Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The Spectrum of Density Fluctuations of Noble Gases Probed by THz Neutron and X-ray Spectroscopy

The Spectrum of Density Fluctuations of Noble Gases Probed by THz Neutron and X-ray Spectroscopy applied sciences Review The Spectrum of Density Fluctuations of Noble Gases Probed by THz Neutron and X-ray Spectroscopy Alessandro Cunsolo National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; acunsolo@bnl.gov; Tel.: +1-631-344-5564; Fax: +1-631-344-8189 Academic Editor: Christoph Hauri Received: 24 November 2015; Accepted: 25 January 2016; Published: 26 February 2016 Abstract: Approximately 50 years of inelastic scattering studies of noble gases are reviewed to illustrate the main advances achieved in the understanding of the THz dynamics of simple systems. The gradual departure of the spectral shape from the hydrodynamic regime is discussed with an emphasis on the phenomenology of fast (sub-ps) relaxation processes. This review shows that relaxation phenomena in noble gases have an essentially collisional origin, which is also revealed by the parallelism between their characteristic timescale and the interatomic collision time. Additionally, recent THz spectroscopy results on noble gases at extreme thermodynamic conditions are discussed to illustrate the need for a revision of our current understanding of the supercritical phase. Keywords: inelastic X-ray scattering; inelastic neutron scattering; noble gases; relaxation phenomena; liquid and supercritical systems 1. Introduction The study of the collective molecular dynamics of liquids and glassy materials has been a vibrant field of research since the dawn of modern science. However, in spite of an intensive theoretical, experimental and computational scrutiny, the dynamic response of these systems still presents many unsettled aspects, mainly owing to the inherent disorder and complex movements of their microscopic constituents. Among various variables unveiling the dynamic behavior of a fluid, the spectrum of density fluctuations, S(Q,!), is of particular interest, since it is directly accessible by both spectroscopic techniques and computer simulation methods. In spectroscopy experiments, S(Q,!) is probed by generating density fluctuations on a target sample through the collision with a beam of particle-waves, i.e., photons or neutrons. During this collision, an energy h ¯! and a momentum h ¯ Q (here h ¯ = h/2 with h being the Plank constant) are transferred from the probe particles to the sample and the former are scattered over the entire solid angle. It was demonstrated that for both neutron [1] and X-ray [2] probes, the scattering intensity is proportional to the dynamic structure factor, S(Q,!), which provides a snapshot of the dynamic response of the sample through an average over timescales 9 ! and distances 9 Q . Therefore, the (Q,!) region explored in a spectroscopy measurement can be expanded enough to cover the whole transition of the dynamics from the macroscopic regime to the microscopic one. The shape of S(Q,!) is exactly predicted within these two limits and essentially unknown in between, i.e. in the so-called mesoscopic region, corresponding to Q’s and !’s matching the inverse of intermolecular separations and cage oscillation frequencies, respectively. Investigations of this region may unravel fundamental aspects of molecular motions and mutual interactions in disordered systems and can be ideally performed by X-ray (IXS) and neutron (INS) scattering techniques, as well Appl. Sci. 2016, 6, 64; doi:10.3390/app6030064 www.mdpi.com/journal/applsci Appl. Sci. 2016, 6, 64 2 of 31 as by computational methods. Due to the lack of rigorous theoretical predictions, our understanding of the dynamics of disordered systems at mesoscopic scales is often limited to a phenomenological analysis of experimental and computational results. 1.1. The Dynamics of Molecules at Mesoscopic Scales In the macroscopic limit, a liquid appears as a continuum, whose dynamic response is averaged over a large amount of intermolecular interactions. For such a system, the hydrodynamic theory can be consistently used to describe S(Q,!) and ultimately leads to predict a sharp triplet profile [3]. This is composed by the heat diffusion (Rayleigh) central peak, relating to entropy fluctuations, which diffuse at constant pressure (P), and the two Brillouin acoustic side peaks, connected to P fluctuations, propagating at constant entropy. In the opposite regime, customarily referred to as single particle or impulse approximation limit, the probed dynamic event is essentially the free recoil of the single struck atom after the collision with the probe and before any successive interaction with first neighboring atoms. In this limiting region, the dynamic response of the fluid reflects the momentum distribution of the struck atom, which is Gaussian in shape for both classical and quantum systems. Several theoretical models have been developed in an attempt to account for the gradual departure of the spectral shape from the hydrodynamic regime. Perhaps the most successful approach is based upon the framework of the Zwanzig-Mori [4,5], or memory function, formalisms. Its core assumption is that the departure from the hydrodynamic regime is gradual enough to be accurately described by leaving the formal structure of hydrodynamic equations unchanged, yet generalizing some thermodynamic and transport parameters as local variables of space and time. From a physical point of view, this local character reflects the non-homogeneous, non-stationary nature of matter at mesoscopic scales. A similar approach was successfully proposed by a large number of IXS works on samples of increasing complexity, including: (1) noble gases [6,7]; (2) diatomic liquids [8]; (3) liquid metals [9–11]; (4) hydrogen-bonded systems [12–14]; (5) glass formers [15–18]. 1.2. The Departure from Hydrodynamic Regime and the Onset of Relaxation Processes Among various phenomena occurring at the departure from the hydrodynamic regime, the coupling of density fluctuations with relaxation phenomena is perhaps the most solidly understood [6,7,12,13,19]. To gain a basic insight on the physics of a relaxation process, one may start from considering that scattering-generated density waves bring the sample away from its local equilibrium. In response, energy redistributions take place from the density perturbation toward internal degrees of freedom, ultimately driving the sample to a new local equilibrium. The timescale needed by the sample to relax to the equilibrium, , depends both on the wavelength  = 2/Q of the considered density wave and on the sample characteristics. For instance, if  increases so do both the number of rearranging molecules and the relaxation time. Furthermore, the timescale of structural relaxations has a temperature (T-)dependence roughly as steep as the one of viscosity, due to the circumstance that viscous resistance hampers internal rearrangements. These last considerations only apply the so-called structural relaxations, involving collective rearrangements of the structure, which are dominating in highly interconnected many body systems. Conversely, for monatomic fluids relaxation phenomena mostly have a collisional nature [7,20], especially when  matches first neighboring molecules’ separations. Collisional relaxations relate Appl. Sci. 2016, 6, 64 3 of 31 to energy transfers between density fluctuations and mutual inter-particle collisions. Compared to structural relaxations, they are faster (usually spanning the 10 s range) and weakly dependent on thermodynamic conditions [7,20]. In general, collisional and structural relaxations coexist in a given fluid and their relative relevance depends on the nature of intermolecular interactions, thermodynamic conditions and probed Q value. Experimental studies of the Q or T-transition between structural and collisional relaxation regimes often present major challenges, as the required access to large Q (or T) intervals and the high statistical accuracy in the spectral shape measurement. Furthermore, advances in the field are currently held back by instrumental limitations, especially concerning resolution width and spectral contrast. Nonetheless, important advances in the understanding of these phenomena have been made and, most importantly, next generation instruments with the required performance will be soon available for the scientific community. 1.3. The Central Role of Noble Gases Noble gases are ideal samples to investigate relaxation phenomena, due to their extremely simple microscopic constituents and mutual interactions, which make them ideal prototypes to test theoretical models. In contrast to molecular fluids, their microscopic components lack internal degrees of freedom and, contrary to, e.g., metallic liquids, they have simple and short-ranged inter-particle interactions. For instance, the intrinsic simplicity of these samples is crucial to reliably approximate the interatomic potential in molecular dynamics (MD) computer simulations [21]. Another advantage of noble gases is the large compressibility, which is a key factor to achieve substantial variations of density or, equivalently, of the strength of atomic interactions, even with moderate thermodynamic changes. The purpose of this review is to provide a short overview of THz spectroscopy studies of S(Q,!) in noble gases and in particular, to discuss the insight they shed on fast relaxation phenomena. Following an essentially chronological order, the review covers a period of approximately 50 years, from the mid-1960s to the present. Beginning from pioneering INS studies mostly seeking for reminiscences of an hydrodynamic S(Q,!) shape beyond the continuous limit, it discusses the new opportunities offered by the development of IXS toward the end of the past millennium, while illustrating the insight they provide onto the viscoelastic character of the THz dynamics of noble gases. The last sections of this review illustrate recent measurements in the deeply supercritical region calling for a global reconsideration of our understanding of the phase diagram of a fluid. 2. Measurements of the THz Spectrum of Noble Gases up to the 1990s 2.1. The Spectral Line-Shape in the Continuous Limit As mentioned in the introductory section, the variable of interest for this review is the spectrum of density fluctuations, or dynamic structure factor: » » 8 A E Ñ Ñ Ñ Ñ SpQ, wq  d r drp r , tqdr p r , 0q exp ipQ  r  wtq dt (1) V 8 Ñ Ñ with drp r , tq being the space p r q and time (t) dependent density fluctuation of the target sample having volume V. In the quasi-macroscopic regime, S(Q,!) can be described using the hydrodynamic theory of continuous media [3]. This approach stems from the formal expression of the conservation laws of the (density of) mass, momentum and energy of the fluid plus two constitutive laws: the Navier-Stokes’ and heat transport’s equations. As extensively discussed in several monographies [3,22], the derived spectral shape is dominated by few long-lived collective modes, customarily referred to as hydrodynamic modes. These modes form a triplet well approximated by the following expression: Appl. Sci. 2016, 6, 64 4 of 31 SpQq A z z z h h S S SpQ, wq  A 2 2 2 2 2 2 p w z pw  w q z pw w q z S S S S (2) pw  w q pw w q S S A b 2 2 2 2 pw  w q z pw w q z S S S S with b  rA z {p1  A q z s{w and I  p1  I q{2. s s s h h h h One readily recognizes the three main components of the spectral shape (from left): (1) The heat diffusion (Rayleigh) central peak, which relates to entropy fluctuations diffusing at constant pressure (P). (2) The two Brillouin acoustic side peaks, connected to P-fluctuations propagating at constant entropy. (3) An additional contribution (term 9 b) asymmetric around the Brillouin peaks position having negative tails. This term distorts the Lorentzian terms 1) and 2) ultimately enabling the convergence of the spectral moments w SpQ, wqdw, with n ¤ 2. The hydrodynamic profile in Equation (2) contains shape parameters whose Q-dependence is not explicitly considered here. However, at low Qs the latter can be expressed through a polynomial Q-expansion (see, e.g., Equations (42)–(45) of [23]), which at the lowest order reads: w  c Q (3a) ' s s z  rpg  1q D n s Q {2 (3b) T L z  D Q (3c) Here c , D and u are, respectively, the adiabatic sound velocity the thermal diffusivity and the s T L longitudinal kinematic viscosity. 2 2 It should be recognized that Equation (3a–c) are valid only if D Q ,GQ    c Q, that is if the T s lifetime of hydrodynamic modes is much longer than the acoustic period. Under these conditions, the hydrodynamic modes are long-lived excitations appearing in the spectrum as well-resolved and sharp peaks, customarily referred to as Rayleigh-Brillouin triplet. Experimental methods such as Brillouin light scattering (BLS) provide a measurement of Rayleigh-Brillouin triplet by typically spanning the 3 2 1 Appl. Sci. 2016, 6, 64  5 of 34  10 –10 nm Q-range. An example of the simplified hydrodynamic spectrum is presented in Figure 1 along with the three separate components discussed above. Rayleigh-Brillouin triplet Brillouin peaks Rayleigh peak Asymmetric factor 0.2 0.0 -15 -10 -5 0 5 10 15 (GHz) Figure 1. Typical shape of the Rayleigh‐Brillouin triplet measured by Brillouin light scattering. The separate  Figure 1. Typical shape of the Rayleigh-Brillouin triplet measured by Brillouin light scattering. contributions to the total shape are represented by line of different color, as indicated in the legend.   The separate contributions to the total shape are represented by line of different color, as indicated in the legend. The  Rayleigh‐Brillouin  triplet  in  Equation  (2)  will  be  hereafter  quoted  as  either  generalized  or  simplified  hydrodynamic  spectrum, respectively  with  or  without  the  lowest  order  Q approximation  in  Equations (3a–c).   2.2. 1922–1969: From Theoretical Prediction to Actual Measurements   The  hydrodynamic  shape  of  the  spectrum  was  theoretically  predicted  since  the  seminal  work  of  Brillouin [24] and the successive theoretical work of Landau and Plazeck during the 1930s [25] (see also the  review by Mountain). However, the first experimental measurements of the Brillouin spectrum of liquids  −7 could only be performed much later [26], mainly owing to the extremely fine resolving power (ΔE/E < 10 )  required for similar measurements in typical liquid samples. This performance imposes severe technical  challenges that can only be addressed by complex interferometric techniques. In regards to noble gases, the  first Brillouin study dates back to the measurement on Ar and Ne along the coexistence line [27] performed  with a single‐pass Fabry‐Perot interferometer. Figure 2 provides an example of the Brillouin spectrum of  dense Ar measured in this work. The hydrodynamic spectrum reconstructed using thermophysical and  transport properties of the sample is also reported for comparison. It clearly appears that the latter profile  essentially consists of three extremely narrow peaks, in full consistency with the simple hydrodynamic  condition  . Indeed the width of triplet components measured in [27] was either coincident  DQQ ,Γ cQ Ts with the resolution function (for the Raileigh peak) or only slightly larger (for Brillouin peaks).  Intensity (arbit. units) Appl. Sci. 2016, 6, 64 5 of 31 The Rayleigh-Brillouin triplet in Equation (2) will be hereafter quoted as either generalized or simplified hydrodynamic spectrum, respectively with or without the lowest order Q approximation in Equation (3a–c). 2.2. 1922–1969: From Theoretical Prediction to Actual Measurements The hydrodynamic shape of the spectrum was theoretically predicted since the seminal work of Brillouin [24] and the successive theoretical work of Landau and Plazeck during the 1930s [25] (see also the review by Mountain). However, the first experimental measurements of the Brillouin spectrum of liquids could only be performed much later [26], mainly owing to the extremely fine resolving power (DE/E < 10 ) required for similar measurements in typical liquid samples. This performance imposes severe technical challenges that can only be addressed by complex interferometric techniques. In regards to noble gases, the first Brillouin study dates back to the measurement on Ar and Ne along the coexistence line [27] performed with a single-pass Fabry-Perot interferometer. Figure 2 provides an example of the Brillouin spectrum of dense Ar measured in this work. The hydrodynamic spectrum reconstructed using thermophysical and transport properties of the sample is also reported for comparison. It clearly appears that the latter profile essentially consists of three extremely narrow 2 2 peaks, in full consistency with the simple hydrodynamic condition D Q ,GQ    c Q. Indeed the width of triplet components measured in [27] was either coincident with the resolution function (for Appl. Sci. 2016, 6, 64  6 of 34  the Raileigh peak) or only slightly larger (for Brillouin peaks). 1.0 0.8 0.6 0.4 0.2 0.0 -4 -3 -2 -1 0123 4  (GHz)  Figure  2.  The  Rayleigh  Brillouin  spectrum  of  Ar  measured  along  the  coexistence  line  by  Brillouin  light  Figure 2. The Rayleigh Brillouin spectrum of Ar measured along the coexistence line by Brillouin light scattering. The data are redrawn with permission from [27], copyrighted by the American Physical Society.  scattering. The data are redrawn with permission from [27], copyrighted by the American Physical The hydrodynamic spectrum reconstructed using tabulated thermophysical properties of the sample and  Society. The hydrodynamic spectrum reconstructed using tabulated thermophysical properties of the bulk viscosity measurements [28] are reported for comparison as a black line.  sample and bulk viscosity measurements [28] are reported for comparison as a black line. From the position of the peak in the Rayleigh‐Brillouin spectrum, Fleury and Boon derived a value of  sound velocity slightly lower than the one previously measured by ultrasound (US) absorption techniques  From the position of the peak in the Rayleigh-Brillouin spectrum, Fleury and Boon derived at ≈1 MHz. Although such an apparent frequency‐decrease of sound velocity, also observed in water [29],  a value of sound velocity slightly lower than the one previously measured by ultrasound (US) initially raised some interest, it lacks a particular physical significance [30] (see also [22], page 263). Rather,  absorption techniques at 1 MHz. Although such an apparent frequency-decrease of sound velocity, it  follows  from  the  circumstance  that  the  sound  velocity  measured  by  BLS  (hypersonic  velocity)  is  also observed in water [29], initially raised some interest, it lacks a particular physical significance [30] expectedly  lower  by  few  percent  than  the  counterpart  measured  by  US  (ultrasonic  velocity),  unless  (see also [22], page 263). Rather, it follows from the circumstance that the sound velocity measured by competing viscoelastic effects become relevant.   BLS (hypersonic Overall,  the velocity)   shape  of is  expectedly the  spectrum lower   predic by tedfew   by per the cent hydrthan odynami theccounterpart   theory  was  experi measur mentally ed by US confirmed by Brillouin measurement in [27], even though a slight ω‐dependence of viscosity was inferred.  (ultrasonic velocity), unless competing viscoelastic effects become relevant. At  this  stage  the  occurrence  of  a  hydrodynamic  triplet  at  macroscopic  scales  seemed  well‐assessed  Overall, the shape of the spectrum predicted by the hydrodynamic theory was experimentally experimentally,  while  a  remaining  question  concerned  the  persistence  of  a  suitably  generalized  confirmed by Brillouin measurement in [27], even though a slight !-dependence of viscosity was hydrodynamic profile down to mesoscopic scales. Most experimental studies described in the following  inferred. At this stage the occurrence of a hydrodynamic triplet at macroscopic scales seemed paragraphs attempted to answer to this question.  well-assessed experimentally, while a remaining question concerned the persistence of a suitably generalized hydrodynamic profile down to mesoscopic scales. Most experimental studies described in 2.3. 1964–1967: Seeking for a Triplet Shape at Mesoscopic Scales   the following paragraphs attempted to answer to this question. The use of a bare hydrodynamic description of the spectrum becomes questionable when approaching  the mesoscopic regime, as therein the matter is no longer continuous, nor stationary. However, there are  solid reasons to assume a suitably generalized hydrodynamic theory to hold validity even in this time‐ space domain. To illustrate this point, it is useful to recognize that for a system at densities typical of the  −10 liquid phase, the mean free path spans the 10  m window, potentially becoming much smaller than the  atomic size. Under these conditions, the movements permitted to the atoms are mainly short, vibration‐ −13 −1 like,  cage  oscillations  (≈10   s).  