   Yes  95 (1.2)  21 (1.7)  2.08 (1.23 to 3.49)    1.99 (1.16 to 3.41)    History of cigarette smoking   No  5721 (39.9)  945 (39.4)  1.00 (referent)  .038  1.00 (referent)  .082   Yes  7406 (51.6)  1246 (52)  0.90 (0.81 to 0.99)    0.91 (0.83 to 1.01)    Total sun exposure (hours/week)   Quartile 1 (low)  1241 (18.0)  162 (15.6)  1.00 (referent)  .005  1.00 (referent)  .003   Quartile 2  1326 (19.2)  148 (14.3)  0.82 (0.64 to 1.05)    0.81 (0.63 to 1.04)     Quartile 3  1339 (19.4)  202 (19.5)  1.09 (0.86 to 1.37)    1.06 (0.84 to 1.34)     Quartile 4 (high)  1437 (20.8)  173 (16.7)  0.75 (0.59 to 0.96)    0.71 (0.55 to 0.92)    First-degree family history, any hematologic malignancy               No  8362 (74.0)  1178 (71.0)  1.00 (referent)  <.001  1.00 (referent)  <.001   Yes  493 (4.4)  153 (9.2)  2.17 (1.77 to 2.65)    2.16 (1.76 to 2.65)    Ever lived or worked on a farm   No  7088 (59.8)  760 (45.2)  1.00 (referent)  .002  1.00 (referent)  .004   Yes  4514 (38.1)  835 (49.7)  1.21 (1.07 to 1.36)    1.20 (1.06 to 1.35)    Hairdresser   No  8690 (98.8)  1024 (98.2)  1.00 (referent)  .044  1.00 (referent)  .044   Yes  105 (1.2)  18 (1.7)  1.77 (1.05 to 2.98)    1.77 (1.05 to 3.01)      Controls  Cases  Basic model  P  Full model  P  No. (%)  No. (%)  OR (95% CI)†  OR (95% CI)‡  Any atopic disorder§   No  9733 (64.1)  1640 (67.2)  1.00 (referent)  .003  1.00 (referent)  .002   Yes  5192 (34.2)  705 (28.9)  0.86 (0.78 to 0.95)    0.85 (0.77 to 0.94)    Blood transfusion   No  7419 (73.5)  1000 (68.2)  1.00 (referent)  .008  1.00 (referent)  .011   Yes  1459 (14.5)  168 (11.5)  0.79 (0.66 to 0.94)    0.79 (0.66 to 0.95)    Adult height   Continuous (10cm)  10904 (100)  1794 (100)  1.10 (1.02 to 1.19)  .015  1.09 (1.01 to 1.17)  .020  Serology hepatitis C virus infection   No  5259 (68.4)  973 (77.5)  1.00 (referent)  .009  1.00 (referent)  .011   Yes  95 (1.2)  21 (1.7)  2.08 (1.23 to 3.49)    1.99 (1.16 to 3.41)    History of cigarette smoking   No  5721 (39.9)  945 (39.4)  1.00 (referent)  .038  1.00 (referent)  .082   Yes  7406 (51.6)  1246 (52)  0.90 (0.81 to 0.99)    0.91 (0.83 to 1.01)    Total sun exposure (hours/week)   Quartile 1 (low)  1241 (18.0)  162 (15.6)  1.00 (referent)  .005  1.00 (referent)  .003   Quartile 2  1326 (19.2)  148 (14.3)  0.82 (0.64 to 1.05)    0.81 (0.63 to 1.04)     Quartile 3  1339 (19.4)  202 (19.5)  1.09 (0.86 to 1.37)    1.06 (0.84 to 1.34)     Quartile 4 (high)  1437 (20.8)  173 (16.7)  0.75 (0.59 to 0.96)    0.71 (0.55 to 0.92)    First-degree family history, any hematologic malignancy               No  8362 (74.0)  1178 (71.0)  1.00 (referent)  <.001  1.00 (referent)  <.001   Yes  493 (4.4)  153 (9.2)  2.17 (1.77 to 2.65)    2.16 (1.76 to 2.65)    Ever lived or worked on a farm   No  7088 (59.8)  760 (45.2)  1.00 (referent)  .002  1.00 (referent)  .004   Yes  4514 (38.1)  835 (49.7)  1.21 (1.07 to 1.36)    1.20 (1.06 to 1.35)    Hairdresser   No  8690 (98.8)  1024 (98.2)  1.00 (referent)  .044  1.00 (referent)  .044   Yes  105 (1.2)  18 (1.7)  1.77 (1.05 to 2.98)    1.77 (1.05 to 3.01)    * CI = confidence interval; OR = odds ratio. † OR (95% CI) adjusted for age, sex, race/ethnicity, and study. ‡ OR (95% CI) adjusted for age, sex, race/ethnicity, study, and all other variables in full model. § Atopic disorders include asthma, eczema, hay fever, or other allergies, excluding drug allergies. View Large Discussion Individual level data from 2440 CLL cases and 15186 controls from 13 case-control studies were reanalyzed centrally through the InterLymph consortium to evaluate associations of medical history, family history, lifestyle, and occupational risk factors with CLL/SLL risk. We confirmed prior findings by InterLymph and others with additional cases and controls for a number of exposures. Specifically, we confirmed the previously reported strong increased risk with family history of hematological cancer (10–12), the increased risk with height (18,19), the increased risk with farming exposures (20–24), and the protective effect of UV radiation on CLL/SLL risk (25,26). Although we report a significant increased risk with hepatitis C virus herein, we had no additional new data beyond that reported in an earlier InterLymph pooled analysis (27). With an additional CLL/SLL cases and controls, we supported an earlier InterLymph finding of a reduction in risk of CLL/SLL with history of any atopic condition (28). A concern with any association with IgE-mediated exposures, like atopic conditions, is reverse causality such that the inefficient immunological repose to allergens may be due to CLL/SLL disease and therefore explain the observed associations. With the larger sample size, we excluded CLL/SLL cases whose atopic diagnosis was within 10 years of CLL/SLL diagnosis to evaluate the role of reverse causality. The results (not shown) from these additional sensitivity analyses were consistent with the full data and show a risk reduction of 20% among those CLL/SLL cases reporting any atopic disease. Thus, the inverse association is unlikely to be due to reverse causality and suggests that induction of an increase IgE response by environmental exposures could be a factor in CLL/SLL pathogenesis (29). Future studies will be needed to test this hypothesis. We observed an inverse association between blood transfusion and CLL/SLL. These results were consistent across other transfusion variables including number of transfusions, latency, and timeframe of transfusion (before 1990 or after). However, these results are inconsistent with the hypothesis that pathogens are transmitted through blood transfusion and therefore would presumably increase the risk of CLL/SLL. An earlier meta-analysis of case-control and cohort studies reported an increased risk with CLL/SLL (OR = 1.66, 95% CI = 1.08 to 2.56) (30). There was very little overlap of studies included in the earlier meta-analysis and the one reported herein. Although our pooled study of individual-level data is a strength, as is our large sample size, we were unable to explain the biologic mechanism behind our findings. Our results may be due to unknown confounding as we lacked details on the type of transfusion or the indication for the transfusion. Our results may also be due to selection bias because the effect was more inversely associated in hospital-based (OR = 0.71) compared with population-based (OR = 0.89) case-control studies. We report a statistically significant inverse association between current cigarette smoking and CLL/SLL. The effect of this association is modest, but yet consistent across the other smoking variables with dose response relationships observed with pack-years, intensity, and duration of exposure, although not statistically significant for the latter two. In a recent InterLymph pooled study of smoking that included 1156 CLL/SLL cases and 4630 controls from seven case-control studies, which were also included herein, current cigarette smoking was found to have a nonsignificant reduced risk of CLL/SLL (OR = 0.82, 95% CI = 0.67 to 1.01) (31). With an additional six case-control studies included in this study, we found this effect to remain. Effect estimates from prospective cohort studies have been mixed with both elevated effects (32,33) and protective effects (34) reported with current cigarette smoking; however, none of these results were significant due to small numbers (n < 500 CLL/SLL cases). The biologic mechanism for this inverse association is unclear, but smoking may affect immune function (35). Replication of our findings is needed, but given that we observed a significant but weak effect, large sample sizes will be required or alternative approaches, such as evaluating biomarkers of exposure to cigarette smoke on CLL/SLL risk, will be needed. We have identified an increased risk of CLL/SLL among hairdressers, which has not been previously reported. Hairdressers can be exposed to a wide variety of chemicals including organic solvents, dyes, and ammonia. The International Agency for Research on Cancer (IARC) categorized the occupational exposures of a hairdresser or barber as probably carcinogenic to humans (Group 2A) and the personal use of hair colorants as not classifiable as to its carcinogenicity to humans (Group 3) (36). Previous studies have explored the association with hematological malignancies or NHL in general with generally negative associations. Data on detailed exposure associated to this occupation were not available. In contrast to these findings among hairdressers, we have inconclusive results with exposure to hair dye use. A previous InterLymph analysis reported an increased CLL/SLL risk for hair dyes use before 1980 among women (OR = 1.50, 95% CI = 1.10 to 2.00) based on a subset of four case-control studies reported herein (37). However, with data from nine additional case-control studies, we found a slight attenuation with this finding (OR = 1.36, 95% CI = 1.00 to 1.86). Future studies will need detailed data of hair dye exposure to hone in on the effect of this exposure on CLL/SLL risk. Our study has several strengths, including the ability to harmonize individual-level data, the extensive review of harmonization by workgroups to ensure accuracy, the large number of CLL/SLL cases and controls, and the large number of available exposures to simultaneously evaluate joint effects and perform sensitivity analyses. The findings for the exposures were fairly consistent across the studies with modest evidence of heterogeneity. Our study has several limitations, as well. Although case-control studies are subject to recall bias, it is unlikely to have a major effect herein because CLL/SLL has very few established risk factors. All studies used the older CLL/SLL diagnostic criteria that required absolute lymphocyte count more than 5×109 cells/L compared with the new 2008 criteria of B-cell lymphocyte count more than 5×109 cells/L. Under the new diagnostic change, at least a third of the Rai stage 0 CLL/SLL cases are reclassified to monoclonal B-cell lymphocytosis, a precursor condition to CLL/SLL (2). Although our sample size is large (even after accounting for the misclassification of cases), it is possible that some of our novel findings are due to chance. Overall, the results of this pooled analysis provide additional evidence that a number of exposures are associated with CLL/SLL risk and that these exposures are independent of each other. A number of the exposures are not modifiable (e.g., race/ethnicity, sex, family history, height, and atopy), whereas some potentially modifiable exposures may decrease risk (e.g., UV radiation), whereas others may increase risk (e.g., farm exposures and hair products). Further studies are needed to confirm our smoking and transfusion findings, as well as detailed studies evaluating occupational exposures of farming and hairdressers. The biologic basis for these associations remains to be elucidated; however, our findings support that genetic factors, immune function, and infection have a role in CLL/SLL leukemogenesis. Given that CLL/SLL has more than 30 susceptibility loci identified to date (38–42), studies evaluating the interaction among these genetic and nongenetic factors is warranted. Funding Intramural Research Program of the National Cancer Institute/National Institutes of Health and National Cancer Institute/National Institutes of Health (R01 CA14690, U01 CA118444, and R01 CA92153-S1). InterLymph annual meetings during 2010–2013 were supported by the Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute/National Institutes of Health (2010–2013); Lymphoma Coalition (2010–2013); National Institutes of Health Office of Rare Diseases Research (2010); National Cancer Institute/National Institutes of Health (R13 CA159842 01; 2011); University of Cagliari, Provincial Administration of Cagliari, Banca di Credito Sardo, and Consorzio Industriale Sardo, Italy (2011); Intramural Research Program of the National Cancer Institute/National Institutes of Health (2012); and Faculté de Médecine de Dijon, Institut de Veille Sanitaire, Registre des hémopathies malignes de Côte d’Or, INSERM, Institut National du Cancer, Université de Bourgogne, Groupe Ouest Est d’Etude des Leucémies et Autres Maladies du Sang (GOELAMS), l’Institut Bergonié, The Lymphoma Study Association (LYSA), Registre Régional des Hémopathies de Basse Normandie, and the City of Dijon, France (2013). Meeting space at the 2013 Annual Meeting of the American Association for Cancer Research (AACR) was provided by the Molecular Epidemiology