Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effects of spring- versus fall-calving on perinatal nutrient availability and neonatal vigor in beef cattle

Effects of spring- versus fall-calving on perinatal nutrient availability and neonatal vigor in... To determine the effect of calving season on perinatal nutrient availability and neonatal beef calf vigor, data were collected from 4 spring- (average calving date: February 14; n = 203 total) and 4 fall- (average calving date: September 20; n = 179 total) calving experiments. Time to stand was determined as minutes from birth to standing for 5 s. After birth, calf weight and size (length, heart and abdominal girth, and cannon circumference) were recorded. Jugular blood samples and rectal temperatures were obtained at 0, 6, 12, and 24 h postnatally in 6 experiments and at 48 h postnatally in Exp. 2 to 8. Data were analyzed with fixed effects of season (single point) or season, hour, and their interaction (over time, using repeated measures). Experiment was a random effect; calf sex was included when P ≤ 0.25. Within calving season, correlations were determined between calf size, vigor, and 48-h serum total protein. Fall-born calves tended to have lighter (P = 0.09) birth weight and faster (P = 0.05) time to stand than spring-born calves. Season did not affect (P ≥ 0.18) gestation length, other calf size measures, or 48-h serum total protein. Fall-born calves had greater (P ≤ 0.003) rectal temperature at 0, 24, and 48 h postnatal. Spring-born calves had greater (P ≤ 0.009) circulating glucose at 0 h, serum non-esterified fatty acids at 0 and 6 h, and plasma triglycerides at 0, 6, 12, and 48 h. Fall-born calves had greater (P ≤ 0.03) sodium from 6 to 48 h and magnesium from 0 to 24 h of age. Phosphorus was greater (P ≤ 0.02) at 6 and 12 h of age in spring-born calves. Spring-born calves had greater (P ≤ 0.04) aspartate aminotransferase at 12 and 24 h and creatine kinase at 0 and 12 h of age. Fall-born calves had greater (P ≤ 0.03) albumin, calcium, and chloride, had lower (P ≤ 0.03) bicarbonate and direct bilirubin, and tended to have greater (P = 0.10) anion gap (all main effects of calving season). Calf birth weight had a weak positive relationship (P ≤ 0.03) with 48-h serum total protein and time to stand in fall-born, but not spring-born, calves. Overall, fetal growth was restricted and neonatal dehydration was increased by warm conditions for fall-born calves, but vigor and metabolism were negatively affected by cold conditions in spring-born calves. These data suggest that calving season influences perinatal nutrient availability, which may impact the transition of beef calves to postnatal life. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Translational Animal Science Oxford University Press

Effects of spring- versus fall-calving on perinatal nutrient availability and neonatal vigor in beef cattle

15 pages

Loading next page...
 
/lp/oxford-university-press/effects-of-spring-versus-fall-calving-on-perinatal-nutrient-w0SDXpYDZU

References (112)

Copyright
© The Author(s) 2022. Published by Oxford University Press on behalf of the American Society of Animal Science.
eISSN
2573-2102
DOI
10.1093/tas/txac136
Publisher site
See Article on Publisher Site

Abstract

To determine the effect of calving season on perinatal nutrient availability and neonatal beef calf vigor, data were collected from 4 spring- (average calving date: February 14; n = 203 total) and 4 fall- (average calving date: September 20; n = 179 total) calving experiments. Time to stand was determined as minutes from birth to standing for 5 s. After birth, calf weight and size (length, heart and abdominal girth, and cannon circumference) were recorded. Jugular blood samples and rectal temperatures were obtained at 0, 6, 12, and 24 h postnatally in 6 experiments and at 48 h postnatally in Exp. 2 to 8. Data were analyzed with fixed effects of season (single point) or season, hour, and their interaction (over time, using repeated measures). Experiment was a random effect; calf sex was included when P ≤ 0.25. Within calving season, correlations were determined between calf size, vigor, and 48-h serum total protein. Fall-born calves tended to have lighter (P = 0.09) birth weight and faster (P = 0.05) time to stand than spring-born calves. Season did not affect (P ≥ 0.18) gestation length, other calf size measures, or 48-h serum total protein. Fall-born calves had greater (P ≤ 0.003) rectal temperature at 0, 24, and 48 h postnatal. Spring-born calves had greater (P ≤ 0.009) circulating glucose at 0 h, serum non-esterified fatty acids at 0 and 6 h, and plasma triglycerides at 0, 6, 12, and 48 h. Fall-born calves had greater (P ≤ 0.03) sodium from 6 to 48 h and magnesium from 0 to 24 h of age. Phosphorus was greater (P ≤ 0.02) at 6 and 12 h of age in spring-born calves. Spring-born calves had greater (P ≤ 0.04) aspartate aminotransferase at 12 and 24 h and creatine kinase at 0 and 12 h of age. Fall-born calves had greater (P ≤ 0.03) albumin, calcium, and chloride, had lower (P ≤ 0.03) bicarbonate and direct bilirubin, and tended to have greater (P = 0.10) anion gap (all main effects of calving season). Calf birth weight had a weak positive relationship (P ≤ 0.03) with 48-h serum total protein and time to stand in fall-born, but not spring-born, calves. Overall, fetal growth was restricted and neonatal dehydration was increased by warm conditions for fall-born calves, but vigor and metabolism were negatively affected by cold conditions in spring-born calves. These data suggest that calving season influences perinatal nutrient availability, which may impact the transition of beef calves to postnatal life.

Journal

Translational Animal ScienceOxford University Press

Published: Oct 1, 2022

Keywords: cold stress; developmental programming; heat stress; metabolism; neonate; pregnancy

There are no references for this article.