Consequently,  even  in  the  (Q ≈  nm , ω ≈  THz)  mesoscopic  range,  the  response of the system is still “averaged” over a large number of elementary dynamic interactions, which  is a necessary pre‐requisite for a suitably generalized hydrodynamic description. In this perspective, the  persistence of spectral features in the THz spectrum reminiscent of Brillouin hydrodynamic peaks did not  appear to be a groundless expectation. Indeed, several INS experiments performed during the mid‐1960s  aimed  at validating  this hypothesis by examining  inelastic peaks in the spectrum of simple fluids. For  instance, this is the case of an INS measurements on dense Ne, Ar and D2 [31], which clearly documented  Intensity (arbit. units) Appl. Sci. 2016, 6, 64 6 of 31 2.3. 1964–1967: Seeking for a Triplet Shape at Mesoscopic Scales The use of a bare hydrodynamic description of the spectrum becomes questionable when approaching the mesoscopic regime, as therein the matter is no longer continuous, nor stationary. However, there are solid reasons to assume a suitably generalized hydrodynamic theory to hold validity even in this time-space domain. To illustrate this point, it is useful to recognize that for a system at densities typical of the liquid phase, the mean free path spans the 10 m window, potentially becoming much smaller than the atomic size. Under these conditions, the movements permitted to the atoms are mainly short, vibration-like, cage oscillations (10 s). Consequently, even in the (Q  nm , !  THz) mesoscopic range, the response of the system is still “averaged” over a large number of elementary dynamic interactions, which is a necessary pre-requisite for a suitably generalized hydrodynamic description. In this perspective, the persistence of spectral features in the THz spectrum reminiscent of Brillouin hydrodynamic peaks did not appear to be a groundless expectation. Indeed, several INS experiments performed during the mid-1960s aimed at validating this hypothesis by examining inelastic peaks in the spectrum of simple fluids. For instance, this is the case of an INS measurements on dense Ne, Ar and D [31], which clearly documented the presence of “extended hydrodynamic” modes in the spectrum. Due to the largely coherent cross section of these samples, both inelastic and quasi-elastic spectral features appeared in the measured spectrum. In particular, it was observed that at low Q values the inelastic shift of the side peaks approached from above the linear hydrodynamic law c Q predicted by Equation (3a). This urged the authors to interpret these peaks as the finite-Q extensions of the acoustic Brillouin peaks to mesoscopic scales. Conversely, Kroo et al. [32] reported no direct evidence of inelastic structures, however they inferred the existence of phonon like excitations indirectly from a comparison between liquid and solid phase spectra. The discrepancy between the results of Chen and those of Kroo is a likely consequence of the different incident wavelength used in the two experiments (4.1 Å and 5.3 Å respectively), which made the two sets of data hardly comparable. In a successive INS work, Sköld et al. [33] measured the spectrum of Ar in liquid (at T = 94 K and 102 K) and solid (at T = 68 K and 78 K) phases. The authors observed a linear Q-dependence of the inelastic peak at the lowest Qs, with a slope consistent to the adiabatic sound velocity. Furthermore, they showed that, at higher Qs, the sound dispersion curve of the liquid sample vaguely resembles the phonon dispersion curve of the solid, thus suggesting that the local pseudo-periodicity of the liquid structure gives rise to quasi-periodic zones reminiscent of the Brillouin zones of a crystal. Since clear signatures of acoustic excitations in the liquid were found in a Q range equivalent to the second pseudo-Brillouin zone, the authors concluded that at least two somehow “loose” pseudo-Brillouin zones could be identified in liquid argon. A similar conclusion was reached by an earlier INS investigation on liquid Pb [34], as well as a computer simulation on Rb [35]. The latter work used an inter-particle potential model characterized by an oscillatory decay to zero [36] instead of the Lennard-Jones potential routinely used to simulate noble gases. These differences in the interatomic interaction explain why in liquid metals inelastic modes are well-resolved up to almost the position of first diffraction peak (Q ), whereas in noble gases they become overdamped for Q > Q /2. m m 2.4. 1971: First Evidences of a Rayleigh-Brillouin triplet beyond the Continuous Limit The first convincing evidence of the persistence of well-defined inelastic peaks beyond the hydrodynamic regime was reported in an INS measurement of Bell and collaborators on supercritical 1 1 neon [37]. This work spanned unusually low Q values (0.6 nm ¤ Q ¤ 1.4 nm ), which substantially reduced the dynamic gap existing between the quasi-continuous regime probed by BLS (with Q 2 1 spanning the 10 nm window) and the range covered by “standard” INS measurements (typically Q ¥ 2–3 nm ). A best fit of measured line-shape with a simplified hydrodynamic similar to the one defined by Equations (2) and (3a–c) enabled the authors to conclude that the simple hydrodynamic theory consistently describes the spectral shapes measured well beyond the continuous approximation. Figure 3 provides an example of the spectral profiles measured by Bell et al., clearly showing the persistence of neat side peaks reminiscent of the hydrodynamic acoustic excitations. Appl. Sci. 2016, 6, 64 7 of 31 Again, the inelastic shift of side peaks reportedly depends linearly on Q, with a slope consistent with the known value of adiabatic sound velocity. Interestingly, the linear dispersion seemed to persist over the whole Q-range explored by Bell et al., even when the side peaks transform to 2 2 broad shoulders, for which the simple hydrodynamic approximation (D Q ,GQ    c Q) is clearly unfulfilled. Additionally, the widths of both inelastic (Brillouin) and quasi-elastic (Rayleigh) peaks were found to depend on Q nearly consistently with the predictions of Equations (3a–c). These aspects will be discussed in greater detail below. It is worth acknowledging that comparably well-resolved THz inelastic peaks were previously observed in a largely quantum system as superfluid He at 1.1 K [38] and in the mentioned work on liquid metals by Dorner et al. [39]. 2.5. 1973–1975: First Signatures of A Viscoelastic Behavior in Real and Simulated Noble Gases A successive experiment performed on neon by Bell et al. [37] covered Q values largely exceeding Appl. Sci. 2016, 6, 64  8 of 34  1 1 the simple hydrodynamic limit (2.7 nm ¤ Q ¤ 15 nm ), strongly overlapping the range covered by more “standard” INS measurements. Not surprisingly, the modeling of the line-shape at these higher Qs A successi was less ve exp straightforwar eriment perfod, rmed requiring  on neon aby generalization  Bell et al. [37] coof vered transport  Q values variables,  largely excee asd pr inescribed g the  −1 −1 simple  hydrodynamic  limit (2.7 nm  ≤ Q ≤  15 nm ),  strongly  overlapping  the  range  covered  by  more  by the “molecular hydrodynamic” approach. Specifically, the used line-shape model consisted in “standard” INS measurements. Not surprisingly, the modeling of the line‐shape at these higher Qs was less  a generalization of the simple Brillouin triplet defined by Equations (2) and (3a–c) in which allowance straightforward,  requiring  a  generalization  of  transport  variables,  as  prescribed  by  the  “molecular  was made for a Q and/or !-dependence for some thermodynamic and transport parameters appearing hydrodynamic”  approach.  Specifically,  the  used  line‐shape  model  consisted  in  a  generalization  of  the  in the hydrodynamic equations. simple Brillouin triplet defined by Equations (2) and (3a–c) in which allowance was made for a Q and/or  In particular, it was observed that the finite Q generalization of both D and had the form of ω‐dependence for some thermodynamic and transport parameters appearing in the hydrodynamic equations.   a sharp, nearly Lorentzian, decay, indicating a decreasing weight of thermal fluctuations at mesoscopic In particular, it was observed that the finite Q generalization of both DT and γ had the form of a sharp,  distances. nearly Lorentzian, Furthermor  dee, cathe y, indicating longitudinal  a decr viscosity easing weneeded ight of th to ermal be generalized  fluctuations at as meso a frequency scopic distances. dependent   Furthermore, the longitudinal viscosity needed to be generalized as a frequency dependent variable as a  variable as a typical manifestation of viscoelasticity. Although viscoelastic effects on the line-shape typical manifestation of viscoelasticity. Although viscoelastic effects on the line‐shape will be discussed in  will be discussed in greater detail in a successive section, it’s worth emphasizing here that the core greater detail in a successive section, it’s worth emphasizing here that the core feature of viscoelastic fluids  feature of viscoelastic fluids is their sharply frequency dependent dynamic response, resembling either is their sharply frequency dependent dynamic response, resembling either the one of a liquid or the one of  the one of a liquid or the one of a solid at low or high frequency, respectively. The crossover between a solid at low or high frequency, respectively. The crossover between the liquid‐like (or viscous) and solid‐ the liquid-like (or viscous) and solid-like (or elastic) regimes is marked by the relaxation frequency like (or elastic) regimes is marked by the relaxation frequency 1/τ. In a scattering experiment the viscous‐ 1/. In a scattering experiment the viscous-to-elastic transition can be observed when the applied to‐elastic transition can be observed when the applied perturbation (e.g., a scattering generated acoustic  perturbation waves) attai (e.g., ns a fr ae scattering quency (csQ generated ) much larg acoustic er than 1/waves) τ. In practice attains , this a fr ca equency n be obta(inceQ d )by much  increasing larger Qthan   and/or τ (by lowering T).  1/. In practice, this can be obtained by increasing Q and/or  (by lowering T). -1 Q = 1.4 nm -1 Q = 1.2 nm -1 Q = 1.0 nm -1 Q = 0.8 nm -1 Q = 0.6 nm -0.4 -0.2 0.0 0.2 0.4   (meV) Figure  3.  Spectral  lineshapes  of  neon  measured  by  inelastic  neutron  scattering  INS  in  neon  at  the  low  Figure 3. Spectral lineshapes of neon measured by inelastic neutron scattering INS in neon at the exchanged momenta indicated in the plot, the red line through data roughly connects the tops of inelastic  low exchanged momenta indicated in the plot, the red line through data roughly connects the tops of peaks. Data are redrawn with permission from [40].  inelastic peaks. Data are redrawn with permission from [40]. On this ground, it is reasonable to expect that even a simple fluid at some Q, T values can exhibit solid‐ like properties, such as, for instance, the ability of supporting transverse acoustic waves. This possibility  could only be tested using computer MD simulation, which can determine the correlation function between  transverse  components  of  atomic  velocities,  or  its  Fourier  transform,  customarily  referred  to  as  the  transverse current spectrum. The transverse plane is defined as orthogonal to the momentum exchanged  in the scattering event, Q . Indeed, the first indication of a high Q transverse acoustic propagation in a  Appl. Sci. 2016, 6, 64 8 of 31 On this ground, it is reasonable to expect that even a simple fluid at some Q, T values can exhibit solid-like properties, such as, for instance, the ability of supporting transverse acoustic waves. This possibility could only be tested using computer MD simulation, which can determine the correlation function between transverse components of atomic velocities, or its Fourier transform, customarily referred to as the transverse current spectrum. The transverse plane is defined as orthogonal to the momentum exchanged in the scattering event, }Q. Indeed, the first indication of a high Q transverse acoustic propagation in a monatomic system was inferred from the presence of a clear inelastic peak in the transverse current spectrum of a Lennard-Jones model representing Ar [41]. In this work, viscoelastic effects on the spectrum of density fluctuations were described assuming a Gaussian time decay of memory function. A successive MD simulation performed on a Lennard-Jones model of Ar at the triple point [42] used instead a “more standard” exponential ansatz for the memory function within the assumptions of either a single or a double timescale. It was observed that the two alternative hypotheses did not yield appreciably different best-fit results. Furthermore, this study confirmed the previous observation of a Q-decay of “the thermal” parameters D and g and indicated a relaxation time  ranging in the 10 ps interval with smooth variations. 2.6. 1978–1987: The Failure of the Three Modes Description High Q in Liquid Noble Gases and the Test of Kinetic and Mode Coupling Theories Successive INS works on Ne [43] and Ar [43–47] proposed a line-shape modeling consisting on the sum of generalized Lorentzian terms. Different versions of such a sum were used by superimposing the convergence of spectral moments of increasing order. Overall, it was observed that a spectral shape similar to the one in Equation (2) provides an accurate description of the spectrum of both liquid and supercritical noble gases. However, the use of such a model led to somehow controversial results for liquid sample at high Qs, as the presence of a propagation gap, that is a Q-region where ! = 0. A similar gap was also reported by INS measurements in molten salts [48] and liquid He [49,50] and its presence was also predicted by the kinetic theory [51]. Its physical origin was connected to the prevalence of dissipative forces over elastic ones, which prevent the sound from propagating at some Qs. In this regard, it is interesting that the gap seemingly disappeared upon increasing the density and approaching solidification [45]. An example of the pressure dependence of this effect is proposed by Figure 4. There, the various dispersion curves are divided for the corresponding sound velocity, thus expectedly joining the same hydrodynamic linear law, upon approaching the Q = 0 limit. From the plot it can be readily noticed that the Q-window for which ! = 0 reduces upon increasing the pressure. Although the presence of a region of forbidden sound propagation raised some initial interest among researchers, its physical significance seemed also controversial. In this regard, it should be acknowledged that the observed gap is centered on the position of the first diffraction peak, where the so-called de Gennes narrowing occurs [52], and the spectral shape is reduced to a narrow featureless peak. For this reason, the use of a “three pole” line-shape modeling may give questionable results in this Q-window, also considering that inelastic features in the spectrum become dramatically overdamped [53,54], and their real position somehow ill-determined. Apart from those based on Equation (2), no other line-shape modeling used in the literature ever indicate the occurrence of such a gap and, furthermore, its presence leads to a clear physical inconsistency. In fact from a simple finite Q extension of the compressibility theorem ([55], see also Equation (13a)) one has w ¥ k T{SpQq, from which it can be deduced that a vanishing ! implies s B s a diverging S(Q), which clearly has no physical foundation for a disordered system. Aside from these high Qs flaws, the “three pole” profile in Equation (2) has, in principle, a solid physical ground. In fact, from one side, it can be derived using a macroscopic description of density fluctuations as the hydrodynamic theory; on the other, it is consistent with the result of a truly microscopic approach as the kinetic theory [56,57]. This can be demonstrated by developing the S(Q,!) Appl. Sci. 2016, 6, 64 9 of 31 as a sum of generalized Lorentzian terms [58], upon retaining only the three dominant ones and Appl. Sci. 2016, 6, 64  10 of 34  superimposing on them the fulfilment of the first three sum rules. Argon at T = 120 K P = 400 bar P = 115 bar P = 20 bar 0 5 10 15 20 -1 Q(nm ) Figure 4. The sound dispersion curves measured in Ar at increasing pressure [47] and normalized to the  Figure 4. The sound dispersion curves measured in Ar at increasing pressure [47] and normalized to respective sound velocities, as derived from thermodynamic data [59]. The arrow indicates the presence of  the respective sound velocities, as derived from thermodynamic data [59]. The arrow indicates the a propagation gap, i.e. of a Q region where the sound frequency vanishes. The solid line represents the  presence of a propagation gap, i.e., of a Q region where the sound frequency vanishes. The solid line hydrodynamic limiting dispersion expectedly joined by all curves in the Q = 0 limit. The dashed curves are  represents the hydrodynamic limiting dispersion expectedly joined by all curves in the Q = 0 limit. the low Q prediction of the Mode Coupling Theory as derived for the curves of corresponding color.  The dashed curves are the low Q prediction of the Mode Coupling Theory as derived for the curves of corresponding color. It is worth noting that the kinetic approach provides, in principle, a microscopically rigorous theory  of density fluctuation. This stems from the assumption that the dynamic variables of the system depend on  It is worth noting that the kinetic approach provides, in principle, a microscopically rigorous both atomic velocities and spatial coordinates, as required for a reliable account of microscopic interactions.  theory of density fluctuation. This stems from the assumption that the dynamic variables of the Unfortunately, the predictions performed using the kinetic theory usually give poor results at high density  system depend on both atomic velocities and spatial coordinates, as required for a reliable account of due to the increasing weight of correlated collisions. The INS measurements of Postol and Pelizzari on  microscopic interactions. Unfortunately, the predictions performed using the kinetic theory usually supercritical  Ar  [60]  proposed  an  experimental  test  of  the  kinetic  theory  predictions  based  on  the  give poor results at high density due to the increasing weight of correlated collisions. The INS generalized  Enskog  approach.  As  a  result,  no  quantitative  agreement  was  demonstrated  between  measurements of Postol and Pelizzari on supercritical Ar [60] proposed an experimental test of the theoretical and experimental results, although at the low density (10.5 atoms/nm ) and high temperature  kinetic theory predictions based on the generalized Enskog approach. As a result, no quantitative (295 K) probed in the experiment it was reasonable to assume the kinetic theory description to hold validity.   agreement was demonstrated between theoretical and experimental results, although at the low density A successive work on liquid Ar at different pressures by de Schepper et al., whose results are reported  (10.5 atoms/nm ) and high temperature (295 K) probed in the experiment it was reasonable to assume in Figure 4, attempted a general test of the mentioned Lorentzian sum development of S(Q,ω) [47]. The  the kinetic theory description to hold validity. effect of spectral rule fulfillment was therein analyzed by comparing the results obtained by imposing the  A successive work on liquid Ar at different pressures by de Schepper et al., whose results are fulfillment of sum rules of increasing order ( 2). Furthermore, in such a work the authors attempted to  reported in Figure 4, attempted a general test of the mentioned Lorentzian sum development of describe the measured dispersion curves in terms of the predictions of the mode‐coupling theory (MCT)  S(Q,!) [47]. The effect of spectral rule fulfillment was therein analyzed by comparing the results (see e.g. [61]). The non‐analytic dispersion relations predicted by the MCT, having the form of truncated Q‐ obtained by imposing the fulfillment of sum rules of increasing order (¤ 2). Furthermore, in such expansions with fractional exponents, were compared with experimental dispersions. The accuracy of the  MCT a work  pred the ictio authors n can be attempted  judged by to comparing describe the  themeasur  dashed ed cu disper rves in sion  Figur curves e 4 wi inthterms  the loof w the Q po prrtio edictions n of the  dispersio of the mode-coupling n curves. The cotheory mparison (MCT  clearly ) (see demo e.g.nstrates [61]). The  that non-analytic  at the lowest dispersion  Qs the sound relations  disperpr sion edicted  curve  −1 is well described by the MCT for all explored pressures, although for Q > 4 nm  this theory does not provide  by the MCT, having the form of truncated Q-expansions with fractional exponents, were compared a co with nsistent experimental  account of dispersions.  