Group (MEG) of the AACR. Pooling of the occupation data was supported by the National Cancer Institute/National Institutes of Health (R03CA125831). Individual studies were supported by the Canadian Institutes for Health Research (CIHR), Canadian Cancer Society, and Michael Smith Foundation for Health Research (British Columbia); Intramural Research Program of the National Cancer Institute/National Institutes of Health (Iowa/Minnesota); National Cancer Institute/National Institutes of Health (N01-CP-ES-11027; Kansas); National Cancer Institute/National Institutes of Health (R01 CA50850; Los Angeles); National Cancer Institute/National Institutes of Health (R01 CA92153 and P50 CA97274), Lymphoma Research Foundation (164738), and the Henry J. Predolin Foundation (Mayo Clinic); Intramural Research Program of the National Cancer Institute/National Institutes of Health and Public Health Service (contracts N01-PC-65064, N01-PC-67008, N01-PC-67009, N01-PC-67010, and N02-PC-71105; NCI-SEER); National Cancer Institute/National Institutes of Health (R01CA100555 and R03CA132153) and American Institute for Cancer Research (99B083; Nebraska [newer]); National Cancer Institute/National Institutes of Health (N01-CP-95618) and State of Nebraska Department of Health (LB-506; Nebraska [older]); National Cancer Institute/National Institutes of Health (R01CA45614, RO1CA154643-01A1, and R01CA104682; UCSF1); National Cancer Institute/National Institutes of Health (CA143947, CA150037, R01CA087014, R01CA104682, RO1CA122663, and RO1CA154643-01A1) [UCSF2]; National Heart Lung and Blood Institute/National Institutes of Health (hematology training grant award T32 HL007152), National Center for Research Resources/National Institutes of Health (UL 1 RR024160), and National Cancer Institute/National Institutes of Health (K23 CA102216 and P50 CA130805; University of Rochester]; National Cancer Institute/National Institutes of Health (CA62006 and CA165923; Yale); Association pour la Recherche contre le Cancer, Fondation de France, AFSSET, and a donation from Faberge employees (Engela); European Commission (QLK4-CT-2000-00422 and FOOD-CT-2006–023103), Spanish Ministry of Health (CIBERESP, PI11/01810, RCESP C03/09, RTICESP C03/10, and RTIC RD06/0020/0095), Rio Hortega (CM13/00232), Agència de Gestió d’Ajuts Universitaris i de Recerca–Generalitat de Catalunya (Catalonian Government, 2009SGR1465), National Institutes of Health (contract NO1-CO-12400 ), Italian Ministry of Education, University and Research (PRIN 2007 prot.2007WEJLZB, PRIN 2009 prot. 20092ZELR2), Italian Association for Cancer Research (IG grant 11855/2011), Federal Office for Radiation Protection (StSch4261 and StSch4420), José Carreras Leukemia Foundation (DJCLS-R04/08), German Federal Ministry for Education and Research (BMBF-01-EO-1303), Health Research Board, Ireland and Cancer Research Ireland, and Czech Republic MH CZ - DRO (MMCI, 00209805) [EpiLymph]; National Cancer Institute/National Institutes of Health (CA51086), European Community (Europe Against Cancer Programme), and Italian Alliance Against Cancer (Lega Italiana per la Lotta contro i Tumori; Italy, multicenter); Italian Association for Cancer Research (IG 10068; Italy, Aviano-Milan); Italian Association for Cancer Research (Italy, Aviano-Naples); Swedish Cancer Society (2009/659), Stockholm County Council (20110209), Strategic Research Program in Epidemiology at Karolinska Institut, Swedish Cancer Society (02 6661), Danish Cancer Research Foundation, Lundbeck Foundation (R19-A2364), Danish Cancer Society (DP 08-155), National Cancer Institute/National Institutes of Health (5R01 CA69669-02), and Plan Denmark [SCALE]; Leukaemia & Lymphoma Research (United Kingdom); and Australian National Health and Medical Research Council (ID990920), Cancer Council NSW, and University of Sydney Faculty of Medicine (New South Wales). We thank the following individuals for their substantial contributions to this project: Dennis P. Robinson and Priya Ramar (Mayo Clinic College of Medicine) for their work at the InterLymph Data Coordinating Center in organizing, collating, harmonizing, and documenting of the data from the participating studies in the InterLymph Consortium; Michael Spriggs, Peter Hui, and Bill Wheeler (Information Management Services, Inc) for their programming support; and Noelle Richa Siegfried and Emily Smith (RTI International) for project coordination. References 1. Hallek M Cheson BD Catovsky D et al.   Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood . 2008; 111( 12): 5446– 5456. 2. Call TG Norman AD Hanson CA et al.   Incidence of chronic lymphocytic leukemia and high-count monoclonal B-cell lymphocytosis using the 2008 guidelines. Cancer . 2014; 120( 13): 2000– 2005. 3. Abrisqueta P Pereira A Rozman C et al.   Improving survival in patients with chronic lymphocytic leukemia (1980-2008): the Hospital Clinic of Barcelona experience. Blood . 2009; 114( 10): 2044– 2050. 4. Brenner H Gondos A Pulte D . Trends in long-term survival of patients with chronic lymphocytic leukemia from the 1980s to the early 21st century. Blood . 2008; 111( 10): 4916– 4921. 5. Howlader N Noone AM Krapcho M et al.   SEER Cancer Statistics Review, 1975–2010, National Cancer Statistics Review . Bethesda, MD: National Cancer Institute; 2012. 6. Seftel MD Demers AA Banerji V et al.   High incidence of chronic lymphocytic leukemia (CLL) diagnosed by immunophenotyping: a population-based Canadian cohort. Leuk Res . 2009; 33( 11): 1463– 1468. 7. Clarke CA Glaser SL Gomez SL et al.   Lymphoid malignancies in U.S. Asians: incidence rate differences by birthplace and acculturation. Cancer Epidemiol Biomarkers Prev . 2011; 20( 6): 1064– 1077. 8. Wu SJ Huang SY Lin CT Lin YJ Chang CJ Tien HF . The incidence of chronic lymphocytic leukemia in Taiwan, 1986-2005: a distinct increasing trend with birth-cohort effect. Blood . 2010; 116( 22): 4430– 4435. 9. Call TG Phyliky RL Noël P et al.   Incidence of chronic lymphocytic leukemia in Olmsted County, Minnesota, 1935 through 1989, with emphasis on changes in initial stage at diagnosis. Mayo Clin Proc . 1994; 69( 4): 323– 328. 10. Sgambati M Linet MS Devesa SS . Chronic lymphocytic leukemia: epidemiological, familial, and genetic aspects. In: Cheson BD , ed. Chronic Lymphoid Leukemias . 2nd ed. New York, NY: Marcel Dekker, Inc.; 2001: 33– 62. 11. Goldin LR Björkholm M Kristinsson SY Turesson I Landgren O . Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin’s lymphomas among relatives of patients with chronic lymphocytic leukemia. Haematologica . 2009; 94( 5): 647– 653. 12. Wang SS Slager SL Brennan P et al.   Family history of hematopoietic malignancies and risk of non-Hodgkin lymphoma (NHL): a pooled analysis of 10 211 cases and 11 905 controls from the International Lymphoma Epidemiology Consortium (InterLymph). Blood . 2007; 109( 8): 3479– 3488. 13. Jaffe E Harris N Stein H Vardiman JW , eds. World Health Organization Classification of Tumours Pathology and Genetics, Tumours of Hematopoietic and Lymphoid Tissues . Lyon, France: IARC Press; 2001. 14. Swerdlow SH Campo E Harris NL et al.   World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues . 4th ed. Lyon, France: IARC Press; 2008. 15. Morton LM Turner JJ Cerhan JR et al.   Proposed classification of lymphoid neoplasms for epidemiologic research from the Pathology Working Group of the International Lymphoma Epidemiology Consortium (InterLymph). Blood . 2007; 110( 2): 695– 708. 16. Turner JJ Morton LM Linet MS et al.   InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions. Blood . 2010; 116( 20): e90– e98. 17. Higgins JP Thompson SG . Quantifying heterogeneity in a meta-analysis. Stat Med . 2002; 21( 11): 1539– 1558. 18. Pylypchuk RD Schouten LJ Goldbohm RA Schouten HC van den Brandt PA . Body mass index, height, and risk of lymphatic malignancies: a prospective cohort study. Am J Epidemiol . 2009; 170( 3): 297– 307. 19. Patel AV Diver WR Teras LR Birmann BM Gapstur SM . Body mass index, height and risk of lymphoid neoplasms in a large United States cohort. Leuk Lymphoma . 2013; 54( 6): 1221– 1227. 20. Blair A Zahm SH Pearce NE Heineman EF Fraumeni JF Jr. Clues to cancer etiology from studies of farmers. Scand J Work Environ Health . 1992; 18( 4): 209– 215. 21. Brown LM Blair A Gibson R et al.   Pesticide exposures and other agricultural risk factors for leukemia among men in Iowa and Minnesota. Cancer Res . 1990; 50( 20): 6585– 6591. 22. Cocco P Satta G D’Andrea I et al.   Lymphoma risk in livestock farmers: results of the Epilymph study. Int J Cancer . 2013; 132( 11): 2613– 2618. 23. Spinelli JJ Ng CH Weber JP et al.   Organochlorines and risk of non-Hodgkin lymphoma. Int J Cancer . 2007; 121( 12): 2767– 2775. 24. Hohenadel K Harris SA McLaughlin JR et al.   Exposure to multiple pesticides and risk of non-Hodgkin lymphoma in men from six Canadian provinces. Int J Environ Res Public Health . 2011; 8( 6): 2320– 2330. 25. Kricker A Armstrong BK Hughes AM et al.   Personal sun exposure and risk of non Hodgkin lymphoma: a pooled analysis from the Interlymph Consortium. Int J Cancer . 2008; 122( 1): 144– 154. 26. Boffetta P van der Hel O Kricker A et al.   Exposure to ultraviolet radiation and risk of malignant lymphoma and multiple myeloma–a multicentre European case-control study. Int J Epidemiol . 2008; 37( 5): 1080– 1094. 27. de Sanjose S Benavente Y Vajdic CM et al.   Hepatitis C and non-Hodgkin lymphoma among 4784 cases and 6269 controls from the International Lymphoma Epidemiology Consortium. Clin Gastroenterol Hepatol . 2008; 6( 4): 451– 458. 28. Vajdic CM Falster MO de Sanjose S et al.   Atopic disease and risk of non-Hodgkin lymphoma: an InterLymph pooled analysis. Cancer Res . 2009; 69( 16): 6482– 6489. 29. Dühren-von Minden M Übelhart R Schneider D et al.   Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature . 2012; 489( 7415): 309– 312. 30. Castillo JJ Dalia S Pascual SK . Association between red blood cell transfusions and development of non-Hodgkin lymphoma: a meta-analysis of observational studies. Blood . 2010; 116( 16): 2897– 2907. 31. Gibson TM Smedby KE Skibola CF et al.   Smoking, variation in N-acetyltransferase 1 (NAT1) and 2 (NAT2), and risk of non-Hodgkin lymphoma: a pooled analysis within the InterLymph consortium. Cancer Causes Control . 2013; 24( 1): 125– 134. 32. Lim U Morton LM Subar AF et al.   Alcohol, smoking, and body size in relation to incident Hodgkin’s and non-Hodgkin’s lymphoma risk. Am J Epidemiol . 2007; 166( 6): 697– 708. 33. Troy JD Hartge P Weissfeld JL et al.   Associations between anthropometry, cigarette smoking, alcohol consumption, and non-Hodgkin lymphoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am J Epidemiol . 2010; 171( 12): 1270– 1281. 34. Lu Y Wang SS Reynolds P et al.   Cigarette smoking, passive smoking, and non-Hodgkin lymphoma risk: evidence from the California Teachers Study. Am J Epidemiol . 2011; 174( 5): 563– 573. 35. Sopori M . Effects of cigarette smoke on the immune system. Nat Rev Immunol . 2002; 2( 5): 372– 377. 36. IARC Monographs Working Group on the Evaluation of Carcinogenic Risks to Humans. Some aromatic amines, organic dyes, and related exposures . IARC Monogr Eval Carcinog Risks Hum. 2010; 99: 1-– 658. Google Scholar 37. Zhang Y de Sanjosé S Bracci PM et al.   Personal use of hair dye and the risk of certain subtypes of non-Hodgkin lymphoma. Am J Epidemiol . 2008; 167( 11): 1321– 1331. 38. Di Bernardo MC Crowther-Swanepoel D Broderick P et al.   A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat Genet . 2008; 40( 10): 1204– 1210. 39. Crowther-Swanepoel D Broderick P Di Bernardo MC et al.   Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat Genet . 2010; 42( 2): 132– 136. 40. Slager SL Rabe KG Achenbach SJ et al.   Genome-wide association study identifies a novel susceptibility locus at 6p21.3 among familial CLL. Blood . 2011; 117( 6): 1911– 1916. 41. Slager SL Skibola CF Di Bernardo MC et al.   Common variation at 6p21.31 (BAK1) influences the risk of chronic lymphocytic leukemia. Blood . 2012; 120( 4): 843– 846. 42. Berndt SI Skibola CF Joseph V et al.   Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat Genet . 2013; 45( 8): 868– 876. Published by Oxford University Press 2014. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png JNCI Monographs Oxford University Press

Medical History, Lifestyle, Family History, and Occupational Risk Factors for Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: The InterLymph Non-Hodgkin Lymphoma Subtypes Project

Loading next page...