the observeThe d beh accur avior acy  of of quasi the‐ela MCT sticpr and ediction  inelastcan ic linewidths be judged of by th comparing e spectrum.the   dashed curves in Figure 4 with the low Q portion of the dispersion curves. The comparison clearly −1 2.7. 1990: “Extended Hydrodynamics Modes” up to Q ≈ 1 nm   demonstrates that at the lowest Qs the sound dispersion curve is well described by the MCT for all explored pressures, although for Q > 4 nm this theory does not provide a consistent account of the observed behavior of quasi-elastic and inelastic linewidths of the spectrum. -1  /c (nm ) s s Propagation gap ( 0) s Appl. Sci. 2016, 6, 64 10 of 31 Appl. Sci. 2016, 6, 64  11 of 34  2.7. 1990: “Extended Hydrodynamics Modes” up to Q  1 nm After the first low Q measurement on Ne by Bell et al., a second INS experiment was performed After the first low Q measurement on Ne by Bell et al., a second INS experiment was performed by  1 1 by Bafile et al. [62] on supercritical Ar at extremely low Q’s (0.35 nm ¤ Q ¤ 1.25 nm ). −1  −1 Bafile et al. [62] on supercritical Ar at extremely low Q’s (0.35 nm ≤ Q ≤ 1.25 nm ). This measurement  This measurement further extended the probed dynamic region to lower Qs, thus reducing the further  extended  the  probed  dynamic  region  to  lower  Qs,  thus  reducing  the  gap  with  light  scattering  gap with light scattering measurements. Figure 5 displays two typical spectral shapes measured in measurements. Figure 5 displays two typical spectral shapes measured in this INS work, which clearly  this INS work, which clearly confirm the persistence of extended Brillouin peaks at mesoscopic scales. confirm the persistence of extended Brillouin peaks at mesoscopic scales.  -1 Q = 1 nm -1 Q = 0.5 nm 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  (meV) Figure  5.  Two  representative  INS  spectral  lineshapes  of  Ar  measured  by  Bafile  et  al.  [62]  at  low   Figure 5. Two representative INS spectral lineshapes of Ar measured by Bafile et al. [62] at low exchanged momenta.  exchanged momenta. Most importantly, in this measurement the superior accuracy in the count statistics coupled with the  Most importantly, in this measurement the superior accuracy in the count statistics coupled unprecedented  dense  Q‐grid,  enabled  a  very  detailed  analysis  of  the  Q‐dependence  of  line‐shape  with the unprecedented dense Q-grid, enabled a very detailed analysis of the Q-dependence of parameters of Equation (2). Best fit values of such parameters are reported in Figure 6 and therein compared  line-shape parameters of Equation (2). Best fit values of such parameters are reported in Figure 6 and with either the simple hydrodynamic prediction (Equations (3a–c)) or a higher‐order polynomial expansion  therein compared with either the simple hydrodynamic prediction (Equation (3a–c)) or a higher-order (see,  e.g.,  Equations  (42)–(45)  of  [23]).  In  the  same  Figure,  the  result  previously  obtained  by  Bell  and  polynomial expansion (see, e.g., Equations (42)–(45) of [23]). In the same Figure, the result previously collaborator on neon is also reported for comparison along with the corresponding simple hydrodynamic  obtained by Bell and collaborator on neon is also reported for comparison along with the corresponding prediction of Equations (3a–c).   simple hydrodynamic prediction of Equation (3a–c). All hydrodynamic curves included in the figure were obtained using thermodynamic and transport  All hydrodynamic curves included in the figure were obtained using thermodynamic and parameters reported in the original works.  transport Overalparameters l, data in Figru eported re 6 confirm in the that original  the Q‐works. dependence of line‐shape parameters is roughly consistent  with the low Q approximation in Equations (3a–c). This clearly indicates that “extended hydrodynamic”  Overall, data in Figure 6 confirm that the Q-dependence of line-shape parameters is roughly modes survive well above the hydrodynamic limit, up to Q values exceeding the light scattering domain  consistent with the low Q approximation in Equation (3a–c). This clearly indicates that “extended by nearly two orders of magnitude.   hydrodynamic” modes survive well above the hydrodynamic limit, up to Q values exceeding the light scattering domain by nearly two orders of magnitude. 2.8. 1998: First IXS Measurements of the THz Spectrum of Noble Gases  2.8. 1998: First IXS Measurements of the THz Spectrum of Noble Gases The  only  THz  spectroscopic  technique available until  the  mid‐90s  was  INS,  a  method  intrinsically  hampered by kinematic constraints (see, e.g., [63] pp. 63–101) limiting the accessible portion of dynamic  The only THz spectroscopic technique available until the mid-90s was INS, a method intrinsically plane  (Q,ω).  These  limitations  are  particularly  penalizing  at  low  Qs,  where  the  collective  nature  of  hampered by kinematic constraints (see, e.g., [63] pp. 63–101) limiting the accessible portion of dynamic structural  rearrangements  become  dominating,  as  well  as  at  large ω  values,  where  instead  short‐time,  plane (Q,!). These limitations are particularly penalizing at low Qs, where the collective nature of collisional events have a visible influence on density fluctuations.   structural rearrangements become dominating, as well as at large ! values, where instead short-time, These problems were successfully overcome after the development of the first high resolution IXS, a  collisional events have a visible influence on density fluctuations. spectroscopic technique virtually free from kinematic limitations [2,64].  These problems were successfully overcome after the development of the first high resolution IXS, a spectroscopic technique virtually free from kinematic limitations [2,64]. Intensity (arbit. units) Appl. Sci. 2016, 6, 64  12 of 34  Appl. Sci. 2016, 6, 64 11 of 31 0.4 Ne at T= 70 K, n =14.45 atoms/nm Ar at T = 301 K, n = 5.04 atoms/nm 0.3 0.2 0.1 0.0 0.12 0.09 0.06 0.03 0.00 0.08 0.06 0.04 0.02 0.00 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 -1 Q(nm ) Figure 6. Relevant shape parameters of the S(Q,ω) of supercritical Ne and Ar as measured, at the indicated  Figure 6. Relevant shape parameters of the S(Q,!) of supercritical Ne and Ar as measured, at the thermodynamic  conditions,  in  [40,62],  respectively.  The  reported  solid  and  dashed  lines  are  the  indicated thermodynamic conditions, in [40,62], respectively. The reported solid and dashed lines are hydrodynamic  predictions  referring  to  symbols  of  corresponding  color  as  derived  from  the  lowest  Q  the hydrodynamic predictions referring to symbols of corresponding color as derived from the lowest expansion in Equations (3a–c).  Q expansion in Equation (3a–c). The first IXS measurement on a dense noble gas was performed on deeply supercritical neon (T = 295  The first IXS measurement on a dense noble gas was performed on deeply supercritical neon K,  n  =  29.1  atoms/nm )  and  discussed  in  combination  of  a  MD  simulation  on  a  Lennard‐Jones  model  (T = 295 K, n = 29.1 atoms/nm ) and discussed in combination of a MD simulation on a Lennard-Jones representative of the same sample [65]. In Figure 7, two representative IXS spectra (upper panels) and  model representative of the same sample [65]. In Figure 7, two representative IXS spectra (upper panels) corresponding MD simulations (lower panels) are compared (middle panels) after the former have been  and corresponding MD simulations (lower panels) are compared (middle panels) after the former multiplied  with  the  detailed  balance  factor  and  convoluted  with  the  instrumental  energy  resolution  have been multiplied with the detailed balance factor and convoluted with the instrumental energy function. The good agreement between measured and computed line‐shapes suggests that the Lennard‐ resolution function. The good agreement between measured and computed line-shapes suggests that Jones model provides a consistent description of the spectrum. Furthermore, it is apparent that even at Q  the Lennard-Jones model provides −1 a consistent description of the spectrum. Furthermore, it is apparent values extending well above 1 nm , the inelastic peaks are visible in the MD simulated line‐shapes and, in  that even at Q values extending well above 1 nm , the inelastic peaks are visible in the MD simulated spite of some resolution limitations, in the experimental spectra as well.   line-shapes and, in spite of some resolution limitations, in the experimental spectra as well.  z (meV)  z (meV)  (meV) s Appl. Sci. 2016, 6, 64  13 of 34  Appl. Sci. 2016, 6, 64 12 of 31 -1 -1 Q = 2 nm Q = 5 nm 0.8 1.2 1.0 0.6 0.8 0.4 0.6 0.4 0.2 0.2 0.0 0.0 0.8 1.2 1.0 0.6 0.8 0.4 0.6 0.4 0.2 0.2 0.0 0.0 0.95 0.95 0.76 0.76 0.57 0.57 0.38 0.38 0.19 0.19 0.00 0.00 -6 -3 0 3 6 -10 -5 0 5 10   (meV) Fi Figure gure 7.7. Up Upper per pan panels: els: lolow w Q Q inelast inelastic ic X‐X-ray ray scatte scattering ring IXS IXS  spe spectra ctra memeasur asured ed on on dee deeply ply sup super ercriti critical cal neon  (T neon  =295 ( TK, =295  n = 29.1 K, n atoms/n = 29.1 atoms/nm m ). The ra).wThe  data raw  (opdata en circles) (open ar cirecles)  comar pa ere compar d with ed corwith respo corr ndin esponding g resolution  fu resolution nctions (dfunctions ashed lines) (dashed . Lowe lines). r paneLower ls: corrpanels: espondin corr g MD esponding  spectraMD  com spectra puted on computed  a Lennaon rd aJo Lennar nes mo ddel  representative  of  the  same  sample  (blue  lines).  Middle  panels:  Comparison  between  IXS  spectra  (open  Jones model representative of the same sample (blue lines). Middle panels: Comparison between circles) and the corresponding molecular dynamics (MD) ones convoluted with the resolution functions (red  IXS spectra (open circles) and the corresponding molecular dynamics (MD) ones convoluted with the lines). Data are redrawn with permission from [65], which is copyrighted bt the American Physical Society.  resolution functions (red lines). Data are redrawn with permission from [65], which is copyrighted bt the American Physical Society. At this stage, a pending question relates to the Q‐threshold, Qh, defining the limit of validity for the  “extended hydrodynamic” regime. Based on the fit of MD spectra reported in Figure 8 and discussed in Refs.  At this stage, a pending question relates to the Q-threshold, Q , defining the limit of validity −1 [65–67], one could conclude that, at least for dense supercritical neon, Qh is as high as 7.5 nm . According  for the “extended hydrodynamic” regime. Based on the fit of MD spectra reported in Figure 8 and to the plot, the transport parameters derived from best‐fit results through Equations (3a–c) are essentially  discussed in Refs. [65–67], one could conclude that, at least for dense supercritical neon, Q is as high consistent with the macroscopic, or hydrodynamic, limit at least for Q lower than the values included in  as 7.5 nm . According to the plot, the transport parameters derived from best-fit results through the shadowed area. Thanks to the high statistical accuracy of Q‐dependent data in Figure 8, one may infer  Equation (3a–c) are essentially consistent with the macroscopic, or hydrodynamic, limit at least for that the simple hydrodynamic approximation is not accurate for the thermal diffusivity. In fact, low‐Q  Q lower than the values included in the shadowed area. Thanks to the high statistical accuracy values of DT seem slightly lower than the macroscopic value.   of Q-dependent data in Figure 8, one may infer that the simple hydrodynamic approximation is not accurate for the thermal diffusivity. In fact, low-Q values of D seem slightly lower than the macroscopic value. Intensity (arbit. units) ApAppl. pl. ScSci. i. 2016 2016 , 6,, 64 6, 64 13 14 of of 31 34  Mesoscopic regime Extended Hydrodynamics 0.25 b) 0.20 0.15 0.10 0.05 0.00 c) 0.14 0.07 0.00 0 5 10 15 20 25 -1 Q(nm ) Figure 8. The relevant transport parameters deduced from the fits of of IXS spectra of deeply supercritical  Figure 8. The relevant transport parameters deduced from the fits of of IXS spectra of deeply neon [67] and those of MD spectra from a Lennard Jones model representative of the same sample [65]. The  supercritical neon [67] and those of MD spectra from a Lennard Jones model representative of the same shadowed area roughly locates the transition from the extended hydrodynamics and the mesoscopic regime.  sample [65]. The shadowed area roughly locates the transition from the extended hydrodynamics and Horizontal dashed lines represent the macroscopic (hydrodynamic) values deduced from thermodynamic  the mesoscopic regime. Horizontal dashed lines represent the macroscopic (hydrodynamic) values [59] and US spectroscopy data [28].  deduced from thermodynamic [59] and US spectroscopy data [28]. 2.9. The Onset of a Positive Sound Dispersion in Liquid Noble Gases  2.9. The Onset of a Positive Sound Dispersion in Liquid Noble Gases In the various works on noble gases reported in literature, it was observed that transport parameters  In the various works on noble gases reported in literature, it was observed that transport drastically change upon relatively moderate P and T variations. This may not be surprising, given that the  parameters drastically change upon relatively moderate P and T variations. This may not be surprising, large  compressibility  of  these  systems  leads  to  substantial  variations  of  inter‐particle  distances  and,  given that the large compressibility of these systems leads to substantial variations of inter-particle consequently, of interaction strengths.  distances and, consequently, of interaction strengths. For instance, clear transformations were observed in the Q‐dependence of the acoustic frequency and  For instance, clear transformations were observed in the Q-dependence of the acoustic frequency damping when measured either in the liquid or in the supercritical phase. In particular, it was generally  and damping when measured either in the liquid or in the supercritical phase. In particular, it was found that, in liquid Ne and Ar [43,44,58,68] ωs systematically exceeds the hydrodynamic prediction at  generally found that, in liquid Ne and Ar [43,44,58,68] ! systematically exceeds the hydrodynamic low/intermediate Qs. A similar effect was also observed ins liquid He [48,69,70], although the quantum  prediction at low/intermediate Qs. A similar effect was also observed in liquid He [48,69,70], although character of this sample makes this finding less straightforward to interpret. Furthermore, in liquid phase  sample the quantum s an “anom charaacter lous”of Qthis ‐depend sample ence makes  was al this so re finding portedless  for th straightforwar e sound absodrp totion int erpr coeffici et. ent, Furthermor  as derive,ed  frin om liquid  the wid phase th ofsamples  inelastican  pe“anomalous” aks, zs. ConverQ sely, -dependence  all these di was spersi also ve ref eported fects see for m to the dsound isappear absorption  at extreme  supercritical conditions [40,62,65,66].   coefficient, as derived from the width of inelastic peaks, z . Conversely, all these dispersive effects These trends are clearly exemplified by Figure 9, which compares spectral parameters obtained in  seem to disappear at extreme supercritical conditions [40,62,65,66]. supercritical [65] and liquid [71] neon. Overall, data reported therein indicate that, while in liquid Ne the  These trends are clearly exemplified by Figure 9, which compares spectral parameters obtained sound frequency (ωs) and absorption (zs) at low Qs are, respectively, higher and lower than predicted by  in supercritical [65] and liquid [71] neon. Overall, data reported therein indicate that, while in liquid Equations (3a–c), no substantial discrepancy is instead observed in supercritical Ne. In Figure 9 it can be  Ne the sound frequency (! ) and absorption (z ) at low Qs are, respectively, higher and lower than s s predicted by Equations (3a–c), no substantial discrepancy is instead observed in supercritical Ne. In Figure 9 it can be also noticed that for the latter sample the agreement with the simple hydrodynamic prediction is excellent up to Q  7.5 nm . 6 2  2 10 D (m /s)   (m /s) c (m/s) L s T Appl. Sci. 2016, 6, 64  15 of 34  also noticed that for the latter sample the agreement with the simple hydrodynamic prediction is excellent  Appl. Sci. 2016, 6, 64 14 of 31 −1 up to Q ≈ 7.5 nm .  supercritical Ne liquid Ne viscoelastic A) B) consistency 8 0 effects with simple hydrodynamics D) C) 0 0 0 5 10 15 20 0 5 10 15 20 25 30 -1 Q(nm ) Figure  9.  Left  column:  shift  (panel  a)  and  half  width  (panel  c)  of  the  inelastic  peak  in  the  spectrum  of  Figure 9. Left column: shift (panel a) and half width (panel c) of the inelastic peak in the spectrum supercritical Ne at T = 294 K and n = 29 atoms/nm  as derived from a best fit line‐shape with Equation (2). Red  of supercritical Ne at T = 294 K and n = 29 atoms/nm as derived from a best fit line-shape with and  black  dots  are  IXS  and  MD  data  from  [65]  and  [67]  respectively.  Data  from  [65]  are  redrawn  with  Equation (2). Red and black dots are IXS and MD data from [65] and [67] respectively. Data from [65] permission from the original publication, under the copyright of the American Physical Society. The solid  are redrawn with permission from the original publication, under the copyright of the American lines  represent  the  corresponding  simplified  hydrodynamic  prediction  in  Equations  (3a–c).  In  which  Physical Society. The solid lines represent the corresponding simplified hydrodynamic prediction in literature values of thermodynamic properties [72] and bulk viscosity [28] coefficients were inserted. Right  Equation (3a–c) In which literature values of thermodynamic properties [72] and bulk viscosity [28] column: the corresponding quantities are reported for liquid neon at T = 35 K and n = 36.65 atoms/nm . These  coefficients were inserted. Right column: the corresponding quantities are reported for liquid neon data are adapted with permission from [71] , which is copyrighted by the American Physical Society.   at T = 35 K and n = 36.65 atoms/nm . These data are adapted with permission from [71] , which is copyrighted by the American Physical Society. As mentioned, “anomalous” dispersive effects observed for the liquid sample can be ascribed to the  onset of a viscoelastic response induced by the coupling with a relaxation process.  As mentioned, “anomalous” dispersive effects observed for the liquid sample can be ascribed to To illustrate this point,  it is useful to recognize that, in a spectroscopy experiment, the scattering‐ the onset of a viscoelastic response induced by the coupling with a relaxation process. excited acoustic waves cause a time‐dependent perturbation of the local equilibrium of the target sample.  To illustrate this point, it is useful to recognize that, in a spectroscopy experiment, the As a response, decay channels redistribute the energy carried by the acoustic wave toward some internal  scattering-excited acoustic waves cause a time-dependent perturbation of the local equilibrium of the degrees of freedom of the fluid. These energy rearrangements ultimately drive the sample to relax in a new  target sample. As a response, decay channels redistribute the energy carried by the acoustic wave local equilibrium within a timescale τ.   toward some internal degrees of freedom of the fluid. These energy rearrangements ultimately drive Two limiting scenarios can thus occur: (1) the time‐dependent acoustic perturbation has period, 2π/ωs,  the sample to relax in a new local equilibrium within a timescale . much longer than any internal degrees of freedom of the system. Under these conditions, the latter relaxes  Two limiting scenarios can thus occur: (1) the time-dependent acoustic perturbation has period, to equilibrium “instantaneously” (i.e., within a timescale τ << 1/ωs) and the acoustic propagation essentially  ta2kes p/! place , much  over longer  success than ive any equiinternal librium st degr ates ees  (viof sco fru eedom s limit)of ; (2 the ) Conv system. erselUnder y, if the these  acouconditions, stic wave has the an  ex latter tremel relaxes y short to pe equilibrium riod, it “perceives” “instantaneously”  internal rearra (i.e. ng ,ement within s as a timescale frozen‐like (<< τ >>1 1/ /!ωs)) an and d does the acoustic not couple  with them. Consequently, the acoustic propagation is elastic, i.e., it occurs with virtually no energy loss  propagation essentially takes place over successive equilibrium states (viscous limit); (2) Conversely, if (elastic limit).   the acoustic wave has an extremely short period, it “perceives” internal rearrangements as frozen-like Therefore, when a relaxation is active, the response of a system to the acoustic propagation depends  ( >> 1/! ) and does not couple with them. Consequently, the acoustic propagation is elastic, i.e., it on how the acoustic frequency, ωs, compares to the relaxation time. When ωs increases from the viscous  occurs with virtually no energy loss (elastic limit). Therefore, when a relaxation is active, the response of a system to the acoustic propagation depends on how the acoustic frequency, ! , compares to the relaxation time. When ! increases s s from the viscous (!  << 1) to the elastic limit (!  >> 1), the viscoelastic transition manifests itself s s through a systematic decrease of acoustic dissipation and a corresponding increase of sound velocity. Since in scattering experiments ! is typically varied by changing Q (through the dispersion relation ! = ! (Q)), in these measurements viscoelastic behavior is reflected by a Q-increase of ! and s s s a Q-decrease of z .  z (meV)  ( meV) S s Appl. Sci. 2016, 6, 64 15 of 31 This explains why in panels 9b and 9d these shape parameters are, at the lowest Qs, respectively larger and lower than their hydrodynamic predictions. Once the phenomenological signature of a viscoelastic behavior is experimentally assessed, a more quantitative understanding of this phenomenon could only come from the modeling of measured line-shape with a viscoelastic model. The next section is devoted to the derivation of such a model within the framework of the memory function formalism. 3. A Model for the Measured Spectral Shape 3.1. The Memory Function Formalism Let Aptq  rA ptq..........A ptqs be a vector whose components are stochastic variables describing 1 n the properties of a system of N interacting particles (with N > u). It can be shown that under very general conditions, the equation of motion of Aptq has the following form: Ñ Ñ Ñ dAptq iW  Aptq Kptq Apt  tqdt f ptq (4) dt In the formula above the following quantities have been introduced: B F B F Ñ Ñ Ñ Ñ The antisymmetric matrix iW  Ap0q, iLAp0q  Ap0q, Ap0q is the proper frequency of the system, which describes the oscillatory behavior of Aptq. This matrix depends on equilibrium (static) properties of the system. Here the symbol x.......y indicates a statistical (thermal) average. Ñ Ñ ip1PqLt The variable f ptq  e ip1  PqLAp0q is the random fluctuating force. Noticeably, the B F Ñ Ñ presence of the p1  Pq term implies that Ap0q, f ptq  0, namely that the fluctuating force is orthogonal (statistically uncorrelated) to Ap0q. B F B F Ñ Ñ Ñ Ñ The matrix Kptq  f , f ptq  Ap0q, Ap0q is memory matrix, or memory function if  = 1, as in the cases of interest here. It is worth noticing that the integrand in Equation (4) includes all Aptq values between 0 and t, “weighted” by the memory, which thus defines the ability of the system to keep memory of the past. B F Ñ Ñ The equation of motion for the correlation matrix Cptq  AptqAp0q can be readily derived from Ñ Ñ Equation (4) through a scalar product, while using the orthogonality between Ap0q and f ptq. Explicitly: dCptq iW  Cptq Kptq Cpt  tqdt (5) dt Equations (4) and (5) are referred to as memory equation or generalized Langevin equation either for dynamic variables or for their correlations, respectively. When dealing with a single dynamic variable, time reversal requirements impose W = 0. Using a procedure described in various monographies [22,63], the Langevin equation can be solved following an iterative approach, which eventually leads to the following recursive formula: Cpsq K p0q 1 1 rs s (6) Cp0q K p0q K p0q s . . . customarily referred to as the continued fraction expansion. Here K (t) is the i-th (iteration) order memory function associated to the variable of interest, Appl. Sci. 2016, 6, 64 16 of 31 zt Cpsq  dte Cptq while is the Laplace transform of the correlation function. The t = 0 values of the i-th order memory function K (t) can be determined by superimposing the sum rule fulfillment, which for the few lowest orders yields: A E K p0q  w (7a) .. @ D @ D 4 2 w w K p0q K p0q    @ D  @ D (7b) 2 0 2K p0q w w .. @ D @ D 6 4 w w K p0q 1 K p0q    @ D  @ D (7c) 2 2 2K p0q D w w 2 2 d Cptq 1 8  1 n n n Herexw y  i r s rCp0qs  w CpwqdwrCp0qs is the n-order spectral moment dt t0 of the correlation function C(!). Among all possible fluctuating variables, we are here interested in density fluctuations since the Fourier-Laplace transform of their correlation function, S(Q,!) is directly measured by both IXS and INS. S(Q,!) can be derived as the Fourier anti-transform of the intermediate scattering function A E Ñ Ñ Ñ Ñ FpQ, tq  drp r , tqdr p r , 0q exp iQ  r d r . The latter can be expressed through the continued fractions expansion of Equation (4), whose 2-nd order truncation yields: @ D FpQ, sq SpQq s m pQ, sq Where m pQ, sq is the second order memory function for density fluctuations while S(Q) = F(Q,0) is the static structure factor. The S(Q,!) can be derived from Equation (7) as follows: @ D SpQ, wq 1 FpQ, s  iwq 1 Re  Re iw SpQq p SpQq p iw m pQ, s  iwq The last term of the above formula can be calculated explicitly to eventually obtain: @ D 2 1 w m pQ, wq SpQ, wq 1 (8) @ D SpQq p 2 2 2 2 1 rw  w  wm pQ, wqs w rm pQ, wqs L L where m pQ, wq and m pQ, wq are, respectively, real and imaginary parts of the Fourier transform L L of m (Q,t). At this stage, the problem of choosing the most appropriate model is shifted from S(Q,!) to m (Q,t), or m (Q,!). In many literature works on liquid systems attempting a memory function L L based modeling of the spectrum (see e.g. [13,73]), it can be shown that a sensible ansatz for the time dependent memory function is given by: 2 2 m pQ, tq  D exppt{t q D exppt{t q 2G dptq (9) L T a m T a The three terms in the right hand side of Equation (9) are (from left): (1) The thermal contribution. The first term describes diffusive thermal motions triggered by 2  1 spontaneous temperature gradients. Its timescale and amplitude are t  pgD Q q and T T 2 2 D  pg  1qpc Qq respectively, with D , c , and being the generalized diffusivity, the T T T isothermal velocity and the constant pressure to constant volume specific heats ratio. Appl. Sci. 2016, 6, 64 17 of 31 (2) The viscous relaxation contribution. The second term accounts for relaxation processes affecting 2 2 2 2 the viscosity and having a timescale t and amplitude D  pc  gc qQ , where c is the a 8 a 8 generalized infinite frequency or “elastic” sound velocity of the sample. (3) The instantaneous contribution. The last term accounts for the coupling of density fluctuations with the ultra-fast vibrational dynamics here accounted by a (t) profile. It was often found that the amplitude 2G has a quadratic Q-dependence and is essentially insensitive to thermodynamic changes [20]. It is immediate to recognize that real and imaginary parts of Fourier transform of the memory function in Equation (9) read as: t t T a 1 2 2 m pQ, wq  D D G (10a) L T a 2 2 1 pwt q 1 pwt q 2 2 pwt q pwt q 2 T a 2 2 wm pQ, wq  D D (10b) L T a 2 2 1 pwt q 1 pwt q T a respectively. These two equations can be inserted in Equation (8) to obtain a model for the classical part of the line-shape. It should be emphasized that at mesoscopic scales all transport and thermodynamic coefficients introduced above and in the following, unless otherwise specified, are Q-dependent generalizations of their macroscopic counterparts, although such a dependence in not made explicit in the notation. The model used for the memory function often results from suitable approximation of Equation (9) as appropriate to the sample, thermodynamic conditions and dynamic range probed. For simplest systems as noble gases, the single exponential decay or viscoelastic model has shown to provide a reasonable approximation [42]. Regardless on the approximation adopted, the exponential ansatz for the viscoelastic term, lends itself two at least these two fundamental objections: (1) In principle, structural relaxation phenomena in highly viscous systems can be better described by assuming a stretched exponential rather than a simple exponential time-decay of the memory function [17,74,75]. However, the use of this model would introduce an unwanted additional parameter (the stretching coefficient) and, perhaps more importantly, its Fourier transform cannot be cast on an analytical form. Fortunately, for simplest systems as noble gases, of interest in this paper, it is reasonable to assume that the simple exponential decay is a rather accurate approximation. (2) A second remark concerns the possible presence in the spectrum of a second inelastic excitation as observed in systems as diverse as liquid water [73,76–78], tetrahedrally arranged glasses [79], glass formers [80] liquid metals [81–85], complex biophysical samples [86–88] and mixtures [89]. The presence of this low frequency mode in the S(Q,!) is customarily ascribed to the onset of shear mode propagation, although this assignment could seem suspicious as S(Q,!) couples primarily with longitudinal movements only. In a liquid, the onset of shear waves in the spectrum of density fluctuations can only occur via the so-called longitudinal-transverse coupling [73,76,90], that is a mixing between acoustic modes having orthogonal polarization. The presence of this mode-mixing is not properly accounted for by any known analytic model for the memory function. However, such a coupling has never been observed in noble gases, likely due to the highly isotropic character of their interatomic interaction, and will not be discussed in the remainder of this paper. 3.2. The Departure from the Hydrodynamic Shape of the Spectrum In the hydrodynamic regime, density fluctuations are probed for long time lapses (t >> ) over which the viscous relaxation is perceived as a very rapid decay, well approximated by a Markovian Appl. Sci. 2016, 6, 64 18 of 31 term (9 (t)) in the time-dependence of memory function. Overall, it can be shown that the following memory function: 2 2 2 m pQ, tq  pg  1qpc Qq exp gD Q t 2n Q dptq (11) T T L L,hyd is fully consistent with the Rayleigh-Brillouin triplet expressed by Equation (2) under the approximation defined by Equation (3a–c) As mentioned, at mesoscopic scales all parameter entering in Equation (11) should be generalized as Q dependent variables. Due to the lack of firm theories describing analytically the departure of the spectrum from the simple hydrodynamic regime, this Q-dependence is usually determined empirically through the best-fit modeling of spectra measured at different Qs. Albeit phenomenological in character, this approach has proven to be successful in shedding a deep light on the fast dynamics of various disordered systems, including noble gases. In particular, it has elucidated many phenomenological aspects associated to the coupling of density fluctuations with THz relaxation processes. 3.3. The Simple Viscoelastic Model The simplest method to account for THz viscoelastic effects on the spectrum of density fluctuation is to assume a single exponential decay of the memory function: m pQ, tq  D exppt{tq (12) L 2 where the amplitude of the memory function is fixed by the superimposition of sum rules to the spectrum, which eventually leads to: @ D k T 2 B 2 w  @ D  Q (13a) MSpQq @ D @ D w  (13b) @ D @ D 4 2 w w 2 2 2 @ D D  c  c Q   (13c) 8 0 w SpQq @ D here w  SpQq, while k and M are the Boltzmann constant and atomic mass, respectively; Equations (12) and (13a–c) define the so called Debye [91] or simple viscoelastic model [92]. Clearly, this model can hold validity only if: (1) thermal relaxations have a negligible weight on the time decay of memory function, i.e., if  1 and (2) the contribution from fast relaxation (term 9 (t) in Equation (9)) phenomena is also negligible. Conceptually, the simple viscoelastic description stems from the idea that, upon crossing the viscoelastic transition, the sound velocity c , changes from c  w {Q  B{r with B being the bulk 0 0 modulus—as appropriate for a liquid—to c  w {Q  M{r with M  B 4{3G and G being, 8 8 respectively, the elastic and the shear modulus—as appropriate for solids. The superimposition of sum rules links the finite Q generalization of B and M to the second and fourth normalized moments, respectively. In a way the viscoelastic model through the sum rules’ fulfillment interpolates between the low Q, viscous, response and the high Q elastic one. Specifically, one side, Equation (13a) extends to intermediate Qs the macroscopic compressibility result [55] c  K T{MSp0q on the other side, the T B high Q link between M and normalized fourth moment, [1] is here extended down to the same Qs values. 4. 2001–2007: The Memory Function-Based Modeling of IXS Spectra of Noble Gases The success of the memory function based modeling of experimental spectra was ultimately enabled by the dramatic improvement of the incident flux and, consequently, of the count statistics Appl. Sci. 2016, 6, 64 19 of 31 prompted by the development of IXS. Furthermore, these high fluxes coupled with the reduced beam cross section enabled spectroscopy measurements on substantially smaller samples, thus opening the access to extreme thermodynamic conditions. The first IXS work investigating viscoelastic effects on liquid and supercritical neon [6] took advantage of these opportunities there by exploring an unprecedented broad thermodynamic range. Measurements were performed on dense neon from liquid to supercritical conditions following both an isochoric (n = 29 atoms/nm ) and an isothermal (T = 32 K) path. The sound dispersion curves of neon determined in such a work are reported in Figure 10. Best fit values of w  c Q and w  c Q 0 0 8 8 derived from the best fit modeling of the line-shape are compared with the acoustic frequency evaluated from the position of the maxima of current spectra C (Q,!), W . The current spectrum is defined as the L l Fourier transform of the correlation function between longitudinal components of atomic velocities. The position of its maxima is often identified as the dominant acoustic frequency, this identification being rigorous in the hydrodynamic limit only. Within the viscoelastic approach, W is assumed to undergo a transition between the viscous and the elastic limit respectively represented by ! and ! . 0 8 Figure 10 displays the values of W , ! and ! of liquid (upper panel) and supercritical (bottom 0 8 panel) neon reported in Ref. [6] and compares them with the hydrodynamic straight line c Q. From the inspection of the two plots the following trends are readily noticed: (1) the liquid phase datum bears evidence for the more-than-linear behavior of W (purple dots) for Q ¤ 10 nm , i.e., the systematic bending of W upwards the hydrodynamic linear law and toward ! (the mentioned PSD effect) . Conversely, the liquid phase point is characterized by a sizable PSD. (2) At higher Qs one can observe the “backward transition” of W from ! to ! , which is actually l 8 0 joined for Q larger than the position of the first di Q (22 nm ). (3) Again, viscoelastic effects disappear in deeply supercritical conditions (lower panel) since ! , W and ! merge into each other (at least at the lowest Qs), thus suggesting that the viscous Appl. Sci. 2016, 6, 64  21 of 34  relaxation term in Equation (9) has a vanishing strength. Liquid, T = 40 K Supercritical, T = 294 K 0 3 6 9 12 15 18 21 24 27 30 -1 Q(nm ) Figure  10.  The  acoustic  frequency Ωl  derived  from  the  maxima  of  current  spectra  (magenta  dots)  are  Figure 10. The acoustic frequency W derived from the maxima of current spectra (magenta dots) are reported against the zero (black dots) and infinite frequency (blue dots) limiting dispersions extracted from  reported against the zero (black dots) and infinite frequency (blue dots) limiting dispersions extracted best fits the IXS spectra of neon. Fits were obtained with a single exponential viscoelastic model for the  memory function decay (Equation (12)). The linear hydrodynamic sound dispersion (Equation (3a)) is also  from best fits the IXS spectra of neon. Fits were obtained with a single exponential viscoelastic model reported for reference as derived using tabulated values of the adiabatic sound speed [71]. Data are adapted  for the memory function decay (Equations (12)). The linear hydrodynamic sound dispersion (see with permission from [6] copyrighted by American Physical Society.  Equations (3a)) is also reported for reference as derived using tabulated values of the adiabatic sound As  previously  mentioned,  the  validity  of  the  simple  viscoelastic  model  demands  that  the  thermal  speed [71]. Data are adapted with permission from [6] copyrighted by American Physical Society. contribution  to  the  memory  function  decay  has  negligible  amplitude  (γ ≈  1).  The  soundness  of  this  assumption is supported by the bottom panel of Figure 11, where the value of γ computed for supercritical  Ne [65,66] is reported.   (Q),  (Q),  (Q) (meV) 0  l Appl. Sci. 2016, 6, 64 20 of 31 As previously mentioned, the validity of the simple viscoelastic model demands that the thermal contribution to the memory function decay has negligible amplitude (  1). The soundness of this assumption is supported by the bottom panel of Figure 11, where the value of computed for Appl. Sci. 2016, 6, 64  22 of 34  supercritical Ne [65,66] is reported. 0.18 0.09 0.00 2.1 1.8 1.5 1.2 0.9 0.6 0.3 0.0 0 5 10 15 20 25 30 -1 Q( nm ) Figure 11. Lower panel: the generalized specific heat ratio as derived from MD computations for Lennard  Figure 11. Lower panel: the generalized specific heat ratio as derived from MD computations for Jones models simulating deeply supercritical neon ([66], red dots). The unit value is reported as a dashed  Lennard Jones models simulating deeply supercritical neon ([66], red dots). The unit value is reported line for reference. Lower panel: the thermal diffusivity, as derived from MD simulations in [66], while using  as a dashed line for reference. Lower panel: the thermal diffusivity, as derived from MD simulations the simplified hydrodynamic expression in Equation (3c). In all plots horizontal dashed line indicate the  in [66], while using the simplified hydrodynamic expression in Equations (3c). In all plots horizontal macroscopic values (from National Institute of Standards and Technology NIST database [72] of the symbols  dashed line indicate the macroscopic values (from National Institute of Standards and Technology having corresponding color.  NIST database [72] of the symbols having corresponding color. The curve is consistent with the macroscopic limit at the lowest Qs. Overall, it can be inferred that the  The curve is consistent with the macroscopic limit at the lowest Qs; however both curves suggest −1 weight of the thermal contribution (proportional to γ − 1) is drastically reduced beyond Q ≈ 7 nm  since  that the weight of the thermal contribution (proportional to  1) is drastically reduced beyond therein γ differs from 1 by less than 10%.   Q  7 nm since therein differs from 1 by less than 10%. The generalized thermal diffusivity obtained from the same work is reported in the upper plot. One  The generalized thermal diffusivity obtained from the same work is reported in the upper plot. can confidently conclude that thermal diffusivity drastically decreases with Q consistently with the INS  One can confidently conclude that thermal diffusivity drastically decreases with Q consistently with result of Bell et al. [40]. Furthermore, it appears that in the supercritical sample the departure from the  the INS result of Bell et al. [40]. Furthermore, it appears that in the supercritical sample the departure hydrodynamic value happens at higher Q values and is much smoother. This seems consistent with the  −1 from the hydrodynamic value happens at higher Q values and is much smoother. This seems consistent extended hydrodynamic behavior (up to ≈8 nm ) of acoustic parameters already discussed in reference to  with the extended hydrodynamic behavior (up to 8 nm ) of acoustic parameters already discussed Figure 10. It has to be noticed that trends similar to the ones in Figure 11 were also reported in a previous  MD in rwork eference  on ato LeFigur nnard e Jones 10. It sy has steto m re bepresenta noticedtive that oftr Ar ends  at th similar e triple to po the int.ones    in Figure 11 were also reported in a previous MD work on a Lennard Jones system representative of Ar at the triple point. A final remark concerns the instantaneous term in the memory function decay (last term in Equation  (9)). It A is final reason remark able to concerns expect that the thinstantaneous is contribution term is rather in the  wememory ak for low function ‐viscosity decay  and non (last‐associ termate ind  fluids Equation  as noble (9)). gases. It is Th reasonable is conclusion to expect  is support that the this so contrib undness ution  of ais simple rather viweak scoelafor stic low-viscosity assumption. On and the  other hand in Ref. [42], using a double exponential model allows one to extract essentially the same value  non-associated fluids as noble gases. This conclusion is support the soundness of a simple viscoelastic −1 for the two timescales involved, at least for Q > 4–5 nm .  