 
/lp/oxford-university-press/medical-history-lifestyle-family-history-and-occupational-risk-factors-xURdyP15J2
Publisher
Oxford University Press
Copyright
Published by Oxford University Press 2014.
ISSN
1052-6773
eISSN
1745-6614
DOI
10.1093/jncimonographs/lgu001
pmid
25174025
Publisher site
See Article on Publisher Site

Abstract

Abstract Background Chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) are two subtypes of non-Hodgkin lymphoma. A number of studies have evaluated associations between risk factors and CLL/SLL risk. However, these associations remain inconsistent or lacked confirmation. This may be due, in part, to the inadequate sample size of CLL/SLL cases. Methods We performed a pooled analysis of 2440 CLL/SLL cases and 15186 controls from 13 case-control studies from Europe, North America, and Australia. We evaluated associations of medical history, family history, lifestyle, and occupational risk factors with CLL/SLL risk. Multivariate logistic regression analyses were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Results We confirmed prior inverse associations with any atopic condition and recreational sun exposure. We also confirmed prior elevated associations with usual adult height, hepatitis C virus seropositivity, living or working on a farm, and family history of any hematological malignancy. Novel associations were identified with hairdresser occupation (OR = 1.77, 95% CI = 1.05 to 2.98) and blood transfusion history (OR = 0.79, 95% CI = 0.66 to 0.94). We also found smoking to have modest protective effect (OR = 0.9, 95% CI = 0.81 to 0.99). All exposures showed evidence of independent effects. Conclusions We have identified or confirmed several independent risk factors for CLL/SLL supporting a role for genetics (through family history), immune function (through allergy and sun), infection (through hepatitis C virus), and height, and other pathways of immune response. Given that CLL/SLL has more than 30 susceptibility loci identified to date, studies evaluating the interaction among genetic and nongenetic factors are warranted. Chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) are two subtypes of non-Hodgkin lymphoma (NHL). They are clinically defined by the presence of a clonal population of B-cell lymphocytes that have a characteristic immunophenotype (1). Because of their common immunophenotype and their similar clinical course, CLL and SLL are typically combined together despite the more prominent nodal involvement in SLL. CLL/SLL is one of the most common B-cell malignancies in individuals of Caucasian descent and is very rare in individuals of Asian descent. The incidence of CLL/SLL has remained fairly constant over time with an annual incidence between 4 and 10 per 100000 (2–6). However, recent incidence studies of CLL in Asian populations have shown an increase in incidence suggesting an environmental role (7,8). CLL/SLL incidence is nearly twice as high in men as in women, and CLL/SLL incidence increases with age, with a median age at CLL/SLL diagnosis of 73 years (3–5,9). A number of studies have been conducted to identify risk factors for CLL/SLL. The strongest and most consistent risk factor for CLL/SLL is family history of hematologic malignancy, regardless of how it is defined (i.e., defined by any family history of lymphoma, or focused on a family history of NHL, or specifically on a family history of CLL/SLL) (10–12). However, with other risk factors, these finding have yet to be confirmed (e.g., atopic associations), lacked consistency (e.g., smoking associations), or have not been assessed in a multivariate setting to explore relative independence. The lack of consistency may be due, in part, to inadequate sample size of CLL/SLL cases, especially for those factors that may be more modestly linked to CLL/SLL. To advance our understanding of the etiology of CLL/SLL, we conducted one of the largest epidemiological studies of CLL/SLL to date by investigating associations with lifestyle, medical history, family history, and selected occupational risk factors in a pooled analysis of 2440 cases and 15186 controls from 13 case-control studies from Europe, North America, and Australia as part of the International Lymphoma Epidemiology Consortium (InterLymph) NHL Subtypes Project. Moreover, we considered exposures not only individually but also jointly to assess independence among exposures. Methods Study Population Detailed methodology for the InterLymph NHL Subtypes Project is provided elsewhere in this issue. Studies eligible for inclusion in this pooled analysis fulfilled the following criteria: 1) case-control design; 2) inclusion of incident CLL/SLL cases with the clonality of the circulating B-cell lymphocytes confirmed by flow cytometry; and 3) availability of individual-level data for at least several risk factors of interest by December 31, 2011. Most studies excluded individuals with a known history of solid organ transplantation or HIV/AIDS. Contributing studies were approved by local ethics review committees, and all participants provided written, informed consent before interview. NHL Subtype Ascertainment and Harmonization Cases were classified according to the World Health Organization classification (13,14) using guidelines from the InterLymph Pathology Working Group (15,16). Most studies had some form of centralized pathology review by at least one expert hematopathologist to confirm the diagnoses. Each participating study’s pathology review procedures, rules for NHL subtype classification, and NHL subtype distribution were then reviewed independently by an interdisciplinary team of pathologists and epidemiologists from InterLymph. Risk Factor Ascertainment and Harmonization Each study collected data on putative CLL/SLL risk factors in a standardized, structured format by in-person or telephone interviews (typically computer-assisted) or self-administered questionnaires. Risk factors selected for inclusion in this analysis were lifestyle, medical history, family history, and occupational risk factors with data from at least four studies. Centralized harmonization of de-identified, individual-level data from each study was a key element of the project. Each exposure variable was harmonized individually; data were then reviewed for consistency among related exposure variables. Details of the collected data and data harmonization rules are provided elsewhere in this issue. Statistical Analysis We first performed analyses to evaluate risk of CLL/SLL with each exposure variable using unconditional logistic regression models adjusted for age, race/ethnicity, sex, and study (i.e., the “basic model”). The statistical significance of each exposure was evaluated by a likelihood ratio test, comparing models with and without the exposure variable of interest, with P values less than 0.05 identifying putatively influential factors. Individuals with missing data for the exposure variable of interest were excluded. To evaluate effect heterogeneity among the 13 studies, we performed a separate logistic regression within each study and then quantified the variability of the coefficients by the H statistic, adapting the definition by Higgins and Thompson to categorical variables (17). No meaningful heterogeneity was observed (results not shown). We then examined the relationship between CLL/SLL risk and each putative risk factor considering possible effect modification and accounting for other potential confounders. To consider possible effect modification, we repeated the above logistic regression analyses, but now stratified individuals by age, sex, race/ethnicity, region, study, study design (i.e., population-based versus hospital- or clinic-based), or other putative risk factors identified in the analysis. Forest plots illustrated the results from the stratified analyses to identify possible modifiers of the effect of an exposure variable of interest. No evidence of effect modification was observed (results not shown). To account for other potential confounders, we conducted two analyses. First, we evaluated the risk estimate for each putative risk factor in a series of models that adjusted for one other putative risk factor individually as well as age, race/ethnicity, sex, and study (pairwise adjustment modeling). Second, we conducted a single logistic regression model including all putative risk factors, this time including a separate missing category for each variable to ensure that the whole study population was included in the analysis (i.e., not dropped due to missing data). Finally, we conducted a forward step-wise logistic regression with all putative risk factors, adjusting for age, sex, race/ethnicity, and study, to identify our “full model.” Because controls for most of the 13 studies were frequency matched by age and sex to all cases (e.g., all NHL subtypes) rather than just to CLL/SLL, we conducted sensitivity analyses using a subset of controls from each study that were frequency matched by age and sex to CLL/SLL cases. The results from these sensitivity analyses were very similar to the results obtained using the full set of controls (results not shown); thus, we retained the full set of controls for our main analyses to increase statistical power. Results Table 1 shows the distribution of the 2440 CLL/SLL cases and 15186 controls across the 13 participating studies, along with characteristics for age, race/ethnicity, sex, and social economic status. Relative to controls, cases tended to be older (over the age of 60 years) and were more likely to be men. Cases had a median age at diagnosis of 64 years (range 28–93) compared with 60 years (range 17–97) at interview in controls. The majority (>95%) of cases and controls were non-Hispanic whites. There was no evidence of a difference in distribution of social economic status across cases and controls (P = .19). Table 1. Characteristics of CLL/SLL cases and controls included in the InterLymph NHL Subtypes Project*   Controls  Cases  No. (%)  No. (%)  Total  15186 (86.2)  2440 (13.8)  Study   North America  5848 (38.5)  881 (36.1)   British Columbia  845 (5.6)  42 (1.7)   Iowa/Minnesota  1245 (8.2)  244 (10.0)   Mayo Clinic  1314 (8.7)  376 (15.4)   NCI-SEER   1055 (6.9)  133 (5.5)   Nebraska (newer)  533 (3.5)  29 (1.2)   University of Rochester  139 (0.9)  7 (0.3)   Yale  717 (4.7)  50 (2.0)   Europe  8644 (56.9)  1530 (62.7)   Engela  722 (4.8)  132 (5.4)   EpiLymph  2460 (16.2)  414 (17.0)   Italy multicenter  1771 (11.7)  214 (8.8)   Italy (Aviano-Naples)  504 (3.3)  18 (0.7)   SCALE  3187 (21.0)  752 (30.8)   Australia   New South Wales  694 (4.6)  29 (1.2)   Design   Population based  11093 (73.0)  1656 (67.9)   Hospital based  4093 (27.0)  784 (32.1)   Age   <30  831 (5.5)  1 (0.0)   30–39  1190 (7.8)  29 (1.2)   40–49  2044 (13.5)  205 (8.4)   50–59  3326 (21.9)  603 (24.7)   60–69  4386 (28.9)  925 (37.9)   70–79  2974 (19.6)  565 (23.2)   ≥80  435 (2.9)  84 (3.4)   Missing  0 (0.0)  28 (1.1)   Sex   Men  8472 (55.8)  1614 (66.1)   Women  6714 (44.2)  826 (33.9)   Race/ethnicity   White, non-Hispanic  14303 (94.2)  2336 (95.7)   Black  199 (1.3)  16 (0.7)   Asian  189 (1.2)  5 (0.2)   Hispanic  95 (0.6)  9 (0.4)   Other/unknown/missing  400 (2.6)  74 (3.0)   Social economic status   Low  6141 (40.4)  1076 (44.1)   Medium  4655 (30.7)  684 (28.0)   High  4139 (27.3)  560 (23.0)   Other/missing  251 (1.7)  120 (4.9)   NHL classification   World Health Organization    1982 (81.2)   Working Formulation    458 (18.8)    Controls  Cases  No. (%)  No. (%)  Total  15186 (86.2)  2440 (13.8)  Study   North America  5848 (38.5)  881 (36.1)   British Columbia  845 (5.6)  42 (1.7)   Iowa/Minnesota  1245 (8.2)  244 (10.0)   Mayo Clinic  1314 (8.7)  376 (15.4)   NCI-SEER   1055 (6.9)  133 (5.5)   Nebraska (newer)  533 (3.5)  29 (1.2)   University of Rochester  139 (0.9)  7 (0.3)   Yale  717 (4.7)  50 (2.0)   Europe  8644 (56.9)  1530 (62.7)   Engela  722 (4.8)  132 (5.4)   EpiLymph  2460 (16.2)  414 (17.0)   Italy multicenter  1771 (11.7)  214 (8.8)   Italy (Aviano-Naples)  504 (3.3)  18 (0.7)   SCALE  3187 (21.0)  752 (30.8)   Australia   New South Wales  694 (4.6)  29 (1.2)   Design   Population based  11093 (73.0)  1656 (67.9)   Hospital based  4093 (27.0)  784 (32.1)   Age   <30  831 (5.5)  1 (0.0)   30–39  1190 (7.8)  29 (1.2)   40–49  2044 (13.5)  205 (8.4)   50–59  3326 (21.9)  603 (24.7)   60–69  4386 (28.9)  925 (37.9)   70–79  2974 (19.6)  565 (23.2)   ≥80  435 (2.9)  84 (3.4)   Missing  0 (0.0)  28 (1.1)   Sex   Men  8472 (55.8)  1614 (66.1)   Women  6714 (44.2)  826 (33.9)   Race/ethnicity   White, non-Hispanic  14303 (94.2)  2336 (95.7)   Black  199 (1.3)  16 (0.7)   Asian  189 (1.2)  5 (0.2)   Hispanic  95 (0.6)  9 (0.4)   Other/unknown/missing  400 (2.6)  74 (3.0)   Social economic status   Low  6141 (40.4)  1076 (44.1)   Medium  4655 (30.7)  684 (28.0)   High  4139 (27.3)  560 (23.0)   Other/missing  251 (1.7)  120 (4.9)   NHL classification   World Health Organization    1982 (81.2)   Working Formulation    458 (18.8)  * CLL/SLL = chronic lymphocytic leukemia/small lymphocytic lymphoma; NCI-SEER = National Cancer Institute--Surveillance, Epidemiology, and End Results; NHL = non-Hodgkin lymphoma; SCALE = Scandinavian Lymphoma Etiology Study. View Large Basic Model Results Medical History. Suffering from any atopic condition (including allergy, hay fever, asthma, or eczema) was inversely associated with CLL/SLL risk (odds ratio [OR] = 0.86, 95% confidence interval [CI] = 0.78 to 0.95; Table 2). Within specific atopic conditions, similar effect sizes were noted for allergy, food allergy, and hay fever conditions, although not statistically significant for the latter two (Table 2). Little to no evidence of a reduced risk was observed for asthma (OR = 0.99, 95% CI = 0.83 to 1.17) and eczema (OR = 0.96, 95% CI = 0.82 to 1.13). When we excluded individuals who had atopic conditions diagnosed within 2 years of age of CLL/SLL diagnosis or interview, the effects sizes remained consistent for any atopy, (OR = 0.82, 95% CI = 0.72 to 0.93), allergy (OR = 0.83, 95% CI = 0.67 to 1.03), and hay fever (OR = 0.83, 95% CI = 0.69 to 0.99). Having a history of transfusion also was inversely associated with CLL/SLL (OR = 0.79, 95% CI = 0.66 to 0.94; Table 2). When we stratified the study sample based on study design, we observed nonsignificant differences in effects between population-based case-control studies (OR = 0.89, 95% CI = 0.68 to 1.16) and hospital-based case-control studies (OR = 0.71, 95% CI = 0.56 to 0.91). Further, the association was more notable for those who received transfusion after 1990 (OR = 0.68, 95% CI = 0.49 to 0.94). There was also a weak upward trend with adult height (per 10cm change) when considered as a continuous variable (OR = 1.10, 95% CI = 1.02 to 1.19). We observed no significant associations with CLL/SLL risk with history of any of the specific autoimmune diseases, weight, body mass index, reproductive history, oral contraceptive use, and hormone replacement therapy (results not shown). Table 2. Basic model results for medical exposures*   Controls  Cases  OR (95% CI)†  P  No. (%)  No. (%)  Any atopic disorder‡   No  9733 (64.1)  1640 (67.2)  1.00 (referent)  .003   Yes  5192 (34.2)  705 (28.9)  0.86 (0.78 to 0.95)    Allergy§   No  9796 (70.9)  1720 (72.7)  1.00 (referent)  .020   Yes  3165 (22.9)  462 (19.5)  0.87 (0.77 to 0.98)    Food allergy   No  11708 (84.7)  1988 (84.1)  1.00 (referent)  .176   Yes  899 (6.5)  104 (4.4)  0.86 (0.69 to 1.07)    Asthma   No  12507 (83.1)  2012 (82.7)  1.00 (referent)  .859   Yes  1150 (7.6)  176 (7.2)  0.99 (0.83 to 1.17)    Hay fever   No  9984 (68.7)  1639 (67.9)  1.00 (referent)  .056   Yes  2513 (17.3)  311 (12.9)  0.88 (0.76 to 1.01)    Eczema   No  12486 (85.0)  2057 (84.9)  1.00 (referent)  .650   Yes  1426 (9.7)  203 (8.4)  0.96 (0.82 to 1.13)    Blood transfusion   No  7419 (73.5)  1000 (68.2)  1.00 (referent)  .008   Yes  1459 (14.5)  168 (11.5)  0.79 (0.66 to 0.94)    Age at first transfusion   No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .133   First transfusion at age <25  338 (3.4)  32 (2.2)  0.80 (0.55 to 1.16)     First transfusion at age 25–39  419 (4.2)  45 (3.1)  0.81 (0.59 to 1.12)     First transfusion at age 40–54  338 (3.4)  40 (2.7)  0.79 (0.56 to 1.11)     First transfusion at age 55+  364 (3.6)  51 (3.5)  0.77 (0.56 to 1.05)    Total number of blood transfusions   No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .036   1 transfusion  961 (9.5)  118 (8.0)  0.81 (0.66 to 0.99)     2 transfusions  273 (2.7)  35 (2.4)  0.90 (0.62 to 1.30)     3+ transfusions  170 (1.7)  13 (0.9)  0.61 (0.34 to 1.10)     Transfusion, but number unknown  55 (0.5)  2 (0.1)  0.32 (0.08 to 1.34)    Number of years from first transfusion to date of diagnosis           No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .038   <20 y  646 (6.4)  72 (4.9)  0.71 (0.55 to 0.92)     20–39 y  563 (5.6)  67 (4.6)  0.89 (0.68 to 1.16)     40+ y  250 (2.5)  29 (2.0)  0.80 (0.53 to 1.19)    Transfusion before 1990   No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .020   Transfusion before 1990  985 (9.8)  115 (7.8)  0.81 (0.66 to 1.01)     Transfusion 1990+  369 (3.7)  45 (3.1)  0.68 (0.49 to 0.94)     Transfusion year unknown  105 (1.0)  8 (0.5)  1.45 (0.62 to 3.38)     Missing, no transfusion data  1211 (12.0)  299 (20.4)      Adult height   Quartile 1 (low)  2763 (24.1)  398 (20.4)  1.00 (referent)  .079   Quartile 2  2752 (24.0)  471 (24.1)  1.12 (0.96 to 1.30)     Quartile 3  2649 (23.1)  450 (23.0)  1.14 (0.97 to 1.33)     Quartile 4 (high)  2740 (23.9)  475 (24.3)  1.23 (1.05 to 1.44)    Adult height (10cm)   Continuous  10904 (100.0)  1794 (100.0)  1.10 (1.02 to 1.19)  .015  Serology hepatitis C virus infection   No  5259 (68.4)  973 (77.5)  1.00 (referent)  .009   Yes  95 (1.2)  21 (1.7)  2.08 (1.23 to 3.49)      Controls  Cases  OR (95% CI)†  P  No. (%)  No. (%)  Any atopic disorder‡   No  9733 (64.1)  1640 (67.2)  1.00 (referent)  .003   Yes  5192 (34.2)  705 (28.9)  0.86 (0.78 to 0.95)    Allergy§   No  9796 (70.9)  1720 (72.7)  1.00 (referent)  .020   Yes  3165 (22.9)  462 (19.5)  0.87 (0.77 to 0.98)    Food allergy   No  11708 (84.7)  1988 (84.1)  1.00 (referent)  .176   Yes  899 (6.5)  104 (4.4)  0.86 (0.69 to 1.07)    Asthma   No  12507 (83.1)  2012 (82.7)  1.00 (referent)  .859   Yes  1150 (7.6)  176 (7.2)  0.99 (0.83 to 1.17)    Hay fever   No  9984 (68.7)  1639 (67.9)  1.00 (referent)  .056   Yes  2513 (17.3)  311 (12.9)  0.88 (0.76 to 1.01)    Eczema   No  12486 (85.0)  2057 (84.9)  1.00 (referent)  .650   Yes  1426 (9.7)  203 (8.4)  0.96 (0.82 to 1.13)    Blood transfusion   No  7419 (73.5)  1000 (68.2)  1.00 (referent)  .008   Yes  1459 (14.5)  168 (11.5)  0.79 (0.66 to 0.94)    Age at first transfusion   No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .133   First transfusion at age <25  338 (3.4)  32 (2.2)  0.80 (0.55 to 1.16)     First transfusion at age 25–39  419 (4.2)  45 (3.1)  0.81 (0.59 to 1.12)     First transfusion at age 40–54  338 (3.4)  40 (2.7)  0.79 (0.56 to 1.11)     First transfusion at age 55+  364 (3.6)  51 (3.5)  0.77 (0.56 to 1.05)    Total number of blood transfusions   No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .036   1 transfusion  961 (9.5)  118 (8.0)  0.81 (0.66 to 0.99)     2 transfusions  273 (2.7)  35 (2.4)  0.90 (0.62 to 1.30)     3+ transfusions  170 (1.7)  13 (0.9)  0.61 (0.34 to 1.10)     Transfusion, but number unknown  55 (0.5)  2 (0.1)  0.32 (0.08 to 1.34)    Number of years from first transfusion to date of diagnosis           No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .038   <20 y  646 (6.4)  72 (4.9)  0.71 (0.55 to 0.92)     20–39 y  563 (5.6)  67 (4.6)  0.89 (0.68 to 1.16)     40+ y  250 (2.5)  29 (2.0)  0.80 (0.53 to 1.19)    Transfusion before 1990   No transfusion  7419 (73.5)  1000 (68.2)  1.00 (referent)  .020   Transfusion before 1990  985 (9.8)  115 (7.8)  0.81 (0.66 to 1.01)     Transfusion 1990+  369 (3.7)  45 (3.1)  0.68 (0.49 to 0.94)     Transfusion year unknown  105 (1.0)  8 (0.5)  1.45 (0.62 to 3.38)     Missing, no transfusion data  1211 (12.0)  299 (20.4)      Adult height   Quartile 1 (low)  2763 (24.1)  398 (20.4)  1.00 (referent)  .079   Quartile 2  2752 (24.0)  471 (24.1)  1.12 (0.96 to 1.30)     Quartile 3  2649 (23.1)  450 (23.0)  1.14 (0.97 to 1.33)     Quartile 4 (high)  2740 (23.9)  475 (24.3)  1.23 (1.05 to 1.44)    Adult height (10cm)   Continuous  10904 (100.0)  1794 (100.0)  1.10 (1.02 to 1.19)  .015  Serology hepatitis C virus infection   No  5259 (68.4)  973 (77.5)  1.00 (referent)  .009   Yes  95 (1.2)  21 (1.7)  2.08 (1.23 to 3.49)    * CI = confidence interval; OR = odds ratio. † OR (95% CI) adjusted for age, sex, race/ethnicity, and study. ‡ Atopic disorders include asthma, eczema, hay fever, or other allergies, excluding drug allergies. § Allergy excluding drug allergies and other atopic conditions, including hay fever, asthma, and eczema. View Large As previously published by InterLymph, having a hepatitis C virus seropositivity was strongly associated with CLL/SLL (OR = 2.08, 95% CI = 1.23 to 3.49; Table 2). Family History. As expected, having a family history of any hematological malignancy among first-degree relatives was strongly associated with CLL/SLL risk (OR = 2.17, 95% CI = 1.77 to 2.65; Table 3). Risks were also elevated when looking at family history of NHL (OR = 1.92, 95% CI = 1.41 to 2.61) and family history of leukemia (OR = 2.41, 95% CI = 1.85 to 3.14). The