assumption. On the other hand in Ref. [42], using a double exponential model allows one to extract essentially the same value for the two timescales involved, at least for Q > 4–5 nm . 4.1. Microscopic vs. Structural Relaxations   4.1. Microscopic vs. Structural Relaxations The results discussed in [6] indicate that the relaxation phenomenon causing the viscoelastic response  of neon has a microscopic origin as opposite to the structural character of relaxations routinely observed in  The results discussed in [6] indicate that the relaxation phenomenon causing the viscoelastic associated  and/or  highly  viscous  fluids.  It  should  be  emphasized  that  structural  and  microscopic  response of neon has a microscopic origin as opposite to the structural character of relaxations relaxations have different physical origin and phenomenology: the former are cooperative in character and  routinely observed in associated and/or highly viscous fluids. It should be emphasized that structural involve readjustments of the structure in response to a mechanical or a scattering‐induced perturbation.  and microscopic relaxations have different physical origin and phenomenology: the former are Consequently, they are prevalent in glass‐forming systems or associated fluids, i.e., fluids with extended  cooperative in character and involve readjustments of the structure in response to a mechanical or network  of  bonds,  this  is,  e.g.,  liquid  water  [12,13,93–95],  hydrogen  fluoride  [14],  glycerol  [17].  Since  a scattering-induced perturbation. Consequently, they are prevalent in glass-forming systems or collective rearrangements of the structure are hampered by viscous processes, the timescale of structural  associated fluids, i.e., fluids with extended network of bonds, this is, e.g., liquid water [12,13,93–95], relaxation follows a temperature dependence roughly as steep as the one of viscosity.   hydrogen fluoride [14], glycerol [17]. Since collective rearrangements of the structure are hampered by 6 2 10 D (m /s) Appl. Sci. 2016, 6, 64 21 of 31 viscous processes, the timescale of structural relaxation follows a temperature dependence roughly as steep as the one of viscosity. Conversely, microscopic relaxations are induced by single molecules’ motions in the 10 s window and are dominating in simple systems, such as dense gases and non-associated, weakly viscous, fluids. These fast motions can be naturally identified with vibration-like cage oscillations. Due Appl. Sci. 2016, 6, 64  23 of 34  to their non-cooperative nature, microscopic relaxations are not significantly slowed down by viscosity and their timescale exhibits only a weak dependence on thermodynamic conditions. To quantitatively assess the hypothesized microscopic nature of viscoelastic pr−oce 13 sses in neon, Conversely, microscopic relaxations are induced by single molecules’ motions in the 10  s window  and are dominating in simple systems, such as dense gases and non‐associated, weakly viscous, fluids.  sensible variable to take as a reference is the mean free time between interatomic collisions, These  fast  motions  can  be  naturally  identified  with  vibration‐like  cage  oscillations.  Due  to  their  non‐ . This depends on atomic size, mass and shape, as well as on the interaction potential and cooperative  nature,  microscopic  relaxations  are  not  significantly  slowed  down  by  viscosity  and  their  thermodynamic state of the system. Without sophisticated calculations, a reasonable estimate can be timescale exhibits only a weak dependence on thermodynamic conditions.  obtained assuming as model a hard sphere gas following the Maxwell-Boltzmann statistics. For this To  quantitatively  assess  the  hypothesized  microscopic  nature  of  viscoelastic  processes  in  neon,  system the inter-collision time can be easily calculated as: sensible variable to take as a reference is the mean free time between interatomic collisions,τc. This depends  on atomic size, mass and shape, as well as on the interaction potential and thermodynamic state of the  system. Without sophisticated calculations, a reasonable estimate can be obtained assuming as model a  t  (14) hard sphere gas following the Maxwell‐Boltzmann statistics. For this system the inter‐collision time can be  16pd k T easily calculated as:  where d is the hard sphere diameter. In this context  can be identified as the characteristic timescale of τ  (14)  16πdk T interatomic interactions and for microscopic, or collisional, relaxations is reasonable that the relaxation time  and  have comparable values. In Figure 12 the Q-dependence of the reduced relaxation time where d is the hard sphere diameter. In this context τc can be identified as the characteristic timescale of  interatomic interactions and for microscopic, or collisional, relaxations is reasonable that the relaxation time  Y =  / is reported as obtained using  values measured in neon in Ref. In spite of the important τα and τc have comparable values. In Figure 12 the Q‐dependence of the reduced relaxation time Ψ = τα/τc  scattering of data, it is clear that for Q larger than about 8 nm Y approaches the unit value, as is reported as obtained using τα values measured in neon in Ref. In spite of the important scattering of data,  expected in the merely collisional limit. In this perspective, data in Figure 12 lead to the conclusion −1 it  is  clear  that  for  Q  larger  than  about  8  nm  Ψ  approaches  the  unit  value,  as  expected  in  the  merely  that for Q > 8 nm THz relaxation processes of neon are intimately related to interatomic−1collisions. collisional  limit.  In  this  perspective,  data  in  Figure  12  lead  to  the  conclusion  that  for  Q  >  8  nm   THz  This relamay xationbe  proce ansses expected  of neon conclusion, are intimatelyparticularly  related to intersince atomicr co elaxation llisions.  processes are activated by the This  may  be  an  expected  conclusion,  particularly  since  relaxation  processes  are  activated  by  the  coupling of density fluctuations with some internal degree of freedom of the system. Given that coupling  of  density  fluctuations  with  some  internal  degree  of  freedom  of  the  system.  Given  that  microscopic components of a monatomic fluid lack internal degrees of freedom, it seems natural to microscopic components of a monatomic fluid lack internal degrees of freedom, it seems natural to identify  identify local cage oscillations as the internal degree of freedom that density fluctuations couple to. local cage oscillations as the internal degree of freedom that density fluctuations couple to.   -3 n = 29 nm T = 32 K -3 T = 40 K n = 34.7 nm -3 T = 50 K n = 36.7 nm 10 -3 n = 38.5 nm 5 10 152025 30 -1 Q (nm ) Figure  12.  The  Q‐dependence  of  reduced  relaxation  time Ψ  = τα/τc  as  obtained  from  Ne  data  at  the  Figure 12. The Q-dependence of reduced relaxation time Y =  / as obtained from Ne data at thermodynamic conditions indicated in the plot. Data are adapted with permission from [6] copyrighted by  the thermodynamic conditions indicated in the plot. Data are adapted with permission from [6] American Physical Society. The horizontal line marks the unit value characteristic of the collisional regime.  copyrighted by American Physical Society. The horizontal line marks the unit value characteristic of the collisional regime. At this stage, THz viscoelastic data available in literature can be used to compare the case of Ne to the one even more studied of water. This comparison seems particularly meaningful due to the disparate nature of microscopic structure and, in particular, to the presence of a large-scale connectivity in water. Appl. Sci. 2016, 6, 64 22 of 31 A meaningful reference to compare viscoelastic effects in different materials is provided by the generalized longitudinal viscosity, whose link the viscoelastic spectral parameters is given by the formula: 2 2 rpw  w qt h  (15) Figure 7 displays the Q-dependence of  extracted (through Equation (15)) from the viscoelastic modeling of neon spectra in [6] at the thermodynamic conditions considered in Figure 4. Results on neon are compared with those obtained in liquid water from an IXS [13] and a joint INS and INS result on heavy water [78]. Some clear features readily emerge from the comparison: (1) Viscosity curves of Ne are only weakly dependent on thermodynamic conditions, although the macroscopic viscosity in the spanned thermodynamic interval undergoes important variations. Combined thermodynamic [72] and bulk viscosity data [28] of neon lead to estimate a more than 300% variation of  within the probed thermodynamic range, clearly non reproduced by mesoscopic measurements. Conversely, viscosity data of water in the same plot have a T dependence as sharp as the one of macroscopic viscosity [96]. This discrepancy is likely due to the large weight of structural processes in water, especially at the low Qs covered by data of [13]. Structural relaxations, owing to their collective nature can only be observed over long distances, or, equivalently, at high Qs and are expectedly dominating in associate liquids. (2) High T values of  approach from above low-Q neon data. This seems consistent with the inferred link between structural relaxation and local readjustment of the hydrogen bond (HB) network in water [12,13]. At the highest Ts the average number of HBs per molecule is sensibly lower which weakens the strength of structural relaxations [13,19]. (3) The strong Q-dependence of  in water suggests that at Q higher than the values covered by Ref. [13], viscosity curves of water and neon tend to get closer to each other also considering that the latter have an essentially flat Q-dependence at high Qs. This impression is confirmed by  data derived from extremely high resolution INS measurements of on deuterated water (line + open squares symbols) at T = 288 K, which covered a Q-range larger than those of other water data reported in the same plot. Overall, data in Figure 13 lead to the conclusion that the merely collisional component of relaxation in water becomes more relevant either at high T, i.e., upon approaching supercritical condition, or at Appl. Sci. 2016, 6, 64  25 of 34  high Qs, where structural relaxation become less prevalent. T= 277 K T= 288 K T= 333 K H O 1E-3 T= 433 K 1E-4 1E-5 Ne 1E-6 10 20 30 -1 Q (nm ) Figure 13. Longitudinal viscosity data derived using Equation (15) either from IXS measurements [13], on  Figure 13. Longitudinal viscosity data derived using Equation (15) either from IXS measurements [13], normal water (line + squares symbols), or from joint IXS and INS measurements [78] on heavy water (line +  on normal water (line + squares symbols), or from joint IXS and INS measurements [78] on heavy open squares). Data are redrawn with permission from [13] and [78] copyrighted by the American Physical  water Soci (line ety +.  open The  temperatu squares). res Data are  ind aricated e redrawn   in  the  plo with t.  Ne permission on  data  correspo fromn[d13  to ]  and the  sa [m 78e]  ther copyrighted modynamicby   the conditions and symbols as in Figure 4 and are redrawn with permission from [6] copyrighted by American  American Physical Society. The temperatures are indicated in the plot. Neon data correspond to the Physical Society.   same thermodynamic conditions and symbols as in Figure 4 and are redrawn with permission from [6] copyrighted by American Physical Society. 4.2. 2001–2003: Quantum Effects on the Line‐Shape  The treatment discussed so far is fully classical in character, being based on the assumption that all  involved operators are commuting and the correlation functions are even function of time or, equivalently,  that the spectral shape is symmetric in ω. It can be assumed that the onset of quantum effects primarily  induces an asymmetry on the shape of S(Q,ω) due to the different statistical population of states having  distinct ω values. In all experimental and computational works mentioned in this review, the spectrum is  described within a quasi‐classical approximation. According to such approximation, quantum effects only  influence the statistical populations of states having different ωs, through the so‐called detailed balance  principle [97]. This can be fulfilled in infinite possible ways; one of the most commonly used consisting in  the multiplication of the classical S(Q,ω) profile by the factor n(ω,) T = ω/[ kT1exp( ω/) kT], i.e.:  BB  ω 1   SQ (,ω)= S (Q,ω) (16)   C kT 1e xp( ω/) kT BB Here  is the “classical”, or symmetric, part of the spectrum which is essentially the Fourier  SQ (,ω) transform of the intermediate scattering F(Q,t). While deriving a model for  it is assumed that the  SQ (,ω) operator defining the time evolution of density are classical commuting variables. However, in real fluids  quantum deviations may be important.  In  this  respect,  it’s  worth  distinguishing  between  two  possible  quantum  effects  on  S(Q,ω):  i)  “diffraction”  or  “delocalization”  effects,  which  arise  from  the  non‐commutative  nature  of  Hamiltonian  operators; and ii) exchange effects, reflect the symmetry restriction to be fulfilled in a many body system  of identical particles.   1/ 2 Both effects depend on the de Broglie wavelengh  , however:  =2  π mk T  Diffraction  effects  are  relevant  only  when   matches  the  length‐scales  over  wich  the  interparticle  potential U(rij) varies apppreciably.   (Pa s) } Appl. Sci. 2016, 6, 64 23 of 31 4.2. 2001–2003: Quantum Effects on the Line-Shape The treatment discussed so far is fully classical in character, being based on the assumption that all involved operators are commuting and the correlation functions are even function of time or, equivalently, that the spectral shape is symmetric in !. It can be assumed that the onset of quantum effects primarily induces an asymmetry on the shape of S(Q,!) due to the different statistical population of states having distinct ! values. In all experimental and computational works mentioned in this review, the spectrum is described within a quasi-classical approximation. According to such approximation, quantum effects only influence the statistical populations of states having different !s, through the so-called detailed balance principle [97]. This can be fulfilled in infinite possible ways; one of the most commonly used consisting in the multiplication of the classical S(Q,!) profile by the factor npw, Tq  }w{k Tr1  expp}w{k Tqs, i.e.: B B }w 1 SpQ, wq  S pQ, wq (16) k T 1  expp}w{k Tq B B Here S pQ, wq is the “classical”, or symmetric, part of the spectrum which is essentially the Fourier transform of the intermediate scattering F(Q,t). While deriving a model for S pQ, wq it is assumed that the operator defining the time evolution of density are classical commuting variables. However, in real fluids quantum deviations may be important. In this respect, it’s worth distinguishing between two possible quantum effects on S(Q,!): i) “diffraction” or “delocalization” effects, which arise from the non-commutative nature of Hamiltonian operators; and ii) exchange effects, reflect the symmetry restriction to be fulfilled in a many body system of identical particles. 1{2 Both effects depend on the de Broglie wavelengh L  }p2p{mk Tq , however: Diffraction effects are relevant only when L matches the length-scales over wich the interparticle potential U(r ) varies apppreciably. ij Exchange effects are instead relevant when Lbecomes comparable with interatominc centers of mass distance and are thus observable only for small mass atoms, for which such a distance can be relatively small. These effects only emerge at very low temperature and responsible for few “spectacular” quanto-mechanical manifestations, such as, e.g., Bose condensation and superfluidity. One can reasonably assume that all sampple considerd in this review are either fully classical or moderately quantum fluids, for which exchange effects can be discarded, while quantum deviation can be achieved through h ¯ -order corrections of classical results. For moderately quantum fluids, one can still derive F(Q,t) using a memory function formalism. However, the operators defining the Hamiltonian of the system are generally non-commuting. For these systems, the time dependence of density fluctuation is derived as the solution of the Heisenberg equation of motion: . i drpQ, tq  irdr, Hs  rexpriQ r ptqs , Hs (17) where the Hamiltonian, H, for a N particle system reads as: ¸ ¸ H  U r (18) ij 2M i1,...N ij where r is the Laplacian operator and U r is a pair potential acting between the i-th and j-th atoms. i ij Three IXS works performed at the beginning of the new millennium were focused on the onset of quantum effects on the spectrum of supercritical He [98] and liquid Ne [99,100]. Whilst in the first work , quantum effects were investigated for moderate Qs as a function of temperature and density; in the two IXS works on Ne, due to the unprecedented wide Q range the whole transition in Q form the classical (continuous) to the quantum (single particle) regimes was crossed. Appl. Sci. 2016, 6, 64 24 of 31 In all these IXS works, quantum effects were sought for in the coefficients governing the short time dynamics, i.e. the spectral moments, which for a quantum fluid read as: n n n n xw y  1{i pB {Bt q Fpq, tq|  xrrrr, Hs Hs .......Hsy| (19) t0 t0 In principle thexw y can be computed from direct integration of IXS intensity. However, a rigorous computation is non-trivial, since one must cope with all spurious intensity effects and the contribution to the integral from the finite instrumental resolution. One can easily eliminate spurious intensity effect—as long as these are !-independent—by dealing with spectral moments’ ratios. Conversely, eliminating the resolution contribution would require a numerical deconvolution of the measured line-shape, which is ill-determined unless the spectral shapes has the form of a single featureless peak. In the IXS works mentioned above spectral moments were instead computed from direct integration of best fit (non-convoluted) model line-shape. This procedure led to estimate that, for instance, quantum effects in the neon measurement of Figures 12 and 13 although clearly sizable, are < 15%–20%, even at the lowest Ts and/or the highest densities. This estimate is roughly consistent with the one reported by Bell et al. [40]. One may wonder what influence these effects can have on the relaxation process. It can be shown that the so-called quantum viscoelastic [101], an exponential ansatz, can still be used. The direct consequence of quantum effects is a global softening of the interaction potential. This stems from the delocalized nature of the tagged particle, which enables a deeper penetration in the region where the interatomic potential is repulsive. 5. 2006-Present: Toward a New Vision of the Supercritical Phase Based on the results previously discussed, it may be natural to conclude that the viscoelastic behavior is a dynamic fingerprint of the liquid phase, which disappears when supercritical conditions are reached. Indeed, the PSD has often been considered an almost universal feature of liquid aggregates, since almost ubiquitously observed in liquid systems as disparate as, for instance hard sphere [102] and Lennard-Jones models [103], noble gases [43,46,71], as well as diatomic [8], associated [12,13] and glass forming [15,17] systems. Its disappearance at deeply supercritical conditions was considered as an indication that supercritical fluids do not exhibit a high frequency viscoelasticity. The actual test of this conjecture requires a thorough investigation of the THz spectral shape of supercritical fluid at extreme P and T values. For many decades, this has been an almost prohibitive task, owing to a number of experimental difficulties. As mentioned, the development of IXS brought about a substantial narrowing of the beam cross section, while the improved performance of undulators and crystal optics have dramatically enhanced the flux achievable in ordinary THz spectroscopy measurements. This paved the way to new class of IXS experiments at extreme pressures based upon the use of diamond anvil cells (DACs). Taking advantage of this opportunity, an IXS DACs measurement on deeply supercritical oxygen demonstrated that a PSD of about 20% in amplitude is visible at temperatures as high as nearly twice the critical one [104]. The results of this measurement imposed a global revision of the previous idea that THz viscoelasticity phenomena could represent a dynamical fingerprint of the liquid phase. Another breakthrough came from a successive joint IXS and MD work on Ar at extreme pressures [105], which showed the occurrence of a dynamic transition upon crossing a boundary in the supercritical domain. A dramatic reduction in the amplitude of PSD was, in fact, observed upon crossing the Widom line [106] and was interpreted as a crossover between a “liquid like” and a “gas like” sub-regions of the supercritical phase. As a reminder, the Widom line is defined as the locus of specific heat maxima, which emanates from the critical point toward the supercritical domain with essentially the same slope as the coexistence line. For this reason, the Widom line is often considered a “prosecution” of the coexistence line beyond the critical point. Perhaps the most intriguing aspect of these results is that the mere existence of a boundary in the thermodynamic plane challenges the long-standing vision of the supercritical phase as intrinsically uniform [107], thus opening up unexplored theoretical scenarios and novel investigation opportunities. Appl. Sci. 2016, 6, 64 25 of 31 Another important result came from the recent conclusion that PSD effects are intimately related to the onset of shear propagation. The occurrence of a shear mode propagation in argon was first demonstrated by a MD simulation on a Lennard Jones Ar [41,42]. As a common result, it was observed that at some wavelengths transverse current spectra bore evidence for a well-defined maximum, indicating the occurrence of a shear mode propagation. More recently, a joint IXS and MD simulation work on deeply supercritical argon [108] evidenced a close connection between the ability of a fluid system to support shear mode propagation and the presence of a sizeable PSD. In this work IXS spectra were measured along a nearly isobaric path (with P  1 GPa) with T spanning the 300 K–436 K temperature range, while MD data spanned the same isobar within a larger T-interval (up to 800 K). As a result, it was there shown that the disappearance of the PSD in deep supercritical conditions is accompanied by a parallel shear modes overdamping (see Figure 14). Overall, the fundamental character of the PSD and its link to thermodynamic transformations (previously disputed by [109]), are convincingly demonstrated in the work of Bolmatov et al. There, in fact, the PSD and the shear mode propagation are linked together and interpreted as different manifestations of the same universal property of fluids: the onset of a high frequency viscoelasticity. Appl. Sci. 2016, 6, 64  28 of 34  The results of this work suggest that the dynamic response of supercritical fluids is characterized by different regimes characteristic of distinct thermodynamic subdomains: (1) A gas‐like domain, featured by the absence of PSD effects and the related inability of the fluid to  (1) A gas-like domain, featured by the absence of PSD effects and the related inability of the fluid to support transverse wave propagation and   support transverse wave propagation and (2) A liquid‐like domain in which the system exhibits merely viscoelastic features such as a sizable PSD  and the onset of shear mode propagation.  (2) A liquid-like domain in which the system exhibits merely viscoelastic features such as a sizable PSD and the onset of shear mode propagation. Furthermore, in the work of Bolmatov and collaborators [108] the Frenkel line [110] was identified as  the crossover line between the two thermodynamic regions. The interpretation of the Frenkel line as a  Furthermore, in the work of Bolmatov and collaborators [108] the Frenkel line [110] was identified crossover  line  demarcating  the  presence/absence  of  transverse  acoustic  propagation  was  originally  as the crossover line between the two thermodynamic regions. The interpretation of the Frenkel line as discussed in [111]. It was also previously predicted that the occurrence, across the Frenkel line, of both  a crossover line demarcating the presence/absence of transverse acoustic propagation was originally dynamic and structural crossovers accompanied by changes in phonon states [112–115]. Finally, it is worth  mentioning a more recent work on deeply supercritical Ar [116], which provides compelling evidence for  discussed in [111]. It was also previously predicted that the occurrence, across the Frenkel line, of both important  dynamical  changes  occurring  upon  crossing  the  Frenkel  line  and  having  the  form  of  strong  dynamic and structural crossovers accompanied by changes in phonon states [112–115]. Finally, it is localization of the longitudinal sound mode.  worth mentioning a more recent work on deeply supercritical Ar [116], which provides compelling Most  importantly,  the  assessed  parallelism  between  the  disappearance  of  the  PSD  and  the  evidence for important dynamical changes occurring upon crossing the Frenkel line and having the overdamping  of  shear  mode  finally  indicates  that  the  observed  viscoelastic  behavior  in  noble  gases  is  form of strong localization of the longitudinal sound mode. related relaxation process primarily affecting the shear viscosity.   T = 600 K 12 T = 300 K 0 5 10 15 20 -1 Q (nm ) Figure 14. The dispersion curve of deeply supercritical Ar at P = 1 GPa, as evaluated from the maxima  Figure 14. The dispersion curve of deeply supercritical Ar at P = 1 GPa, as evaluated from the position  of  MD  simulated  longitudinal  (red  dots)  and  transverse  current  spectra  (open  circles).  The  maxima position of MD simulated longitudinal (red dots) and transverse current spectra (open circles). corresponding  hydrodynamic  dispersion  is  also  reported  as  a  dashed  line  for  comparison.  Adapted  with  The corresponding hydrodynamic dispersion is also reported as a dashed line for comparison. Adapted permission from [108]. Copyright (2016) of American Chemical Society.   with permission from [108]. Copyright (2016) of American Chemical Society. 6. Conclusions and Future Perspectives  In summary, this brief review shows that THz studies on simplest systems as noble gases have, across  the years, evidenced a rather complex behavior. The study of relaxation processes in these systems and, in  particular,  the  comparison  with  those  observed  in  more  complex,  associated  fluids  led  the  scientific  community to identify a new class of relaxation phenomena completely different from structural (or α‐ )relaxations routinely observed glass formers and highly viscous materials. These phenomena are faster (in  the  sub‐ps)  and  only  weakly  dependent  on  thermodynamic  conditions.  Furthermore,  their  timescale  is  weekly affected by first neighbors’ arrangement, as suggested to its flat Q‐dependence, which presents no  reminiscence of S(Q) oscillations. These collisional relaxations become visible also in associate fluids at  temperature approaching critical conditions—due to the decrease in network connectivity—and/or over    ,  (meV) L t Appl. Sci. 2016, 6, 64 26 of 31 Most importantly, the assessed parallelism between the disappearance of the PSD and the overdamping of shear mode finally indicates that the observed viscoelastic behavior in noble gases is related relaxation process primarily affecting the shear viscosity. 6. Conclusions and Future Perspectives This brief review results THz studies on the viscoelastic response of simplest systems as noble gases have, across the years evidenced a rather complex behavior. The study of relaxation processes in noble gases and, in particular, the comparison with those observed in more complex, associated fluids led the scientific community to identify a new class of relaxation phenomena completely different from structural (or -)relaxations routinely observed glass formers and highly viscous materials. These new relaxation phenomena are faster (in the sub-ps) and only weakly dependent on thermodynamic conditions. Furthermore, their timescale is weekly affected by first neighbors’ arrangement, as suggested to its flat Q-dependence which presents no reminiscence of S(Q) oscillations. These collisional relaxations become visible also in associate fluids at temperature approaching critical conditions—due to the decrease in network connectivity—and/or over short distances, over which collective rearrangements cannot take place. These phenomena have recently observed to drastically affect the shear components of viscosity and to be intimately related to the presence of transverse acoustic modes propagation. Most importantly, the study of viscoelastic phenomena at extreme supercritical conditions challenges the long-standing vision of the supercritical phase as inherently uniform state of matter. Nowadays these results call for a new and more complex understanding of the supercritical domain, based on the existence of liquid-like (viscoelastic) and gas-like (merely viscous) sub-domains separated by a thermodynamic boundary. Shedding further light onto this revolutionary hypothesis is certainly one of the main motivations for the scientific community working in the field. Looking ahead, further advances in the study of relaxation phenomena in noble gases and more specifically in noble gases are still held back by inherent limitation in the used techniques. If from one side INS is still hampered by both incident flux and kinematic limitation, the main drawback of current IXS is the broad and slowly decaying (essentially Lorentzian) resolution wings. When focusing on relaxation processes the relevant spectral information is gathered in the extremely low frequency or quasi-elastic spectral window, often on the side of a dominating central peak. A narrow resolution width is thus required to properly resolve the spectral features of interest, while a superior contrast is necessary to discern them from the broad wings of the elastic line. Fortunately, a new concept optics for both monochromatization and energy analysis holds the promise for new generation spectrometers meting the required performance [117]. This will enable to perform IXS experiments with a resolution function <1 meV broad and essentially Gaussian in shape. The feasibility of such high resolution optical schemes has been demonstrated in a recent work [118], while a beamline based on this working principle has recently become operative at the new synchrotron NSLS II of Brookhaven National Laboratory [119]. This new opportunity is certainly quite encouraging and, in the near future, deemed to further advance our knowledge of the complex THz dynamics of simple liquids. Acknowledgments: I wish to thank Tawandra Rowell-Cunsolo for the help in the manuscript preparation. Work performed at the National Synchrotron Light Source II, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. Conflicts of Interest: The authors declare no conflict of interest. References 1. Lovesey, S.W. Theory of Neutron Scattering from Condensed Matter; Clarendon Press: Oxford, UK, 1984; Volume 1. 2. Sinha, S.K. Theory of inelastic X-ray scattering from condensed matter. J. Phys. Condens. Matter. 2001, 13, 7511–7523. [CrossRef] Appl. Sci. 2016, 6, 64 27 of 31 3. Berne, B.J.; Pecora, R. Dynamic Light Scattering; John Wiley: New York, NY, USA, 1976. 4. Zwanzig, R. Lectures in Theoretical Physiscs; Brittin, W., Ed.; Wiley-Inerscience: New York, NY, USA, 1961; Volume 3, pp. 106–141. 5. Mori, H. A continued-fraction representation of the time-correlation functions. Prog. Theor. Phys. 1965, 34, 399–416. [CrossRef] 6. Cunsolo, A.; Pratesi, G.; Verbeni, R.; Colognesi, D.; Masciovecchio, C.; Monaco, G.; Ruocco, G.; Sette, F. Microscopic relaxation in supercritical and liquid neon. J. Chem. Phys. 2001, 114, 2259–2267. [CrossRef] 7. Bencivenga, F.; Cunsolo, A.; Krisch, M.; Monaco, G.; Orsingher, L.; Ruocco, G.; Sette, F.; Vispa, A. Structural and collisional relaxations in liquids and supercritical fluids. Phys. Rev. Lett. 2007, 98, 085501. [CrossRef] [PubMed] 8. Bencivenga, F.; Cunsolo, A.; Krisch, M.; Monaco, G.; Ruocco, G.; Sette, F. Adiabatic and isothermal sound waves: The case of supercritical nitrogen. Europhys. Lett. 2006, 75, 70–76. [CrossRef] 9. Scopigno, T.; Balucani, U.; Ruocco, G.; Sette, F. Evidence of two viscous relaxation processes in the collective dynamics of liquid lithium. Phys. Rev. Lett. 2000, 85, 4076–4079. [CrossRef] [PubMed] 10. Scopigno, T.; Balucani, U.; Ruocco, G.; Sette, F. Inelastic X-ray scattering study of the collective dynamics in simple liquid metals. J. Non-Cryst. Solids 2002, 312–314, 121–127. [CrossRef] 11. Scopigno, T.; Ruocco, G.; Sette, F. Microscopic dynamics in liquid metals: The experimental point of view. Rev. Mod. Phys. 2005, 77, 881–933. [CrossRef] 12. Cunsolo, A.; Ruocco, G.; Sette, F.; Masciovecchio, C.; Mermet, A.; Monaco, G.; Sampoli, M.; Verbeni, R. Experimental determination of the structural relaxation in liquid water. Phys. Rev. Lett. 1999, 82, 775–778. [CrossRef] 13. Monaco, G.; Cunsolo, A.; Ruocco, G.; Sette, F. Viscoelastic behavior of water in the terahertz-frequency range: An inelastic X-ray scattering study. Phys. Rev. E 1999, 60, 5505–5521. [CrossRef] 14. Angelini, R.; Giura, P.; Monaco, G.; Ruocco, G.; Sette, F.; Verbeni, R. Structural and microscopic relaxation processes in liquid hydrogen fluoride. Phys. Rev. Lett. 2002, 88, 255503. [CrossRef] [PubMed] 15. Fioretto, D.; Buchenau, U.; Comez, L.; Sokolov, A.; Masciovecchio, C.; Mermet, A.; Ruocco, G.; Sette, F.; Willner, L.; Frick, B.; et al. High-frequency dynamics of glass-forming polybutadiene. Phys. Rev. E 1999, 59, 4470–4475. [CrossRef] 16. Scarponi, F.; Comez, L.; Fioretto, D.; Palmieri, L. Brillouin light scattering from transverse and longitudinal acoustic waves in glycerol. Phys. Rev. B 2004, 70, 054203. [CrossRef] 17. Giugni, A.; Cunsolo, A. Structural relaxation in the dynamics of glycerol: A joint visible, UV and X-ray inelastic scattering study. J. Phys. Condens. Matter. 2006, 18, 889–902. [CrossRef] 18. Comez, L.; Fioretto, D.; Monaco, G.; Ruocco, G. Brillouin scattering investigations of fast dynamics in glass forming systems. J. Non-Cryst. Solids 2002, 307, 148–153. [CrossRef] 19. Bencivenga, F.; Cimatoribus, A.; Gessini, A.; Izzo, M.G.; Masciovecchio, C. Temperature and density dependence of the structural relaxation time in water by inelastic ultraviolet scattering. J. Chem. Phys. 2009, 131, 144502. [CrossRef] [PubMed] 20. Bencivenga, F.; Cunsolo, A.; Krisch, M.; Monaco, G.; Ruocco, G.; Sette, F. High frequency dynamics in liquids and supercritical fluids: A comparative inelastic X-ray scattering study. J. Chem. Phys. 2009, 130, 064501. [CrossRef] [PubMed] 21. Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Oxford University Press: Oxford, UK, 1989. 22. Boon, J.P.; Yip, S. Molecular Hydrodynamics; Courier Dover Publications: Dover, UK, 1980. 23. Bafile, U.; Guarini, E.; Barocchi, F. Collective acoustic modes as renormalized damped oscillators: Unified description of neutron and X-ray scattering data from classical fluids. Phys. Rev. E 2006, 73, 061203. [CrossRef] [PubMed] 24. Brillouin, L. Diffusion of light and X-rays by a transparent homogeneous body. Ann. Phys. 1922, 17, 88. 25. Landau, L.; Placzek, G. The structure of undisplaced scattered lines. Physik. Z. Sowjet. 1934, 5, 172. 26. Fabelinskii, I. Some aspects of the molecular scattering of light in liquids. Phys. Usp. 1957, 63, 355–410. [CrossRef] 27. Fleury, P.A.; Boon, J.P. Brillouin scattering in simple liquids—Argon and neon. Phys. Rev. 1969, 186, 244–254. [CrossRef] 28. Castillo, R.; Castaneda, S. The bulk viscosity in dense fluids. Int. J. Thermophys. 1988, 9, 383–390. [CrossRef] Appl. Sci. 2016, 6, 64 28 of 31 29. Rouch, J.; Lai, C.C.; Chen, S.H. Brillouin-scattering studies of normal and supercooled water. J. Chem. Phys. 1976, 65, 4016–4021. [CrossRef] 30. Fleury, P.; Boon, J.-P. Laser light scattering in fluid systems. Advances in Chemical Physics 1973, 24, 1–93. 31. Chen, S.H.; Eder, O.J.; Egelstaf, P.; Haywood, B.C.G.; Webb, F.J. Co-operative modes of motion in simple liquids. Phys. Lett. 1965, 19, 269–271. [CrossRef] 32. Kroô, N.; Borgonovi, G.; Skôld, K.; Larsson, K.-E. Inelastic scattering of cold neutrons by condensed argon. In Proceedings of the Symposium on Inelastic Scattering of Neutrons, Bombay, India, 15–19 December 1964; IAEA: Bombay, India, 1964. 33. Sköld, K.; Larsson, K.E. Atomic motion in liquid argon. Phys. Rev. 1967, 161, 102–116. [CrossRef] 34. Randolph, P.D.; Singwi, K.S. Slow-neutron scattering and collective motions in liquid lead. Phys. Rev. 1966, 152, 99. [CrossRef] 35. Rahman, A. Propagation of density fluctuations in liquid rubidium: A molecular-dynamics study. Phys. Rev. Lett. 1974, 32, 52–54. [CrossRef] 36. Price, D.L. Effects of a volume-dependent potential on equilibrium properties of liquid sodium. Phys. Rev. A 1971, 4, 358–363. [CrossRef] 37. Bell, H.G.; Kollmar, A.; Alefeld, B.; Springer, T. Investigation of collective excitations in liquid neon by means of neutron-scattering at small scattering vectors. Phys. Lett. A 1973, 45, 479–480. [CrossRef] 38. Henshaw, D.G.; Woods, A.D.B. Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Phys. Rev. 1961, 121, 1266–1274. [CrossRef] 39. Dorner, B.; Plesser, T.; Stiller, H. Brillouin scattering of neutrons from liquids. Discuss. Faraday Soc. 1967, 43, 160–168. [CrossRef] 40. Bell, H.; Moellerwenghoffer, H.; Kollmar, A.; Stockmeyer, R.; Springer, T.; Stiller, H. Neutron Brillouin- scattering in fluid neon. Phys. Rev. A 1975, 11, 316–327. [CrossRef] 41. Ailawadi, N.K.; Rahman, A.; Zwanzig, R. Generalized hydrodynamics and analysis of current correlation functions. Phys. Rev. A 1971, 4, 1616–1625. [CrossRef] 42. Levesque, D.; Verlet, L.; Kürkijarvi, J. Computer "experiments" on classical fluids. Iv. Transport properties and time-correlation functions of the lennard-jones liquid near its triple point. Phys. Rev. A 1973, 7, 1690–1700. [CrossRef] 43. Van Well, A.A.; Verkerk, P.; de Graaf, L.A.; Suck, J.B.; Copley, J.R.D. Density-fluctuations in liquid argon—Coherent dynamic structure factor along the 120-K isotherm obtained by neutron-scattering. Phys. Rev. A 1985, 31, 3391–3414. [CrossRef] [PubMed] 44. De Schepper, I.M.; Verkerk, P.; van Well, A.A.; de Graaf, L.A. Short-wavelength sound modes in liquid argon. Phys. Rev. Lett. 1983, 50, 974–977. [CrossRef] 45. Verkerk, P.; van Well, A.A.; de Schepper, I.M. Disappearance of the sound-propagation gap in liquid argon at very high-densities. J. Phys. C: Solid State Phys. 1987, 20, L979–L982. [CrossRef] 46. Van Well, A.A.; de Graaf, L.A. Density fluctuations in liquid argon. Ii. Coherent dynamic structure factor at large wave numbers. Phys. Rev. A 1985, 32, 2384–2395. [CrossRef] [PubMed] 47. De Schepper, I.M.; Verkerk, P.; van Well, A.A.; de Graaf, L.A. Non-analytic dispersion relations in liquid argon. Phys. Lett. A 1984, 104, 29–32. [CrossRef] 48. McGreevy, R.L.; Mitchell, E.W.J. Collective modes in molten alkaline earth chlorides: III. Inelastic neutron scattering from molten MGCL2 and CACL2. J. Phys. C Solid State Phys. 1985, 18, 1163–1178. [CrossRef] 49. Crevecoeur, R.M.; Verberg, R.; de Schepper, I.M.; de Graaf, L.A.; Montfrooij, W. Overdamped phonons in fluid helium at 4 K. Phys. Rev. Lett. 1995, 74, 5052–5055. [CrossRef] [PubMed] 50. Montfrooij, W.; de Graaf, L.A.; de Schepper, I.M. Viscoelastic behavior of helium at 39-K and 114-bar. Phys. Rev. A 1991, 44, 6559–6563. [CrossRef] [PubMed] 51. Zuilhof, M.J.; Cohen, E.G.D.; de Schepper, I.M. Sound-propagation in fluids and neutron-spectra. Phys. Lett. A 1984, 103, 120–125. [CrossRef] 52. De Gennes, P.G. Liquid dynamics and inelastic scattering of neutrons. Physica 1959, 25, 825–839. [CrossRef] 53. Lovesey, S.W. Comment on “short-wavelength sound modes in liquid argon”. Phys. Rev. Lett. 1984, 53, 401. [CrossRef] 54. De Schepper, I.M.; Verkerk, P.; van Well, A.A.; de Graaf, L.A.; Cohen, E.G.D. de Schepper et al. Respond. Phys. Rev. Lett. 1985, 54, 158. [CrossRef] Appl. Sci. 2016, 6, 64 29 of 31 55. Hansen, J.-P.; McDonald, I.R. Chapter 3—Static properties of liquids: Thermodynamics and structure. In Theory of Simple Liquids, 3rd ed.; Hansen, J.-P., McDonald, I.R., Eds.; Academic Press: Burlington, VT, USA, 2006; pp. 46–77. 56. Cohen, E.G.D. Fifty years of kinetic theory. Physica A 1993, 194, 229–257. [CrossRef] 57. Yip, S. Renormalized kinetic-theory of dense fluids. Annu. Rev. Phys. Chem. 1979, 30, 547–577. [CrossRef] 58. Kamgar-Parsi, B.; Cohen, E.G.; de Schepper, I.M. Dynamical processes in hard-sphere fluids. Phys. Rev. A 1987, 35, 4781–4795. [CrossRef] [PubMed] 59. Rabinovich, V.A.; Vasserman, A.A.; Nedostup, V.I.; Veksler, L.S. Thermophysical Properties of Neon, Argon, Krypton, and Xenon; Hemisphere Pub. Corp.: Washington, DC, USA, 1987. 60. Postol, T.A.; Pelizzari, C.A. Neutron-scattering study of thermally excited density fluctuations in a dense classical fluid. Phys. Rev. A 1978, 18, 2321–2336. [CrossRef] 61. Ernst, M.H.; Haines, L.K.; Dorfman, J.R. Theory of transport coefficients for moderately dense gases. Rev. Mod. Phys. 1969, 41, 296–316. [CrossRef] 62. Bafile, U.; Verkerk, P.; Barocchi, F.; de Graaf, L.A.; Suck, J.; Mutka, H. Onset of depature from linearized hydrodynamic behavior in argon gas studied with neutron brillouin scattering. Phys. Rev. Lett. 1990, 65, 2394–2397. [CrossRef] [PubMed] 63. Balucani, U.; Zoppi, M. Dynamics of the Liquid State; Clarendon Press Oxford: Oxford, UK, 1994. 64. Krisch, M.; Sette, F. Neutron and X-ray Spectroscopy; Springer Verlag: Berlin, Germany, 2007; pp. 317–370. 