risk increased slightly for first-degree relatives who were men compared with women for any family history hematological malignancy. Although not statistically significant (P > .05), the effects were elevated when looking at family history of myeloma (OR = 2.00, 95% CI = 0.92 to 4.34). Table 3. Basic model results for family history*   Controls  Cases  OR (95% CI)*  P  No. (%)  No. (%)  Any hematologic malignancy   No  8362 (74.0)  1178 (71.0)  1.00 (referent)  <.001   Yes  493 (4.4)  153 (9.2)  2.17 (1.77 to 2.65)    Family history of non-Hodgkin lymphoma           No  7924 (74.9)  1137 (74.5)  1.00 (referent)  <.001   Yes  210 (2.1)  62 (4.1)  1.92 (1.42 to 2.61)    Family history of leukemia   No  7777 (74.5)  1109 (73.0)  1.00 (referent)  <.001   Yes  237 (2.3)  84 (5.5)  2.41 (1.85 to 3.14)    Any hematologic malignancy, male relative   No  7785 (74.5)  1112 (73.2)  1.00 (referent)  <.001   Yes  229 (2.2)  81 (5.3)  2.32 (1.77 to 3.04)    Any hematologic malignancy, female relative   No  7782 (74.5)  1133 (74.5)  1.00 (referent)  <.001   Yes  232 (2.2)  60 (3.9)  1.79 (1.32 to 2.43)      Controls  Cases  OR (95% CI)*  P  No. (%)  No. (%)  Any hematologic malignancy   No  8362 (74.0)  1178 (71.0)  1.00 (referent)  <.001   Yes  493 (4.4)  153 (9.2)  2.17 (1.77 to 2.65)    Family history of non-Hodgkin lymphoma           No  7924 (74.9)  1137 (74.5)  1.00 (referent)  <.001   Yes  210 (2.1)  62 (4.1)  1.92 (1.42 to 2.61)    Family history of leukemia   No  7777 (74.5)  1109 (73.0)  1.00 (referent)  <.001   Yes  237 (2.3)  84 (5.5)  2.41 (1.85 to 3.14)    Any hematologic malignancy, male relative   No  7785 (74.5)  1112 (73.2)  1.00 (referent)  <.001   Yes  229 (2.2)  81 (5.3)  2.32 (1.77 to 3.04)    Any hematologic malignancy, female relative   No  7782 (74.5)  1133 (74.5)  1.00 (referent)  <.001   Yes  232 (2.2)  60 (3.9)  1.79 (1.32 to 2.43)    * CI = confidence interval; OR = odds ratio. † OR (95% CI) adjusted for age, sex, race/ethnicity, and study. View Large Occupation. History of living or working on a farm was significantly associated with CLL/SLL risk (OR = 1.21, 95% CI = 1.07 to 1.36; Table 4). However, the association slightly attenuated when evaluating separately history of working on a farm (OR = 1.16, 95% CI = 1.00 to 1.35) or history of living on a farm (OR = 1.12, 95% CI = 0.97 to 1.30). These data were further corroborated with the occupational data. Here, we observed an association with farming occupation (OR = 1.23, 95% CI = 1.04 to 1.45). The effects vary, however, when we further classified farm work into animal farmers (OR = 0.64, 95% CI = 0.43 to 0.96) or crop farmers (OR = 1.19, 95% CI = 0.93 to 1.52); the mixed animal and crop farmer had elevated risks (OR = 1.32, 95% CI = 1.08 to 1.61). Of all other occupations evaluated, only hairdressers had an increased CLL/SLL risk (OR = 1.77, 95% CI = 1.05 to 2.98), although this and other occupations analyses were based on limited numbers of cases (Table 4). Table 4. Basic model results for occupational exposures*   Controls  Cases  OR (95% CI)†  P  No. (%)  No. (%)  Ever lived or worked on a farm           No  7088 (59.8)  760 (45.2)  1.00 (referent)  .002   Yes  4514 (38.1)  835 (49.7)  1.21 (1.07 to 1.36)    Ever lived on a farm   No  3230 (53.1)  511 (47.1)  1.00 (referent)  .130   Yes  2617 (43.0)  487 (44.9)  1.12 (0.97 to 1.30)    Ever worked on a farm   No  8081 (81.6)  1019 (73.5)  1.00 (referent)  .051   Yes  1626 (16.4)  290 (20.9)  1.16 (1.00 to 1.35)    Farmer   No  7544 (85.8)  806 (77.3)  1.00 (referent)  .019   Yes  2151 (14.2)  236 (22.6)  1.23 (1.04 to 1.45)    Animal farmer   No  8517 (96.8)  1013 (97.1)  1.00 (referent)  .024   Yes  278 (3.2)  29 (2.8)  0.64 (0.43 to 0.96)    Crop farmer   No  8304 (94.4)  952 (91.3)  1.00 (referent)  .185   Yes  491 (5.6)  90 (8.6)  1.19 (0.93 to 1.52)    Mixed animal and crop farmer   No  7597 (91.9)  867 (85.5)  1.00 (referent)  .008   Yes  665 (8.1)  146 (14.4)  1.32 (1.08 to 1.61)    Hairdresser   No  8690 (98.8)  1024 (98.2)  1.00 (referent)  .044   Yes  105 (1.2)  18 (1.7)  1.77 (1.05 to 2.98)      Controls  Cases  OR (95% CI)†  P  No. (%)  No. (%)  Ever lived or worked on a farm           No  7088 (59.8)  760 (45.2)  1.00 (referent)  .002   Yes  4514 (38.1)  835 (49.7)  1.21 (1.07 to 1.36)    Ever lived on a farm   No  3230 (53.1)  511 (47.1)  1.00 (referent)  .130   Yes  2617 (43.0)  487 (44.9)  1.12 (0.97 to 1.30)    Ever worked on a farm   No  8081 (81.6)  1019 (73.5)  1.00 (referent)  .051   Yes  1626 (16.4)  290 (20.9)  1.16 (1.00 to 1.35)    Farmer   No  7544 (85.8)  806 (77.3)  1.00 (referent)  .019   Yes  2151 (14.2)  236 (22.6)  1.23 (1.04 to 1.45)    Animal farmer   No  8517 (96.8)  1013 (97.1)  1.00 (referent)  .024   Yes  278 (3.2)  29 (2.8)  0.64 (0.43 to 0.96)    Crop farmer   No  8304 (94.4)  952 (91.3)  1.00 (referent)  .185   Yes  491 (5.6)  90 (8.6)  1.19 (0.93 to 1.52)    Mixed animal and crop farmer   No  7597 (91.9)  867 (85.5)  1.00 (referent)  .008   Yes  665 (8.1)  146 (14.4)  1.32 (1.08 to 1.61)    Hairdresser   No  8690 (98.8)  1024 (98.2)  1.00 (referent)  .044   Yes  105 (1.2)  18 (1.7)  1.77 (1.05 to 2.98)    * CI = confidence interval; OR = odds ratio. † OR (95% CI) adjusted for age, sex, race/ethnicity, and study. View Large Lifestyle Factors. As in previous InterLymph reports, a moderate inverse association was noted between sun exposure and CLL/SLL risk, especially for recreational sun exposure (Table 5). We also observed a modest reduced risk of CLL/SLL in ever cigarette smoking (OR = 0.90, 95% CI = 0.81 to 0.99). This effect was further reduced when looking at current cigarette smoking (OR = 0.82, 95% CI = 0.71 to 0.94; Table 5), with a weak nonsignificant inverse trend with cigarettes smoked per day and with duration of smoking. Regular use of hair dyes (by men and women) did not modify the risk of CLL/SLL when evaluating ever use, type of hair dye, color, duration, or frequency (Table 5). However, use of hair dyes before 1980 had an increased risk of CLL/SLL (OR = 1.36, 95% CI = 1.0 to 1.86). No evidence of an association was noted for alcohol consumption and physical activity (results not shown). Table 5. Basic model results for lifestyle exposures*   Controls  Cases  OR (95% CI)†  P  No. (%)  No. (%)  Total sun exposure (h/wk)   Quartile 1 (low)  1241 (18.0)  162 (15.6)  1.00 (referent)  .005   Quartile 2  1326 (19.2)  148 (14.3)  0.82 (0.64 to 1.05)     Quartile 3  1339 (19.4)  202 (19.5)  1.09 (0.86 to 1.37)     Quartile 4 (high)  1437 (20.8)  173 (16.7)  0.75 (0.59 to 0.96)    Recreational sun exposure (h/wk)   Quartile 1 (low)  1987 (20.5)  380 (24.5)  1.00 (referent)  .029   Quartile 2  2141 (22.1)  295 (19.0)  0.81 (0.68 to 0.96)     Quartile 3  1789 (18.5)  270 (17.4)  0.88 (0.74 to 1.05)     Quartile 4 (high)  2653 (27.4)  428 (27.6)  0.80 (0.69 to 0.94)    History of cigarette smoking‡   No  5721 (39.9)  945 (39.4)  1.00 (referent)  .038   Yes  7406 (51.6)  1246 (52.0)  0.90 (0.81 to 0.99)    Smoking status as of ~1 y before diagnosis/interview   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .026   Former smoker  3976 (27.7)  769 (32.1)  0.93 (0.83 to 1.04)     Current smoker  2945 (20.5)  378 (15.8)  0.82 (0.71 to 0.94)     Smoker, status unknown  485 (3.4)  99 (4.1)  1.05 (0.79 to 1.38)    Age started smoking cigarettes   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .105   <14 y  667 (4.7)  100 (4.2)  0.84 (0.66 to 1.06.)     14 to <18 y  2804 (19.6)  449 (18.7)  0.87 (0.76 to 0.99)     18 to <20 y  1466 (10.2)  240 (10)  0.83 (0.71 to 0.98)     20+ y  1950 (13.6)  367 (15.3)  0.96 (0.84 to 1.11)     Smoker, age start unknown  519 (3.6)  90 (3.8)  1.07 (0.82 to 1.39)    Frequency of cigarette smoking   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .068   1–10 cigarettes/day  2547 (17.8)  426 (17.8)  0.93 (0.82 to 1.06)     11–20 cigarettes/day  3105 (21.7)  545 (22.7)   0.9 (0.80 to 1.02)     21–30 cigarettes/day  771 (5.4)  121 (5)   0.9 (0.72 to 1.11)     30+ cigarettes/day  742 (5.2)  107 (4.5)  0.72 (0.57 to 0.90)     Smoker, cigarettes/day unknown  241 (1.7)  47 (2)  1.06 (0.76 to 1.48)    Duration of cigarette smoking   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .165   1–20 y  2414 (16.8)  336 (14)  0.97 (0.84 to 1.12)     21–30 y  1535 (10.7)  246 (10.3)  0.92 (0.79 to 1.08)     30–39 y  1560 (10.9)  274 (11.4)  0.82 (0.71 to 0.96)     40+ y  1757 (12.3)  359 (15)  0.88 (0.76 to 1.01)     Smoking duration unknown  140 (1)  31 (1.3)  1.00 (0.67 to 1.51)    Years since quitting cigarette smoking   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  <.001   Former smoker, quit >25 y ago  1236 (8.6)  261 (10.9)  0.90 (0.77 to 1.05)     Former smoker, quit >15 to 25 y ago  1023 (7.1)  212 (8.8)  1.00 (0.85 to 1.19)     Former smoker, quit >5 to 15 y ago  1097 (7.6)  190 (7.9)  0.91 (0.76 to 1.09)     Former smoker, quit ≤5 y ago  561 (3.9)  80 (3.3)  0.80 (0.62 to 1.03)     Former smoker, unknown when quit  59 (0.4)  26 (1.1)  2.54 (1.53 to 4.21)    Lifetime cigarette exposure   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .023   1–10 pack-years  2175 (15.2)  341 (14.2)  1.03 (0.90 to 1.19)     >10–20 pack-years  1487 (10.4)  238 (9.9)  0.88 (0.75 to 1.04)     >20–35 pack-years  1613 (11.2)  275 (11.5)  0.84 (0.72 to 0.98)     >35 pack-years  1827 (12.7)  335 (14)  0.82 (0.70 to 0.95)     Smoker, pack-years unknown  304 (2.1)  57 (2.4)  0.96 (0.71 to 1.31)    Ever used hair dyes   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .502   Ever hair dye  2881 (35.6)  284 (28.0)  1.08 (0.86 to 1.37)     Men  3950 (48.7)  602 (59.4)      Type of hair dye used   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .072   Temporary only  206 (2.5)  14 (1.4)  0.74 (0.41 to 1.34)     Permanent  2380 (29.4)  259 (25.5)  1.16 (0.91 to 1.48)     Ever hair dye, type unknown  295 (3.6)  11 (1.1)  0.52 (0.23 to 1.15)     Men  3950 (48.7)  602 (59.4)      Color of hair dye used   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .375   Light  894 (11.0)  98 (9.7)  1.13 (0.84 to 1.51)     Dark  1677 (20.7)  172 (17.0)  1.11 (0.86 to 1.44)     Ever hair dye, color unknown  310 (3.8)  14 (1.4)  0.65 (0.32 to 1.30)     Men  3950 (48.7)  602 (59.4)      Duration of hair dye use   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .459   1–8 y  921 (11.4)  72 (7.1)  1.00 (0.71 to 1.42)     9–19 y  677 (8.4)  71 (7.0)  1.22 (0.86 to 1.72)     20+ y  770 (9.5)  95 (9.4)  1.26 (0.92 to 1.73)     Ever hair dye, duration unknown  513 (6.3)  46 (4.5)  0.89 (0.57 to 1.36)     Men  3950 (48.7)  602 (59.4)      Frequency of hair dye use   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .096   1–5 times/y  835 (10.3)  64 (6.3)  1.08 (0.76 to 1.53)     6–11 times/y  849 (10.5)  82 (8.1)  1.03 (0.74 to 1.43)     12+ times/y  507 (6.3)  78 (7.7)  1.51 (1.09 to 2.10)     Ever hair dye, frequency unknown  690 (8.5)  60 (5.9)  0.89 (0.62 to 1.28)     Men  3950 (48.7)  602 (59.4)      Used hair dyes before 1980   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .152   Ever hair dye use <1980  895 (11.0)  127 (12.5)  1.36 (1.00 to 1.86)     Hair dye use only 1980+  990 (12.2)  96 (9.5)  1.06 (0.76 to 1.46)     Hair dye use, time period unknown  996 (12.3)  61 (6.0)  0.85 (0.57 to 1.27)     Men  3950 (48.7)  602 (59.4)        Controls  Cases  OR (95% CI)†  P  No. (%)  No. (%)  Total sun exposure (h/wk)   Quartile 1 (low)  1241 (18.0)  162 (15.6)  1.00 (referent)  .005   Quartile 2  1326 (19.2)  148 (14.3)  0.82 (0.64 to 1.05)     Quartile 3  1339 (19.4)  202 (19.5)  1.09 (0.86 to 1.37)     Quartile 4 (high)  1437 (20.8)  173 (16.7)  0.75 (0.59 to 0.96)    Recreational sun exposure (h/wk)   Quartile 1 (low)  1987 (20.5)  380 (24.5)  1.00 (referent)  .029   Quartile 2  2141 (22.1)  295 (19.0)  0.81 (0.68 to 0.96)     Quartile 3  1789 (18.5)  270 (17.4)  0.88 (0.74 to 1.05)     Quartile 4 (high)  2653 (27.4)  428 (27.6)  0.80 (0.69 to 0.94)    History of cigarette smoking‡   No  5721 (39.9)  945 (39.4)  1.00 (referent)  .038   Yes  7406 (51.6)  1246 (52.0)  0.90 (0.81 to 0.99)    Smoking status as of ~1 y before diagnosis/interview   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .026   Former smoker  3976 (27.7)  769 (32.1)  0.93 (0.83 to 1.04)     Current smoker  2945 (20.5)  378 (15.8)  0.82 (0.71 to 0.94)     Smoker, status unknown  485 (3.4)  99 (4.1)  1.05 (0.79 to 1.38)    Age started smoking cigarettes   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .105   <14 y  667 (4.7)  100 (4.2)  0.84 (0.66 to 1.06.)     14 to <18 y  2804 (19.6)  449 (18.7)  0.87 (0.76 to 0.99)     18 to <20 y  1466 (10.2)  240 (10)  0.83 (0.71 to 0.98)     20+ y  1950 (13.6)  367 (15.3)  0.96 (0.84 to 1.11)     Smoker, age start unknown  519 (3.6)  90 (3.8)  1.07 (0.82 to 1.39)    Frequency of cigarette smoking   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .068   1–10 cigarettes/day  2547 (17.8)  426 (17.8)  0.93 (0.82 to 1.06)     11–20 cigarettes/day  3105 (21.7)  545 (22.7)   0.9 (0.80 to 1.02)     21–30 cigarettes/day  771 (5.4)  121 (5)   0.9 (0.72 to 1.11)     30+ cigarettes/day  742 (5.2)  107 (4.5)  0.72 (0.57 to 0.90)     Smoker, cigarettes/day unknown  241 (1.7)  47 (2)  1.06 (0.76 to 1.48)    Duration of cigarette smoking   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .165   1–20 y  2414 (16.8)  336 (14)  0.97 (0.84 to 1.12)     21–30 y  1535 (10.7)  246 (10.3)  0.92 (0.79 to 1.08)     30–39 y  1560 (10.9)  274 (11.4)  0.82 (0.71 to 0.96)     40+ y  1757 (12.3)  359 (15)  0.88 (0.76 to 1.01)     Smoking duration unknown  140 (1)  31 (1.3)  1.00 (0.67 to 1.51)    Years since quitting cigarette smoking   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  <.001   Former smoker, quit >25 y ago  1236 (8.6)  261 (10.9)  0.90 (0.77 to 1.05)     Former smoker, quit >15 to 25 y ago  1023 (7.1)  212 (8.8)  1.00 (0.85 to 1.19)     Former smoker, quit >5 to 15 y ago  1097 (7.6)  190 (7.9)  0.91 (0.76 to 1.09)     Former smoker, quit ≤5 y ago  561 (3.9)  80 (3.3)  0.80 (0.62 to 1.03)     Former smoker, unknown when quit  59 (0.4)  26 (1.1)  2.54 (1.53 to 4.21)    Lifetime cigarette exposure   Nonsmoker  5721 (39.9)  945 (39.4)  1.00 (referent)  .023   1–10 pack-years  2175 (15.2)  341 (14.2)  1.03 (0.90 to 1.19)     >10–20 pack-years  1487 (10.4)  238 (9.9)  0.88 (0.75 to 1.04)     >20–35 pack-years  1613 (11.2)  275 (11.5)  0.84 (0.72 to 0.98)     >35 pack-years  1827 (12.7)  335 (14)  0.82 (0.70 to 0.95)     Smoker, pack-years unknown  304 (2.1)  57 (2.4)  0.96 (0.71 to 1.31)    Ever used hair dyes   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .502   Ever hair dye  2881 (35.6)  284 (28.0)  1.08 (0.86 to 1.37)     Men  3950 (48.7)  602 (59.4)      Type of hair dye used   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .072   Temporary only  206 (2.5)  14 (1.4)  0.74 (0.41 to 1.34)     Permanent  2380 (29.4)  259 (25.5)  1.16 (0.91 to 1.48)     Ever hair dye, type unknown  295 (3.6)  11 (1.1)  0.52 (0.23 to 1.15)     Men  3950 (48.7)  602 (59.4)      Color of hair dye used   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .375   Light  894 (11.0)  98 (9.7)  1.13 (0.84 to 1.51)     Dark  1677 (20.7)  172 (17.0)  1.11 (0.86 to 1.44)     Ever hair dye, color unknown  310 (3.8)  14 (1.4)  0.65 (0.32 to 1.30)     Men  3950 (48.7)  602 (59.4)      Duration of hair dye use   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .459   1–8 y  921 (11.4)  72 (7.1)  1.00 (0.71 to 1.42)     9–19 y  677 (8.4)  71 (7.0)  1.22 (0.86 to 1.72)     20+ y  770 (9.5)  95 (9.4)  1.26 (0.92 to 1.73)     Ever hair dye, duration unknown  513 (6.3)  46 (4.5)  0.89 (0.57 to 1.36)     Men  3950 (48.7)  602 (59.4)      Frequency of hair dye use   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .096   1–5 times/y  835 (10.3)  64 (6.3)  1.08 (0.76 to 1.53)     6–11 times/y  849 (10.5)  82 (8.1)  1.03 (0.74 to 1.43)     12+ times/y  507 (6.3)  78 (7.7)  1.51 (1.09 to 2.10)     Ever hair dye, frequency unknown  690 (8.5)  60 (5.9)  0.89 (0.62 to 1.28)     Men  3950 (48.7)  602 (59.4)      Used hair dyes before 1980   Never hair dye  1241 (15.3)  120 (11.8)  1.00 (referent)  .152   Ever hair dye use <1980  895 (11.0)  127 (12.5)  1.36 (1.00 to 1.86)     Hair dye use only 1980+  990 (12.2)  96 (9.5)  1.06 (0.76 to 1.46)     Hair dye use, time period unknown  996 (12.3)  61 (6.0)  0.85 (0.57 to 1.27)     Men  3950 (48.7)  602 (59.4)      * CI = confidence interval; OR = odds ratio. † OR (95% CI) adjusted for age, sex, race/ethnicity, and study. ‡ Smoked longer than 6 months or more than 100 cigarettes in lifetime. View Large Full Model Results. To develop our full model, we selected risk factors that had statistical significance of P values less than .05 in the basic model analyses. However, for those risk factors that had additional variables that captured duration and intensity, we only selected those that had consistent evidence of association across the additional variables. The full model results are shown in Table 6. There is clear evidence that the selected risk factors are independent of one another with minimal evidence of confounding and interaction. This is evidenced by the minimal change in effect size obtained from the basic models (adjusted only for design variables) compared with that obtained from the full model (adjusted for the design variables and the other selected variables). This is also evidenced by our pairwise adjustment modeling. Table 6. Basic and full model results*   Controls  Cases  Basic model  P  Full model  P  No. (%)  No. (%)  OR (95% CI)†  OR (95% CI)‡  Any atopic disorder§   No  9733 (64.1)  1640 (67.2)  1.00 (referent)  .003  1.00 (referent)  .002   Yes  5192 (34.2)  705 (28.9)  0.86 (0.78 to 0.95)    0.85 (0.77 to 0.94)    Blood transfusion   No  7419 (73.5)  1000 (68.2)  1.00 (referent)  .008  1.00 (referent)  .011   Yes  1459 (14.5)  168 (11.5)  0.79 (0.66 to 0.94)    0.79 (0.66 to 0.95)    Adult height   Continuous (10cm)  10904 (100)  1794 (100)  1.10 (1.02 to 1.19)  .015  1.09 (1.01 to 1.17)  .020  Serology hepatitis C virus infection   No  5259 (68.4)  973 (77.5)  1.00 (referent)  .009  1.00 (referent)  .011   Yes  95 (1.2)  21 (1.7)  2.08 (1.23 to 3.49)    1.99 (1.16 to 3.41)    History of cigarette smoking   No  5721 (39.9)  945 (39.4)  1.00 (referent)  .038  1.00 (referent)  .082   Yes  7406 (51.6)  1246 (52)  0.90 (0.81 to 0.99)    0.91 (0.83 to 1.01)    Total sun exposure (hours/week)   Quartile 1 (low)  1241 (18.0)  162 (15.6)  1.00 (referent)  .005  1.00 (referent)  .003   Quartile 2  1326 (19.2)  148 (14.3)  0.82 (0.64 to 1.05)    0.81 (0.63 to 1.04)     Quartile 3  1339 (19.4)  202 (19.5)  1.09 (0.86 to 1.37)    1.06 (0.84 to 1.34)     Quartile 4 (high)  1437 (20.8)  173 (16.7)  0.75 (0.59 to 0.96)    0.71 (0.55 to 0.92)    First-degree family history, any hematologic malignancy               No  8362 (74.0)  1178 (71.0)  1.00 (referent)  <.001  1.00 (referent)  <.001   Yes  493 (4.4)  153 (9.2)  2.17 (1.77 to 2.65)    2.16 (1.76 to 2.65)    Ever lived or worked on a farm   No  7088 (59.8)  760 (45.2)  1.00 (referent)  .002  1.00 (referent)  .004   Yes  4514 (38.1)  835 (49.7)  1.21 (1.07 to 1.36)    1.20 (1.06 to 1.35)    Hairdresser   No  8690 (98.8)  1024 (98.2)  1.00 (referent)  .044  1.00 (referent)  .044   Yes  105 (1.2)  18 (1.7)  1.77 (1.05 to 2.98)    1.77 (1.05 to 3.01)      Controls  Cases  Basic model  P  Full model  P  No. (%)  No. (%)  OR (95% CI)†  OR (95% CI)‡  Any atopic disorder§   No  9733 (64.1)  1640 (67.2)  1.00 (referent)  .003  1.00 (referent)  .002   Yes  5192 (34.2)  705 (28.9)  0.86 (0.78 to 0.95)    0.85 (0.77 to 0.94)    Blood transfusion   No  7419 (73.5)  1000 (68.2)  1.00 (referent)  .008  1.00 (referent)  .011   Yes  1459 (14.5)  168 (11.5)  0.79 (0.66 to 0.94)    0.79 (0.66 to 0.95)    Adult height   Continuous (10cm)  10904 (100)  1794 (100)  1.10 (1.02 to 1.19)  .015  1.09 (1.01 to 1.17)  .020  Serology hepatitis C virus infection   No  5259 (68.4)  973 (77.5)  1.00 (referent)  .009  1.00 (referent)  .011   Yes  95 (1.2)  21 (1.7)  2.08 (1.23 to 3.49)    1.99 (1.16 to 3.41)    History of cigarette smoking   No  5721 (39.9)  945 (39.4)  1.00 (referent)  .038  1.00 (referent)  .082   Yes  7406 (51.6)  1246 (52)  0.90 (0.81 to 0.99)    0.91 (0.83 to 1.01)    Total sun exposure (hours/week)   Quartile 1 (low)  1241 (18.0)  162 (15.6)  1.00 (referent)  .005  1.00 (referent)  .003   Quartile 2  1326 (19.2)  148 (14.3)  0.82 (0.64 to 1.05)    0.81 (0.63 to 1.04)     Quartile 3  1339 (19.4)  202 (19.5)  1.09 (0.86 to 1.37)    1.06 (0.84 to 1.34)     Quartile 4 (high)  1437 (20.8)  173 (16.7)  0.75 (0.59 to 0.96)    0.71 (0.55 to 0.92)    First-degree family history, any hematologic malignancy               No  8362 (74.0)  1178 (71.0)  1.00 (referent)  <.001  1.00 (referent)  <.001   Yes  493 (4.4)  153 (9.2)  2.17 (1.77 to 2.65)    2.16 (1.76 to 2.65)    Ever lived or worked on a farm   No  7088 (59.8)  760 (45.2)  1.00 (referent)  .002  1.00 (referent)  .004   Yes  4514 (38.1)  835 (49.7)  1.21 (1.07 to 1.36)    1.20 (1.06 to 1.35)    Hairdresser   No  8690 (98.8)  1024 (98.2)  1.00 (referent)  .044  1.00 (referent)  .044   Yes  105 (1.2)  18 (1.7)  1.77 (1.05 to 2.98)    1.77 (1.05 to 3.01)    * CI = confidence interval; OR = odds ratio. † OR (95% CI) adjusted for age, sex, race/ethnicity, and study. ‡ OR (95% CI) adjusted for age, sex, race/ethnicity, study, and all other variables in full model. § Atopic disorders include asthma, eczema, hay fever, or other allergies, excluding drug allergies. View Large Discussion Individual level data from 2440 CLL cases and 15186 controls from 13 case-control studies were reanalyzed centrally through the InterLymph consortium to evaluate associations of medical history, family history, lifestyle, and occupational risk factors with CLL/SLL risk. We confirmed prior findings by InterLymph and others with additional cases and controls for a number of exposures. Specifically, we confirmed the previously reported strong increased risk with family history of hematological cancer (10–12), the increased risk with height (18,19), the increased risk with farming exposures (20–24), and the protective effect of UV radiation on CLL/SLL risk (25,26). Although we report a significant increased risk with hepatitis C virus herein, we had no additional new data beyond that reported in an earlier InterLymph pooled analysis (27). With an additional CLL/SLL cases and controls, we supported an earlier InterLymph finding of a reduction in risk of CLL/SLL with history of any atopic condition (28). A concern with any association with IgE-mediated exposures, like atopic conditions, is reverse causality such that the inefficient immunological repose to allergens may be due to CLL/SLL disease and therefore explain the observed associations. With the larger sample size, we excluded CLL/SLL cases whose atopic diagnosis was within 10 years of CLL/SLL diagnosis to evaluate the role of reverse causality. The results (not shown) from these additional sensitivity analyses were consistent with the full data and show a risk reduction of 20% among those CLL/SLL cases reporting any atopic disease. Thus, the inverse association is unlikely to be due to reverse causality and suggests that induction of an increase IgE response by environmental exposures could be a factor in CLL/SLL pathogenesis (29). Future studies will be needed to test this hypothesis. We observed an inverse association between blood transfusion and CLL/SLL. These results were consistent across other transfusion variables including number of transfusions, latency, and timeframe of transfusion (before 1990 or after). However, these results are inconsistent with the hypothesis that pathogens are transmitted through blood transfusion and therefore would presumably increase the risk of CLL/SLL. An earlier meta-analysis of case-control and cohort studies reported an increased risk with CLL/SLL (OR = 1.66, 95% CI = 1.08 to 2.56) (30). There was very little overlap of studies included in the earlier meta-analysis and the one reported herein. Although our pooled study of individual-level data is a strength, as is our large sample size, we were unable to explain the biologic mechanism behind our findings. Our results may be due to unknown confounding as we lacked details on the type of transfusion or the indication for the transfusion. Our results may also be due to selection bias because the effect was more inversely associated in hospital-based (OR = 0.71) compared with population-based (OR = 0.89) case-control studies. We report a statistically significant inverse association between current cigarette smoking and CLL/SLL. The effect of this association is modest, but yet consistent across the other smoking variables with dose response relationships observed with pack-years, intensity, and duration of exposure, although not statistically significant for the latter two. In a recent InterLymph pooled study of smoking that included 1156 CLL/SLL cases and 4630 controls from seven case-control studies, which were also included herein, current cigarette smoking was found to have a nonsignificant reduced risk of CLL/SLL (OR = 0.82, 95% CI = 0.67 to 1.01) (31). With an additional six case-control studies included in this study, we found this effect to remain. Effect estimates from prospective cohort studies have been mixed with both elevated effects (32,33) and protective effects (34) reported with current cigarette smoking; however, none of these results were significant due to small numbers (n < 500 CLL/SLL cases). The biologic mechanism for this inverse association is unclear, but smoking may affect immune function (35). Replication of our findings is needed, but given that we observed a significant but weak effect, large sample sizes will be required or alternative approaches, such as evaluating biomarkers of exposure to cigarette smoke on CLL/SLL risk, will be needed. We have identified an increased risk of CLL/SLL among hairdressers, which has not been previously reported. Hairdressers can be exposed to a wide variety of chemicals including organic solvents, dyes, and ammonia. The International Agency for Research on Cancer (IARC) categorized the occupational exposures of a hairdresser or barber as probably carcinogenic to humans (Group 2A) and the personal use of hair colorants as not classifiable as to its carcinogenicity to humans (Group 3) (36). Previous studies have explored the association with hematological malignancies or NHL in general with generally negative associations. Data on detailed exposure associated to this occupation were not available. In contrast to these findings among hairdressers, we have inconclusive results with exposure to hair dye use. A previous InterLymph analysis reported an increased CLL/SLL risk for hair dyes use before 1980 among women (OR = 1.50, 95% CI = 1.10 to 2.00) based on a subset of four case-control studies reported herein (37). However, with data from nine additional case-control studies, we found a slight attenuation with this finding (OR = 1.36, 95% CI = 1.00 to 1.86). Future studies will need detailed data of hair dye exposure to hone in on the effect of this exposure on CLL/SLL risk. Our study has several strengths, including the ability to harmonize individual-level data, the extensive review of harmonization by workgroups to ensure accuracy, the large number of CLL/SLL cases and controls, and the large number of available exposures to simultaneously evaluate joint effects and perform sensitivity analyses. The findings for the exposures were fairly consistent across the studies with modest evidence of heterogeneity. Our study has several limitations, as well. Although case-control studies are subject to recall bias, it is unlikely to have a major effect herein because CLL/SLL has very few established risk factors. All studies used the older CLL/SLL diagnostic criteria that required absolute lymphocyte count more than 5×109 cells/L compared with the new 2008 criteria of B-cell lymphocyte count more than 5×109 cells/L. Under the new diagnostic change, at least a third of the Rai stage 0 CLL/SLL cases are reclassified to monoclonal B-cell lymphocytosis, a precursor condition to CLL/SLL (2). Although our sample size is large (even after accounting for the misclassification of cases), it is possible that some of our novel findings are due to chance. Overall, the results of this pooled analysis provide additional evidence that a number of exposures are associated with CLL/SLL risk and that these exposures are independent of each other. A number of the exposures are not modifiable (e.g., race/ethnicity, sex, family history, height, and atopy), whereas some potentially modifiable exposures may decrease risk (e.g., UV radiation), whereas others may increase risk (e.g., farm exposures and hair products). Further studies are needed to confirm our smoking and transfusion findings, as well as detailed studies evaluating occupational exposures of farming and hairdressers. The biologic basis for these associations remains to be elucidated; however, our findings support that genetic factors, immune function, and infection have a role in CLL/SLL leukemogenesis. Given that CLL/SLL has more than 30 susceptibility loci identified to date (38–42), studies evaluating the interaction among these genetic and nongenetic factors is warranted. Funding Intramural Research Program of the National Cancer Institute/National Institutes of Health and National Cancer Institute/National Institutes of Health (R01 CA14690, U01 CA118444, and R01 CA92153-S1). InterLymph annual meetings during 2010–2013 were supported by the Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute/National Institutes of Health (2010–2013); Lymphoma Coalition (2010–2013); National Institutes of Health Office of Rare Diseases Research (2010); National Cancer Institute/National Institutes of Health (R13 CA159842 01; 2011); University of Cagliari, Provincial Administration of Cagliari, Banca di Credito Sardo, and Consorzio Industriale Sardo, Italy (2011); Intramural Research Program of the National Cancer Institute/National Institutes of Health (2012); and Faculté de Médecine de Dijon, Institut de Veille Sanitaire, Registre des hémopathies malignes de Côte d’Or, INSERM, Institut National du Cancer, Université de Bourgogne, Groupe Ouest Est d’Etude des Leucémies et Autres Maladies du Sang (GOELAMS), l’Institut Bergonié, The Lymphoma Study Association (LYSA), Registre Régional des Hémopathies de Basse Normandie, and the City of Dijon, France (2013). Meeting space at the 2013 Annual Meeting of the American Association for Cancer Research (AACR) was provided by the Molecular Epidemiology Group (MEG) of the AACR. Pooling of the occupation data was supported by the National Cancer Institute/National Institutes of Health (R03CA125831). Individual studies were supported by the Canadian Institutes for Health Research (CIHR), Canadian Cancer Society, and Michael Smith Foundation for Health Research (British Columbia); Intramural Research Program of the National Cancer Institute/National Institutes of Health (Iowa/Minnesota); National Cancer Institute/National Institutes of Health (N01-CP-ES-11027; Kansas); National Cancer Institute/National Institutes of Health (R01 CA50850; Los Angeles); National Cancer Institute/National Institutes of Health (R01 CA92153 and P50 CA97274), Lymphoma Research Foundation (164738), and the Henry J. Predolin Foundation (Mayo Clinic); Intramural Research Program of the National Cancer Institute/National Institutes of Health and Public Health Service (contracts N01-PC-65064, N01-PC-67008, N01-PC-67009, N01-PC-67010, and N02-PC-71105; NCI-SEER); National Cancer Institute/National Institutes of Health (R01CA100555 and R03CA132153) and American Institute for Cancer Research (99B083; Nebraska [newer]); National Cancer Institute/National Institutes of Health (N01-CP-95618) and State of Nebraska Department of Health (LB-506; Nebraska [older]); National Cancer Institute/National Institutes of Health (R01CA45614, RO1CA154643-01A1, and R01CA104682; UCSF1); National Cancer Institute/National Institutes of Health (CA143947, CA150037, R01CA087014, R01CA104682, RO1CA122663, and RO1CA154643-01A1) [UCSF2]; National Heart Lung and Blood Institute/National