65. Cunsolo, A.; Pratesi, G.; Ruocco, G.; Sampoli, M.; Sette, F.; Verbeni, R.; Barocchi, F.; Krisch, M.; Masciovecchio, C.; Nardone, M. Dynamics of dense supercritical neon at the transition from hydrodynamical to single-particle regimes. Phys. Rev. Lett. 1998, 80, 3515–3518. [CrossRef] 66. Cunsolo, A.; Pratesi, G.; Rosica, F.; Ruocco, G.; Sampoli, M.; Sette, F.; Verbeni, R.; Barocchi, F.; Krisch, M.; Masciovecchio, C.; et al. Is there any evidence of a positive sound dispersion in the high frequency dynamics of noble gases? J. Phys. Chem. Sol. 2000, 61, 477–483. [CrossRef] 67. Cunsolo, A. Relaxation phenomena in the THZ dynamics of simple fluids probed by inelastic X-ray scattering. PhD Thesis, Université J. Fourier, Grenoble, France, 1999. 68. Verkerk, P.; van Well, A.A. Short wavelength sound dispersion in liquid argon close to solidification. Physica B + C 1986, 136, 168–171. [CrossRef] 69. Cowley, R.A.; Woods, A.D.B. Neutron scattering from liquid helium at high energies. Phys. Rev. Lett. 1968, 21, 787–789. [CrossRef] 70. Montfrooij, W.; de Graaf, L.A.; de Schepper, I.M. Propagating microscopic temperature-fluctuations in a dense helium fluid at 13.3-K. Phys. Rev. B 1992, 45, 3111–3114. [CrossRef] 71. Van Well, A.A.; de Graaf, L.A. Density fluctuations in liquid neon studied by neutron scattering. Phys. Rev. A 1985, 32, 2396–2412. [CrossRef] [PubMed] 72. Thermodynamic Data are from the Database. Available online: http://webbook.nist.gov/chemistry/ form-ser.html (accessed on 1 September 2015). 73. Pontecorvo, E.; Krisch, M.; Cunsolo, A.; Monaco, G.; Mermet, A.; Verbeni, R.; Sette, F.; Ruocco, G. High-frequency longitudinal and transverse dynamics in water. Phys. Rev. E 2005, 71, 011501. [CrossRef] [PubMed] 74. Torre, R.; Bartolini, P.; Righini, R. Structural relaxation in supercooled water by time-resolved spectroscopy. Nature 2004, 428, 296–299. [CrossRef] [PubMed] 75. Masciovecchio, C.; Santucci, S.C.; Gessini, A.; Di Fonzo, S.; Ruocco, G.; Sette, F. Structural relaxation in liquid water by inelastic UV scattering. Phys. Rev. Lett. 2004, 92, 255507. [CrossRef] [PubMed] 76. Sampoli, M.; Ruocco, G.; Sette, F. Mixing of longitudinal and transverse dynamics in liquid water. Phys. Rev. Lett. 1997, 79, 1678–1681. [CrossRef] 77. Cimatoribus, A.; Saccani, S.; Bencivenga, F.; Gessini, A.; Izzo, M.G.; Masciovecchio, C. The mixed longitudinal-transverse nature of collective modes in water. New J. Phys. 2010, 12, 053008. [CrossRef] 78. Cunsolo, A.; Kodituwakku, C.N.; Bencivenga, F.; Frontzek, M.; Leu, B.M.; Said, A.H. Transverse dynamics of water across the melting point: A parallel neutron and X-ray inelastic scattering study. Phys. Rev. B 2012, 85. [CrossRef] 79. Cunsolo, A.; Li, Y.; Kodituwakku, C.N.; Wang, S.; Antonangeli, D.; Bencivenga, F.; Battistoni, A.; Verbeni, R.; Tsutsui, S.; Baron, A.Q.; et al. Signature of a polyamorphic transition in the Thz spectrum of vitreous GEO2. Sci. Rep. 2015, 5, 14996. [CrossRef] [PubMed] Appl. Sci. 2016, 6, 64 30 of 31 80. Scopigno, T.; Pontecorvo, E.; Di Leonardo, R.; Krisch, M.; Monaco, G.; Ruocco, G.; Ruzicka, B.; Sette, F. High-frequency transverse dynamics in glasses. J. Phys. Condens. Matter. 2003, 15, S1269–S1278. [CrossRef] 81. Hosokawa, S.; Inui, M.; Kajihara, Y.; Matsuda, K.; Ichitsubo, T.; Pilgrim, W.C.; Sinn, H.; Gonzalez, L.E.; Gonzalez, D.J.; Tsutsui, S.; et al. Transverse acoustic excitations in liquid Ga. Phys. Rev. Lett. 2009, 102, 105502. [CrossRef] [PubMed] 82. Giordano, V.M.; Monaco, G. Inelastic X-ray scattering study of liquid Ga: Implications for the short-range order. Phys. Rev. B 2011, 84, 052201. [CrossRef] 83. Hosokawa, S.; Inui, M.; Kajihara, Y.; Matsuda, K.; Ichitsubo, T.; Pilgrim, W.C.; Sinn, H.; Gonzalez, L.E.; Gonzalez, D.J.; Tsutsui, S.; et al. Transverse excitations in liquid Ga. Eur. Phys. J. 2011, 196, 85–93. 84. Hosokawa, S.; Munejiri, S.; Inui, M.; Kajihara, Y.; Pilgrim, W.C.; Ohmasa, Y.; Tsutsui, S.; Baron, A.Q.; Shimojo, F.; Hoshino, K. Transverse excitations in liquid sn. J. Phys. Condens. Matter. 2013, 25, 112101. [CrossRef] [PubMed] 85. Hosokawa, S.; Pilgrim, W.C.; Sinn, H.; Alp, E.E. The possibility of transverse excitation modes in liquid Ga. J. Phys. Condens. Matter. 2008, 20, 114107. [CrossRef] [PubMed] 86. Paciaroni, A.; Orecchini, A.; Haertlein, M.; Moulin, M.; Conti Nibali, V.; De Francesco, A.; Petrillo, C.; Sacchetti, F. Vibrational collective dynamics of dry proteins in the terahertz region. J. Phys. Chem. B 2012, 116, 3861–3865. [CrossRef] [PubMed] 87. Violini, N.; Orecchini, A.; Paciaroni, A.; Petrillo, C.; Sacchetti, F. Neutron scattering investigation of high-frequency dynamics in glassy glucose. Phys. Rev. B 2012, 85, 134204. [CrossRef] 88. Li, M.D.; Chu, X.Q.; Fratini, E.; Baglioni, P.; Alatas, A.; Alp, E.E.; Chen, S.H. Phonon-like excitation in secondary and tertiary structure of hydrated protein powders. Soft Matter. 2011, 7, 9848–9853. [CrossRef] 89. Cunsolo, A.; Kodituwakku, C.N.; Bencivenga, F.; Said, A.H. Shear propagation in the terahertz dynamics of water-glycerol mixtures. J. Chem. Phys. 2013, 139, 184507. [CrossRef] [PubMed] 90. Balucani, U.; Brodholt, J.P.; Vallauri, R. Dynamical properties of liquid water. J. Phys. Condens. Matter. 1996, 8, 9269–9274. [CrossRef] 91. Debye, P. Zur theorie der spezifischen wärmen. Ann. Phys. 1912, 344, 789–839. [CrossRef] 92. Lovesey, S.W. Density fluctuations in classical monatomic liquids. J. Phys. C Solid State Phys. 1971, 4, 3057–3064. [CrossRef] 93. Magazu, S.; Maisano, G.; Majolino, D.; Mallamace, F.; Migliardo, P.; Aliotta, F.; Vasi, C. Relaxation process in deeply supercooled water by mandelstam-brillouin scattering. J. Phys. Chem. 1989, 93, 942–947. [CrossRef] 94. Maisano, G.; Migliardo, P.; Aliotta, F.; Vasi, C.; Wanderlingh, F.; Darrigo, G. Evidence of anomalous acoustic behavior from brillouin-scattering in supercooled water. Phys. Rev. Lett. 1984, 52, 1025–1028. [CrossRef] 95. Cunsolo, A.; Nardone, M. Velocity dispersion and viscous relaxation in supercooled water. J. Chem. Phys. 1996, 105, 3911–3917. [CrossRef] 96. Franks, F. Water: A Comprehensive Treatise; Plenum: New York, NY, USA, 1972; Volume 1. 97. Coester, F. Principle of detailed balance. Phys. Rev. 1951, 84, 1259. [CrossRef] 98. Verbeni, R.; Cunsolo, A.; Pratesi, G.; Monaco, G.; Rosica, F.; Masciovecchio, C.; Nardone, M.; Ruocco, G.; Sette, F.; Albergamo, F. Quantum effects in the dynamics of he probed by inelastic X-ray scattering. Phys. Rev. E 2001, 64, 021203. [CrossRef] [PubMed] 99. Monaco, G.; Cunsolo, A.; Pratesi, G.; Sette, F.; Verbeni, R. Deep inelastic atomic scattering of X-rays in liquid neon. Phys. Rev. Lett. 2002, 88, 227401. [CrossRef] [PubMed] 100. Cunsolo, A.; Monaco, G.; Nardone, M.; Pratesi, G.; Verbeni, R. Transition from the collective to the single-particle regimes in a quantum fluid. Phys. Rev. B 2003, 67, 024507. [CrossRef] 101. Rabani, E.; Reichman, D.R. A self-consistent mode-coupling theory for dynamical correlations in quantum liquids: Rigorous formulation. J. Chem. Phys. 2002, 116, 6271–6278. [CrossRef] 102. Gotze, W.; Mayr, M.R. Evolution of vibrational excitations in glassy systems. Phys. Rev. E 2000, 61, 587–606. [CrossRef] 103. De Schepper, I.M.; Cohen, E.G.; Bruin, C.; van Rijs, J.C.; Montfrooij, W.; de Graaf, L.A. Hydrodynamic time correlation functions for a lennard-jones fluid. Phys. Rev. A 1988, 38, 271–287. [CrossRef] [PubMed] 104. Gorelli, F.; Santoro, M.; Scopigno, T.; Krisch, M.; Ruocco, G. Liquidlike behavior of supercritical fluids. Phys. Rev. Lett. 2006, 97, 245702. [CrossRef] [PubMed] Appl. Sci. 2016, 6, 64 31 of 31 105. Simeoni, G.G.; Bryk, T.; Gorelli, F.A.; Krisch, M.; Ruocco, G.; Santoro, M.; Scopigno, T. The widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids. Nat. Phys. 2010, 6, 503–507. [CrossRef] 106. Widom, B. Phase Transitions and Critical Phenomena; Domb, C.G., Ed.; Academic Press: Waltham, MA, USA, 1972; Volume 2. 107. Zemansky, Y. Heat and Thermodynamics : An Intermediate Textbook, 7th ed.; McGraw-Hill: New York, NY, USA, 1937. 108. Bolmatov, D.; Zhernenkov, M.; Zavyalov, D.; Stoupin, S.; Cai, Y.Q.; Cunsolo, A. Revealing the mechanism of the viscous-to-elastic crossover in liquids. J. Phys. Chem. Lett. 2015, 6, 3048–3053. [CrossRef] [PubMed] 109. Brazhkin, V.V.; Fomin, Y.D.; Lyapin, A.G.; Ryzhov, V.N.; Tsiok, E.N.; Trachenko, K. “Liquid-gas” transition in the supercritical region: Fundamental changes in the particle dynamics. Phys. Rev. Lett. 2013, 111, 145901. [CrossRef] [PubMed] 110. Frenkel, J. Kinetic Theory of Liquids; Oxford University Press: Oxford, UK, 1947. 111. Brazhkin, V.V.; Fomin, Y.D.; Lyapin, A.G.; Ryzhov, V.N.; Trachenko, K. Two liquid states of matter: A dynamic line on a phase diagram. Phys. Rev. E 2012, 85, 031203. [CrossRef] [PubMed] 112. Bolmatov, D.; Musaev, E.T.; Trachenko, K. Symmetry breaking gives rise to energy spectra of three states of matter. Sci. Rep. 2013, 3, 2794. [CrossRef] [PubMed] 113. Bolmatov, D.; Brazhkin, V.V.; Trachenko, K. The phonon theory of liquid thermodynamics. Sci. Rep. 2012, 2, 421. [CrossRef] [PubMed] 114. Bolmatov, D.; Zavyalov, D.; Zhernenkov, M.; Musaev, E.T.; Cai, Y.Q. Unified phonon-based approach to the thermodynamics of solid, liquid and gas states. Ann. Phys. 2015, 363, 221–242. [CrossRef] 115. Bolmatov, D.; Brazhkin, V.V.; Trachenko, K. Thermodynamic behaviour of supercritical matter. Nat. Commun. 2013, 4, 2331. [CrossRef] [PubMed] 116. Bolmatov, D.; Zhernenkov, M.; Zav’yalov, D.; Stoupin, S.; Cunsolo, A.; Cai, Y.Q. Thermally triggered phononic gaps in liquids at thz scale. Sci. Rep. 2016, 6, 19469. [CrossRef] [PubMed] 117. Shvyd’ko, Y. X-ray Optics—High-Energy-Resolution Applications, Optical Science; Springer: Berlin, Germany; New York, NY, USA, 2004; Volume 98. 118. Shvyd’ko, Y.; Stoupin, S.; Shu, D.; Collins, S.P.; Mundboth, K.; Sutter, J.; Tolkiehn, M. High-contrast sub-millivolt inelastic X-ray scattering for nano- and mesoscale science. Nat. Commun. 2014, 5, 4219. [CrossRef] [PubMed] 119. Cai, Y.Q.; Coburn, D.S.; Cunsolo, A.; Keister, J.W.; Honnicke, M.G.; Huang, X.R.; Kodituwakku, C.N.; Stetsko, Y.; Suvorov, A.; Hiraoka, N.; et al. The ultrahigh resolution ixs beamline of nsls-II: Recent advances and scientific opportunities. J. Phys. Conf. Ser. 2013, 425, 202001. [CrossRef] © 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Sciences Multidisciplinary Digital Publishing Institute

The Spectrum of Density Fluctuations of Noble Gases Probed by THz Neutron and X-ray Spectroscopy

Applied Sciences , Volume 6 (3) – Feb 26, 2016

Loading next page...
 
/lp/multidisciplinary-digital-publishing-institute/the-spectrum-of-density-fluctuations-of-noble-gases-probed-by-thz-wjJI8LKZds

References (114)

Publisher
Multidisciplinary Digital Publishing Institute
Copyright
© 1996-2019 MDPI (Basel, Switzerland) unless otherwise stated
ISSN
2076-3417
DOI
10.3390/app6030064
Publisher site
See Article on Publisher Site

Abstract

applied sciences Review The Spectrum of Density Fluctuations of Noble Gases Probed by THz Neutron and X-ray Spectroscopy Alessandro Cunsolo National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; acunsolo@bnl.gov; Tel.: +1-631-344-5564; Fax: +1-631-344-8189 Academic Editor: Christoph Hauri Received: 24 November 2015; Accepted: 25 January 2016; Published: 26 February 2016 Abstract: Approximately 50 years of inelastic scattering studies of noble gases are reviewed to illustrate the main advances achieved in the understanding of the THz dynamics of simple systems. The gradual departure of the spectral shape from the hydrodynamic regime is discussed with an emphasis on the phenomenology of fast (sub-ps) relaxation processes. This review shows that relaxation phenomena in noble gases have an essentially collisional origin, which is also revealed by the parallelism between their characteristic timescale and the interatomic collision time. Additionally, recent THz spectroscopy results on noble gases at extreme thermodynamic conditions are discussed to illustrate the need for a revision of our current understanding of the supercritical phase. Keywords: inelastic X-ray scattering; inelastic neutron scattering; noble gases; relaxation phenomena; liquid and supercritical systems 1. Introduction The study of the collective molecular dynamics of liquids and glassy materials has been a vibrant field of research since the dawn of modern science. However, in spite of an intensive theoretical, experimental and computational scrutiny, the dynamic response of these systems still presents many unsettled aspects, mainly owing to the inherent disorder and complex movements of their microscopic constituents. Among various variables unveiling the dynamic behavior of a fluid, the spectrum of density fluctuations, S(Q,!), is of particular interest, since it is directly accessible by both spectroscopic techniques and computer simulation methods. In spectroscopy experiments, S(Q,!) is probed by generating density fluctuations on a target sample through the collision with a beam of particle-waves, i.e., photons or neutrons. During this collision, an energy h ¯! and a momentum h ¯ Q (here h ¯ = h/2 with h being the Plank constant) are transferred from the probe particles to the sample and the former are scattered over the entire solid angle. It was demonstrated that for both neutron [1] and X-ray [2] probes, the scattering intensity is proportional to the dynamic structure factor, S(Q,!), which provides a snapshot of the dynamic response of the sample through an average over timescales 9 ! and distances 9 Q . Therefore, the (Q,!) region explored in a spectroscopy measurement can be expanded enough to cover the whole transition of the dynamics from the macroscopic regime to the microscopic one. The shape of S(Q,!) is exactly predicted within these two limits and essentially unknown in between, i.e. in the so-called mesoscopic region, corresponding to Q’s and !’s matching the inverse of intermolecular separations and cage oscillation frequencies, respectively. Investigations of this region may unravel fundamental aspects of molecular motions and mutual interactions in disordered systems and can be ideally performed by X-ray (IXS) and neutron (INS) scattering techniques, as well Appl. Sci. 2016, 6, 64; doi:10.3390/app6030064 www.mdpi.com/journal/applsci Appl. Sci. 2016, 6, 64 2 of 31 as by computational methods. Due to the lack of rigorous theoretical predictions, our understanding of the dynamics of disordered systems at mesoscopic scales is often limited to a phenomenological analysis of experimental and computational results. 1.1. The Dynamics of Molecules at Mesoscopic Scales In the macroscopic limit, a liquid appears as a continuum, whose dynamic response is averaged over a large amount of intermolecular interactions. For such a system, the hydrodynamic theory can be consistently used to describe S(Q,!) and ultimately leads to predict a sharp triplet profile [3]. This is composed by the heat diffusion (Rayleigh) central peak, relating to entropy fluctuations, which diffuse at constant pressure (P), and the two Brillouin acoustic side peaks, connected to P fluctuations, propagating at constant entropy. In the opposite regime, customarily referred to as single particle or impulse approximation limit, the probed dynamic event is essentially the free recoil of the single struck atom after the collision with the probe and before any successive interaction with first neighboring atoms. In this limiting region, the dynamic response of the fluid reflects the momentum distribution of the struck atom, which is Gaussian in shape for both classical and quantum systems. Several theoretical models have been developed in an attempt to account for the gradual departure of the spectral shape from the hydrodynamic regime. Perhaps the most successful approach is based upon the framework of the Zwanzig-Mori [4,5], or memory function, formalisms. Its core assumption is that the departure from the hydrodynamic regime is gradual enough to be accurately described by leaving the formal structure of hydrodynamic equations unchanged, yet generalizing some thermodynamic and transport parameters as local variables of space and time. From a physical point of view, this local character reflects the non-homogeneous, non-stationary nature of matter at mesoscopic scales. A similar approach was successfully proposed by a large number of IXS works on samples of increasing complexity, including: (1) noble gases [6,7]; (2) diatomic liquids [8]; (3) liquid metals [9–11]; (4) hydrogen-bonded systems [12–14]; (5) glass formers [15–18]. 1.2. The Departure from Hydrodynamic Regime and the Onset of Relaxation Processes Among various phenomena occurring at the departure from the hydrodynamic regime, the coupling of density fluctuations with relaxation phenomena is perhaps the most solidly understood [6,7,12,13,19]. To gain a basic insight on the physics of a relaxation process, one may start from considering that scattering-generated density waves bring the sample away from its local equilibrium. In response, energy redistributions take place from the density perturbation toward internal degrees of freedom, ultimately driving the sample to a new local equilibrium. The timescale needed by the sample to relax to the equilibrium, , depends both on the wavelength  = 2/Q of the considered density wave and on the sample characteristics. For instance, if  increases so do both the number of rearranging molecules and the relaxation time. Furthermore, the timescale of structural relaxations has a temperature (T-)dependence roughly as steep as the one of viscosity, due to the circumstance that viscous resistance hampers internal rearrangements. These last considerations only apply the so-called structural relaxations, involving collective rearrangements of the structure, which are dominating in highly interconnected many body systems. Conversely, for monatomic fluids relaxation phenomena mostly have a collisional nature [7,20], especially when  matches first neighboring molecules’ separations. Collisional relaxations relate Appl. Sci. 2016, 6, 64 3 of 31 to energy transfers between density fluctuations and mutual inter-particle collisions. Compared to structural relaxations, they are faster (usually spanning the 10 s range) and weakly dependent on thermodynamic conditions [7,20]. In general, collisional and structural relaxations coexist in a given fluid and their relative relevance depends on the nature of intermolecular interactions, thermodynamic conditions and probed Q value. Experimental studies of the Q or T-transition between structural and collisional relaxation regimes often present major challenges, as the required access to large Q (or T) intervals and the high statistical accuracy in the spectral shape measurement. Furthermore, advances in the field are currently held back by instrumental limitations, especially concerning resolution width and spectral contrast. Nonetheless, important advances in the understanding of these phenomena have been made and, most importantly, next generation instruments with the required performance will be soon available for the scientific community. 1.3. The Central Role of Noble Gases Noble gases are ideal samples to investigate relaxation phenomena, due to their extremely simple microscopic constituents and mutual interactions, which make them ideal prototypes to test theoretical models. In contrast to molecular fluids, their microscopic components lack internal degrees of freedom and, contrary to, e.g., metallic liquids, they have simple and short-ranged inter-particle interactions. For instance, the intrinsic simplicity of these samples is crucial to reliably approximate the interatomic potential in molecular dynamics (MD) computer simulations [21]. Another advantage of noble gases is the large compressibility, which is a key factor to achieve substantial variations of density or, equivalently, of the strength of atomic interactions, even with moderate thermodynamic changes. The purpose of this review is to provide a short overview of THz spectroscopy studies of S(Q,!) in noble gases and in particular, to discuss the insight they shed on fast relaxation phenomena. Following an essentially chronological order, the review covers a period of approximately 50 years, from the mid-1960s to the present. Beginning from pioneering INS studies mostly seeking for reminiscences of an hydrodynamic S(Q,!) shape beyond the continuous limit, it discusses the new opportunities offered by the development of IXS toward the end of the past millennium, while illustrating the insight they provide onto the viscoelastic character of the THz dynamics of noble gases. The last sections of this review illustrate recent measurements in the deeply supercritical region calling for a global reconsideration of our understanding of the phase diagram of a fluid. 