Institutes of Health (hematology training grant award T32 HL007152), National Center for Research Resources/National Institutes of Health (UL 1 RR024160), and National Cancer Institute/National Institutes of Health (K23 CA102216 and P50 CA130805; University of Rochester]; National Cancer Institute/National Institutes of Health (CA62006 and CA165923; Yale); Association pour la Recherche contre le Cancer, Fondation de France, AFSSET, and a donation from Faberge employees (Engela); European Commission (QLK4-CT-2000-00422 and FOOD-CT-2006–023103), Spanish Ministry of Health (CIBERESP, PI11/01810, RCESP C03/09, RTICESP C03/10, and RTIC RD06/0020/0095), Rio Hortega (CM13/00232), Agència de Gestió d’Ajuts Universitaris i de Recerca–Generalitat de Catalunya (Catalonian Government, 2009SGR1465), National Institutes of Health (contract NO1-CO-12400 ), Italian Ministry of Education, University and Research (PRIN 2007 prot.2007WEJLZB, PRIN 2009 prot. 20092ZELR2), Italian Association for Cancer Research (IG grant 11855/2011), Federal Office for Radiation Protection (StSch4261 and StSch4420), José Carreras Leukemia Foundation (DJCLS-R04/08), German Federal Ministry for Education and Research (BMBF-01-EO-1303), Health Research Board, Ireland and Cancer Research Ireland, and Czech Republic MH CZ - DRO (MMCI, 00209805) [EpiLymph]; National Cancer Institute/National Institutes of Health (CA51086), European Community (Europe Against Cancer Programme), and Italian Alliance Against Cancer (Lega Italiana per la Lotta contro i Tumori; Italy, multicenter); Italian Association for Cancer Research (IG 10068; Italy, Aviano-Milan); Italian Association for Cancer Research (Italy, Aviano-Naples); Swedish Cancer Society (2009/659), Stockholm County Council (20110209), Strategic Research Program in Epidemiology at Karolinska Institut, Swedish Cancer Society (02 6661), Danish Cancer Research Foundation, Lundbeck Foundation (R19-A2364), Danish Cancer Society (DP 08-155), National Cancer Institute/National Institutes of Health (5R01 CA69669-02), and Plan Denmark [SCALE]; Leukaemia & Lymphoma Research (United Kingdom); and Australian National Health and Medical Research Council (ID990920), Cancer Council NSW, and University of Sydney Faculty of Medicine (New South Wales). We thank the following individuals for their substantial contributions to this project: Dennis P. Robinson and Priya Ramar (Mayo Clinic College of Medicine) for their work at the InterLymph Data Coordinating Center in organizing, collating, harmonizing, and documenting of the data from the participating studies in the InterLymph Consortium; Michael Spriggs, Peter Hui, and Bill Wheeler (Information Management Services, Inc) for their programming support; and Noelle Richa Siegfried and Emily Smith (RTI International) for project coordination. References 1. Hallek M Cheson BD Catovsky D et al.   Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood . 2008; 111( 12): 5446– 5456. 2. Call TG Norman AD Hanson CA et al.   Incidence of chronic lymphocytic leukemia and high-count monoclonal B-cell lymphocytosis using the 2008 guidelines. Cancer . 2014; 120( 13): 2000– 2005. 3. Abrisqueta P Pereira A Rozman C et al.   Improving survival in patients with chronic lymphocytic leukemia (1980-2008): the Hospital Clinic of Barcelona experience. Blood . 2009; 114( 10): 2044– 2050. 4. Brenner H Gondos A Pulte D . Trends in long-term survival of patients with chronic lymphocytic leukemia from the 1980s to the early 21st century. Blood . 2008; 111( 10): 4916– 4921. 5. Howlader N Noone AM Krapcho M et al.   SEER Cancer Statistics Review, 1975–2010, National Cancer Statistics Review . Bethesda, MD: National Cancer Institute; 2012. 6. Seftel MD Demers AA Banerji V et al.   High incidence of chronic lymphocytic leukemia (CLL) diagnosed by immunophenotyping: a population-based Canadian cohort. Leuk Res . 2009; 33( 11): 1463– 1468. 7. Clarke CA Glaser SL Gomez SL et al.   Lymphoid malignancies in U.S. Asians: incidence rate differences by birthplace and acculturation. Cancer Epidemiol Biomarkers Prev . 2011; 20( 6): 1064– 1077. 8. Wu SJ Huang SY Lin CT Lin YJ Chang CJ Tien HF . The incidence of chronic lymphocytic leukemia in Taiwan, 1986-2005: a distinct increasing trend with birth-cohort effect. Blood . 2010; 116( 22): 4430– 4435. 9. Call TG Phyliky RL Noël P et al.   Incidence of chronic lymphocytic leukemia in Olmsted County, Minnesota, 1935 through 1989, with emphasis on changes in initial stage at diagnosis. Mayo Clin Proc . 1994; 69( 4): 323– 328. 10. Sgambati M Linet MS Devesa SS . Chronic lymphocytic leukemia: epidemiological, familial, and genetic aspects. In: Cheson BD , ed. Chronic Lymphoid Leukemias . 2nd ed. New York, NY: Marcel Dekker, Inc.; 2001: 33– 62. 11. Goldin LR Björkholm M Kristinsson SY Turesson I Landgren O . Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin’s lymphomas among relatives of patients with chronic lymphocytic leukemia. Haematologica . 2009; 94( 5): 647– 653. 12. Wang SS Slager SL Brennan P et al.   Family history of hematopoietic malignancies and risk of non-Hodgkin lymphoma (NHL): a pooled analysis of 10 211 cases and 11 905 controls from the International Lymphoma Epidemiology Consortium (InterLymph). Blood . 2007; 109( 8): 3479– 3488. 13. Jaffe E Harris N Stein H Vardiman JW , eds. World Health Organization Classification of Tumours Pathology and Genetics, Tumours of Hematopoietic and Lymphoid Tissues . Lyon, France: IARC Press; 2001. 14. Swerdlow SH Campo E Harris NL et al.   World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues . 4th ed. Lyon, France: IARC Press; 2008. 15. Morton LM Turner JJ Cerhan JR et al.   Proposed classification of lymphoid neoplasms for epidemiologic research from the Pathology Working Group of the International Lymphoma Epidemiology Consortium (InterLymph). Blood . 2007; 110( 2): 695– 708. 16. Turner JJ Morton LM Linet MS et al.   InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions. Blood . 2010; 116( 20): e90– e98. 17. Higgins JP Thompson SG . Quantifying heterogeneity in a meta-analysis. Stat Med . 2002; 21( 11): 1539– 1558. 18. Pylypchuk RD Schouten LJ Goldbohm RA Schouten HC van den Brandt PA . Body mass index, height, and risk of lymphatic malignancies: a prospective cohort study. Am J Epidemiol . 2009; 170( 3): 297– 307. 19. Patel AV Diver WR Teras LR Birmann BM Gapstur SM . Body mass index, height and risk of lymphoid neoplasms in a large United States cohort. Leuk Lymphoma . 2013; 54( 6): 1221– 1227. 20. Blair A Zahm SH Pearce NE Heineman EF Fraumeni JF Jr. Clues to cancer etiology from studies of farmers. Scand J Work Environ Health . 1992; 18( 4): 209– 215. 21. Brown LM Blair A Gibson R et al.   Pesticide exposures and other agricultural risk factors for leukemia among men in Iowa and Minnesota. Cancer Res . 1990; 50( 20): 6585– 6591. 22. Cocco P Satta G D’Andrea I et al.   Lymphoma risk in livestock farmers: results of the Epilymph study. Int J Cancer . 2013; 132( 11): 2613– 2618. 23. Spinelli JJ Ng CH Weber JP et al.   Organochlorines and risk of non-Hodgkin lymphoma. Int J Cancer . 2007; 121( 12): 2767– 2775. 24. Hohenadel K Harris SA McLaughlin JR et al.   Exposure to multiple pesticides and risk of non-Hodgkin lymphoma in men from six Canadian provinces. Int J Environ Res Public Health . 2011; 8( 6): 2320– 2330. 25. Kricker A Armstrong BK Hughes AM et al.   Personal sun exposure and risk of non Hodgkin lymphoma: a pooled analysis from the Interlymph Consortium. Int J Cancer . 2008; 122( 1): 144– 154. 26. Boffetta P van der Hel O Kricker A et al.   Exposure to ultraviolet radiation and risk of malignant lymphoma and multiple myeloma–a multicentre European case-control study. Int J Epidemiol . 2008; 37( 5): 1080– 1094. 27. de Sanjose S Benavente Y Vajdic CM et al.   Hepatitis C and non-Hodgkin lymphoma among 4784 cases and 6269 controls from the International Lymphoma Epidemiology Consortium. Clin Gastroenterol Hepatol . 2008; 6( 4): 451– 458. 28. Vajdic CM Falster MO de Sanjose S et al.   Atopic disease and risk of non-Hodgkin lymphoma: an InterLymph pooled analysis. Cancer Res . 2009; 69( 16): 6482– 6489. 29. Dühren-von Minden M Übelhart R Schneider D et al.   Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature . 2012; 489( 7415): 309– 312. 30. Castillo JJ Dalia S Pascual SK . Association between red blood cell transfusions and development of non-Hodgkin lymphoma: a meta-analysis of observational studies. Blood . 2010; 116( 16): 2897– 2907. 31. Gibson TM Smedby KE Skibola CF et al.   Smoking, variation in N-acetyltransferase 1 (NAT1) and 2 (NAT2), and risk of non-Hodgkin lymphoma: a pooled analysis within the InterLymph consortium. Cancer Causes Control . 2013; 24( 1): 125– 134. 32. Lim U Morton LM Subar AF et al.   Alcohol, smoking, and body size in relation to incident Hodgkin’s and non-Hodgkin’s lymphoma risk. Am J Epidemiol . 2007; 166( 6): 697– 708. 33. Troy JD Hartge P Weissfeld JL et al.   Associations between anthropometry, cigarette smoking, alcohol consumption, and non-Hodgkin lymphoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am J Epidemiol . 2010; 171( 12): 1270– 1281. 34. Lu Y Wang SS Reynolds P et al.   Cigarette smoking, passive smoking, and non-Hodgkin lymphoma risk: evidence from the California Teachers Study. Am J Epidemiol . 2011; 174( 5): 563– 573. 35. Sopori M . Effects of cigarette smoke on the immune system. Nat Rev Immunol . 2002; 2( 5): 372– 377. 36. IARC Monographs Working Group on the Evaluation of Carcinogenic Risks to Humans. Some aromatic amines, organic dyes, and related exposures . IARC Monogr Eval Carcinog Risks Hum. 2010; 99: 1-– 658. Google Scholar 37. Zhang Y de Sanjosé S Bracci PM et al.   Personal use of hair dye and the risk of certain subtypes of non-Hodgkin lymphoma. Am J Epidemiol . 2008; 167( 11): 1321– 1331. 38. Di Bernardo MC Crowther-Swanepoel D Broderick P et al.   A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat Genet . 2008; 40( 10): 1204– 1210. 39. Crowther-Swanepoel D Broderick P Di Bernardo MC et al.   Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat Genet . 2010; 42( 2): 132– 136. 40. Slager SL Rabe KG Achenbach SJ et al.   Genome-wide association study identifies a novel susceptibility locus at 6p21.3 among familial CLL. Blood . 2011; 117( 6): 1911– 1916. 41. Slager SL Skibola CF Di Bernardo MC et al.   Common variation at 6p21.31 (BAK1) influences the risk of chronic lymphocytic leukemia. Blood . 2012; 120( 4): 843– 846. 42. Berndt SI Skibola CF Joseph V et al.   Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat Genet . 2013; 45( 8): 868– 876. Published by Oxford University Press 2014.

Journal

JNCI MonographsOxford University Press

Published: Aug 30, 2014

There are no references for this article.