2. Measurements of the THz Spectrum of Noble Gases up to the 1990s 2.1. The Spectral Line-Shape in the Continuous Limit As mentioned in the introductory section, the variable of interest for this review is the spectrum of density fluctuations, or dynamic structure factor: » » 8 A E Ñ Ñ Ñ Ñ SpQ, wq  d r drp r , tqdr p r , 0q exp ipQ  r  wtq dt (1) V 8 Ñ Ñ with drp r , tq being the space p r q and time (t) dependent density fluctuation of the target sample having volume V. In the quasi-macroscopic regime, S(Q,!) can be described using the hydrodynamic theory of continuous media [3]. This approach stems from the formal expression of the conservation laws of the (density of) mass, momentum and energy of the fluid plus two constitutive laws: the Navier-Stokes’ and heat transport’s equations. As extensively discussed in several monographies [3,22], the derived spectral shape is dominated by few long-lived collective modes, customarily referred to as hydrodynamic modes. These modes form a triplet well approximated by the following expression: Appl. Sci. 2016, 6, 64 4 of 31 SpQq A z z z h h S S SpQ, wq  A 2 2 2 2 2 2 p w z pw  w q z pw w q z S S S S (2) pw  w q pw w q S S A b 2 2 2 2 pw  w q z pw w q z S S S S with b  rA z {p1  A q z s{w and I  p1  I q{2. s s s h h h h One readily recognizes the three main components of the spectral shape (from left): (1) The heat diffusion (Rayleigh) central peak, which relates to entropy fluctuations diffusing at constant pressure (P). (2) The two Brillouin acoustic side peaks, connected to P-fluctuations propagating at constant entropy. (3) An additional contribution (term 9 b) asymmetric around the Brillouin peaks position having negative tails. This term distorts the Lorentzian terms 1) and 2) ultimately enabling the convergence of the spectral moments w SpQ, wqdw, with n ¤ 2. The hydrodynamic profile in Equation (2) contains shape parameters whose Q-dependence is not explicitly considered here. However, at low Qs the latter can be expressed through a polynomial Q-expansion (see, e.g., Equations (42)–(45) of [23]), which at the lowest order reads: w  c Q (3a) ' s s z  rpg  1q D n s Q {2 (3b) T L z  D Q (3c) Here c , D and u are, respectively, the adiabatic sound velocity the thermal diffusivity and the s T L longitudinal kinematic viscosity. 2 2 It should be recognized that Equation (3a–c) are valid only if D Q ,GQ    c Q, that is if the T s lifetime of hydrodynamic modes is much longer than the acoustic period. Under these conditions, the hydrodynamic modes are long-lived excitations appearing in the spectrum as well-resolved and sharp peaks, customarily referred to as Rayleigh-Brillouin triplet. Experimental methods such as Brillouin light scattering (BLS) provide a measurement of Rayleigh-Brillouin triplet by typically spanning the 3 2 1 Appl. Sci. 2016, 6, 64  5 of 34  10 –10 nm Q-range. An example of the simplified hydrodynamic spectrum is presented in Figure 1 along with the three separate components discussed above. Rayleigh-Brillouin triplet Brillouin peaks Rayleigh peak Asymmetric factor 0.2 0.0 -15 -10 -5 0 5 10 15 (GHz) Figure 1. Typical shape of the Rayleigh‐Brillouin triplet measured by Brillouin light scattering. The separate  Figure 1. Typical shape of the Rayleigh-Brillouin triplet measured by Brillouin light scattering. contributions to the total shape are represented by line of different color, as indicated in the legend.   The separate contributions to the total shape are represented by line of different color, as indicated in the legend. The  Rayleigh‐Brillouin  triplet  in  Equation  (2)  will  be  hereafter  quoted  as  either  generalized  or  simplified  hydrodynamic  spectrum, respectively  with  or  without  the  lowest  order  Q approximation  in  Equations (3a–c).   2.2. 1922–1969: From Theoretical Prediction to Actual Measurements   The  hydrodynamic  shape  of  the  spectrum  was  theoretically  predicted  since  the  seminal  work  of  Brillouin [24] and the successive theoretical work of Landau and Plazeck during the 1930s [25] (see also the  review by Mountain). However, the first experimental measurements of the Brillouin spectrum of liquids  −7 could only be performed much later [26], mainly owing to the extremely fine resolving power (ΔE/E < 10 )  required for similar measurements in typical liquid samples. This performance imposes severe technical  challenges that can only be addressed by complex interferometric techniques. In regards to noble gases, the  first Brillouin study dates back to the measurement on Ar and Ne along the coexistence line [27] performed  with a single‐pass Fabry‐Perot interferometer. Figure 2 provides an example of the Brillouin spectrum of  dense Ar measured in this work. The hydrodynamic spectrum reconstructed using thermophysical and  transport properties of the sample is also reported for comparison. It clearly appears that the latter profile  essentially consists of three extremely narrow peaks, in full consistency with the simple hydrodynamic  condition  . Indeed the width of triplet components measured in [27] was either coincident  DQQ ,Γ cQ Ts with the resolution function (for the Raileigh peak) or only slightly larger (for Brillouin peaks).  Intensity (arbit. units) Appl. Sci. 2016, 6, 64 5 of 31 The Rayleigh-Brillouin triplet in Equation (2) will be hereafter quoted as either generalized or simplified hydrodynamic spectrum, respectively with or without the lowest order Q approximation in Equation (3a–c). 2.2. 1922–1969: From Theoretical Prediction to Actual Measurements The hydrodynamic shape of the spectrum was theoretically predicted since the seminal work of Brillouin [24] and the successive theoretical work of Landau and Plazeck during the 1930s [25] (see also the review by Mountain). However, the first experimental measurements of the Brillouin spectrum of liquids could only be performed much later [26], mainly owing to the extremely fine resolving power (DE/E < 10 ) required for similar measurements in typical liquid samples. This performance imposes severe technical challenges that can only be addressed by complex interferometric techniques. In regards to noble gases, the first Brillouin study dates back to the measurement on Ar and Ne along the coexistence line [27] performed with a single-pass Fabry-Perot interferometer. Figure 2 provides an example of the Brillouin spectrum of dense Ar measured in this work. The hydrodynamic spectrum reconstructed using thermophysical and transport properties of the sample is also reported for comparison. It clearly appears that the latter profile essentially consists of three extremely narrow 2 2 peaks, in full consistency with the simple hydrodynamic condition D Q ,GQ    c Q. Indeed the width of triplet components measured in [27] was either coincident with the resolution function (for Appl. Sci. 2016, 6, 64  6 of 34  the Raileigh peak) or only slightly larger (for Brillouin peaks). 1.0 0.8 0.6 0.4 0.2 0.0 -4 -3 -2 -1 0123 4  (GHz)  Figure  2.  The  Rayleigh  Brillouin  spectrum  of  Ar  measured  along  the  coexistence  line  by  Brillouin  light  Figure 2. The Rayleigh Brillouin spectrum of Ar measured along the coexistence line by Brillouin light scattering. The data are redrawn with permission from [27], copyrighted by the American Physical Society.  scattering. The data are redrawn with permission from [27], copyrighted by the American Physical The hydrodynamic spectrum reconstructed using tabulated thermophysical properties of the sample and  Society. The hydrodynamic spectrum reconstructed using tabulated thermophysical properties of the bulk viscosity measurements [28] are reported for comparison as a black line.  sample and bulk viscosity measurements [28] are reported for comparison as a black line. From the position of the peak in the Rayleigh‐Brillouin spectrum, Fleury and Boon derived a value of  sound velocity slightly lower than the one previously measured by ultrasound (US) absorption techniques  From the position of the peak in the Rayleigh-Brillouin spectrum, Fleury and Boon derived at ≈1 MHz. Although such an apparent frequency‐decrease of sound velocity, also observed in water [29],  a value of sound velocity slightly lower than the one previously measured by ultrasound (US) initially raised some interest, it lacks a particular physical significance [30] (see also [22], page 263). Rather,  absorption techniques at 1 MHz. Although such an apparent frequency-decrease of sound velocity, it  follows  from  the  circumstance  that  the  sound  velocity  measured  by  BLS  (hypersonic  velocity)  is  also observed in water [29], initially raised some interest, it lacks a particular physical significance [30] expectedly  lower  by  few  percent  than  the  counterpart  measured  by  US  (ultrasonic  velocity),  unless  (see also [22], page 263). Rather, it follows from the circumstance that the sound velocity measured by competing viscoelastic effects become relevant.   BLS (hypersonic Overall,  the velocity)   shape  of is  expectedly the  spectrum lower   predic by tedfew   by per the cent hydrthan odynami theccounterpart   theory  was  experi measur mentally ed by US confirmed by Brillouin measurement in [27], even though a slight ω‐dependence of viscosity was inferred.  (ultrasonic velocity), unless competing viscoelastic effects become relevant. At  this  stage  the  occurrence  of  a  hydrodynamic  triplet  at  macroscopic  scales  seemed  well‐assessed  Overall, the shape of the spectrum predicted by the hydrodynamic theory was experimentally experimentally,  while  a  remaining  question  concerned  the  persistence  of  a  suitably  generalized  confirmed by Brillouin measurement in [27], even though a slight !-dependence of viscosity was hydrodynamic profile down to mesoscopic scales. Most experimental studies described in the following  inferred. At this stage the occurrence of a hydrodynamic triplet at macroscopic scales seemed paragraphs attempted to answer to this question.  well-assessed experimentally, while a remaining question concerned the persistence of a suitably generalized hydrodynamic profile down to mesoscopic scales. Most experimental studies described in 2.3. 1964–1967: Seeking for a Triplet Shape at Mesoscopic Scales   the following paragraphs attempted to answer to this question. The use of a bare hydrodynamic description of the spectrum becomes questionable when approaching  the mesoscopic regime, as therein the matter is no longer continuous, nor stationary. However, there are  solid reasons to assume a suitably generalized hydrodynamic theory to hold validity even in this time‐ space domain. To illustrate this point, it is useful to recognize that for a system at densities typical of the  −10 liquid phase, the mean free path spans the 10  m window, potentially becoming much smaller than the  atomic size. Under these conditions, the movements permitted to the atoms are mainly short, vibration‐ −13 −1 like,  cage  oscillations  (≈10   s).  Consequently,  even  in  the  (Q ≈  nm , ω ≈  THz)  mesoscopic  range,  the  response of the system is still “averaged” over a large number of elementary dynamic interactions, which  is a necessary pre‐requisite for a suitably generalized hydrodynamic description. In this perspective, the  persistence of spectral features in the THz spectrum reminiscent of Brillouin hydrodynamic peaks did not  appear to be a groundless expectation. Indeed, several INS experiments performed during the mid‐1960s  aimed  at validating  this hypothesis by examining  inelastic peaks in the spectrum of simple fluids. For  instance, this is the case of an INS measurements on dense Ne, Ar and D2 [31], which clearly documented  Intensity (arbit. units) Appl. Sci. 2016, 6, 64 6 of 31 2.3. 1964–1967: Seeking for a Triplet Shape at Mesoscopic Scales The use of a bare hydrodynamic description of the spectrum becomes questionable when approaching the mesoscopic regime, as therein the matter is no longer continuous, nor stationary. However, there are solid reasons to assume a suitably generalized hydrodynamic theory to hold validity even in this time-space domain. To illustrate this point, it is useful to recognize that for a system at densities typical of the liquid phase, the mean free path spans the 10 m window, potentially becoming much smaller than the atomic size. Under these conditions, the movements permitted to the atoms are mainly short, vibration-like, cage oscillations (10 s). Consequently, even in the (Q  nm , !  THz) mesoscopic range, the response of the system is still “averaged” over a large number of elementary dynamic interactions, which is a necessary pre-requisite for a suitably generalized hydrodynamic description. In this perspective, the persistence of spectral features in the THz spectrum reminiscent of Brillouin hydrodynamic peaks did not appear to be a groundless expectation. Indeed, several INS experiments performed during the mid-1960s aimed at validating this hypothesis by examining inelastic peaks in the spectrum of simple fluids. For instance, this is the case of an INS measurements on dense Ne, Ar and D [31], which clearly documented the presence of “extended hydrodynamic” modes in the spectrum. Due to the largely coherent cross section of these samples, both inelastic and quasi-elastic spectral features appeared in the measured spectrum. In particular, it was observed that at low Q values the inelastic shift of the side peaks approached from above the linear hydrodynamic law c Q predicted by Equation (3a). This urged the authors to interpret these peaks as the finite-Q extensions of the acoustic Brillouin peaks to mesoscopic scales. Conversely, Kroo et al. [32] reported no direct evidence of inelastic structures, however they inferred the existence of phonon like excitations indirectly from a comparison between liquid and solid phase spectra. The discrepancy between the results of Chen and those of Kroo is a likely consequence of the different incident wavelength used in the two experiments (4.1 Å and 5.3 Å respectively), which made the two sets of data hardly comparable. In a successive INS work, Sköld et al. [33] measured the spectrum of Ar in liquid (at T = 94 K and 102 K) and solid (at T = 68 K and 78 K) phases. The authors observed a linear Q-dependence of the inelastic peak at the lowest Qs, with a slope consistent to the adiabatic sound velocity. Furthermore, they showed that, at higher Qs, the sound dispersion curve of the liquid sample vaguely resembles the phonon dispersion curve of the solid, thus suggesting that the local pseudo-periodicity of the liquid structure gives rise to quasi-periodic zones reminiscent of the Brillouin zones of a crystal. Since clear signatures of acoustic excitations in the liquid were found in a Q range equivalent to the second pseudo-Brillouin zone, the authors concluded that at least two somehow “loose” pseudo-Brillouin zones could be identified in liquid argon. A similar conclusion was reached by an earlier INS investigation on liquid Pb [34], as well as a computer simulation on Rb [35]. The latter work used an inter-particle potential model characterized by an oscillatory decay to zero [36] instead of the Lennard-Jones potential routinely used to simulate noble gases. These differences in the interatomic interaction explain why in liquid metals inelastic modes are well-resolved up to almost the position of first diffraction peak (Q ), whereas in noble gases they become overdamped for Q > Q /2. m m 2.4. 1971: First Evidences of a Rayleigh-Brillouin triplet beyond the Continuous Limit The first convincing evidence of the persistence of well-defined inelastic peaks beyond the hydrodynamic regime was reported in an INS measurement of Bell and collaborators on supercritical 1 1 neon [37]. This work spanned unusually low Q values (0.6 nm ¤ Q ¤ 1.4 nm ), which substantially reduced the dynamic gap existing between the quasi-continuous regime probed by BLS (with Q 2 1 spanning the 10 nm window) and the range covered by “standard” INS measurements (typically Q ¥ 2–3 nm ). A best fit of measured line-shape with a simplified hydrodynamic similar to the one defined by Equations (2) and (3a–c) enabled the authors to conclude that the simple hydrodynamic theory consistently describes the spectral shapes measured well beyond the continuous approximation. Figure 3 provides an example of the spectral profiles measured by Bell et al., clearly showing the persistence of neat side peaks reminiscent of the hydrodynamic acoustic excitations. Appl. Sci. 2016, 6, 64 7 of 31 Again, the inelastic shift of side peaks reportedly depends linearly on Q, with a slope consistent with the known value of adiabatic sound velocity. Interestingly, the linear dispersion seemed to persist over the whole Q-range explored by Bell et al., even when the side peaks transform to 2 2 broad shoulders, for which the simple hydrodynamic approximation (D Q ,GQ    c Q) is clearly unfulfilled. Additionally, the widths of both inelastic (Brillouin) and quasi-elastic (Rayleigh) peaks were found to depend on Q nearly consistently with the predictions of Equations (3a–c). These aspects will be discussed in greater detail below. It is worth acknowledging that comparably well-resolved THz inelastic peaks were previously observed in a largely quantum system as superfluid He at 1.1 K [38] and in the mentioned work on liquid metals by Dorner et al. [39]. 2.5. 1973–1975: First Signatures of A Viscoelastic Behavior in Real and Simulated Noble Gases A successive experiment performed on neon by Bell et al. [37] covered Q values largely exceeding Appl. Sci. 2016, 6, 64  8 of 34  1 1 the simple hydrodynamic limit (2.7 nm ¤ Q ¤ 15 nm ), strongly overlapping the range covered by more “standard” INS measurements. Not surprisingly, the modeling of the line-shape at these higher Qs A successi was less ve exp straightforwar eriment perfod, rmed requiring  on neon aby generalization  Bell et al. [37] coof vered transport  Q values variables,  largely excee asd pr inescribed g the  −1 −1 simple  hydrodynamic  limit (2.7 nm  ≤ Q ≤  15 nm ),  strongly  overlapping  the  range  covered  by  more  by the “molecular hydrodynamic” approach. Specifically, the used line-shape model consisted in “standard” INS measurements. Not surprisingly, the modeling of the line‐shape at these higher Qs was less  a generalization of the simple Brillouin triplet defined by Equations (2) and (3a–c) in which allowance straightforward,  requiring  a  generalization  of  transport  variables,  as  prescribed  by  the  “molecular  was made for a Q and/or !-dependence for some thermodynamic and transport parameters appearing hydrodynamic”  approach.  Specifically,  the  used  line‐shape  model  consisted  in  a  generalization  of  the  in the hydrodynamic equations. simple Brillouin triplet defined by Equations (2) and (3a–c) in which allowance was made for a Q and/or  In particular, it was observed that the finite Q generalization of both D and had the form of ω‐dependence for some thermodynamic and transport parameters appearing in the hydrodynamic equations.   a sharp, nearly Lorentzian, decay, indicating a decreasing weight of thermal fluctuations at mesoscopic In particular, it was observed that the finite Q generalization of both DT and γ had the form of a sharp,  distances. nearly Lorentzian, Furthermor  dee, cathe y, indicating longitudinal  a decr viscosity easing weneeded ight of th to ermal be generalized  fluctuations at as meso a frequency scopic distances. dependent   Furthermore, the longitudinal viscosity needed to be generalized as a frequency dependent variable as a  variable as a typical manifestation of viscoelasticity. Although viscoelastic effects on the line-shape typical manifestation of viscoelasticity. Although viscoelastic effects on the line‐shape will be discussed in  will be discussed in greater detail in a successive section, it’s worth emphasizing here that the core greater detail in a successive section, it’s worth emphasizing here that the core feature of viscoelastic fluids  feature of viscoelastic fluids is their sharply frequency dependent dynamic response, resembling either is their sharply frequency dependent dynamic response, resembling either the one of a liquid or the one of  the one of a liquid or the one of a solid at low or high frequency, respectively. The crossover between a solid at low or high frequency, respectively. The crossover between the liquid‐like (or viscous) and solid‐ the liquid-like (or viscous) and solid-like (or elastic) regimes is marked by the relaxation frequency like (or elastic) regimes is marked by the relaxation frequency 1/τ. In a scattering experiment the viscous‐ 1/. In a scattering experiment the viscous-to-elastic transition can be observed when the applied to‐elastic transition can be observed when the applied perturbation (e.g., a scattering generated acoustic  perturbation waves) attai (e.g., ns a fr ae scattering quency (csQ generated ) much larg acoustic er than 1/waves) τ. In practice attains , this a fr ca equency n be obta(inceQ d )by much  increasing larger Qthan   and/or τ (by lowering T).  1/. In practice, this can be obtained by increasing Q and/or  (by lowering T). -1 Q = 1.4 nm -1 Q = 1.2 nm -1 Q = 1.0 nm -1 Q = 0.8 nm -1 Q = 0.6 nm -0.4 -0.2 0.0 0.2 0.4   (meV) Figure  3.  Spectral  lineshapes  of  neon  measured  by  inelastic  neutron  scattering  INS  in  neon  at  the  low  Figure 3. Spectral lineshapes of neon measured by inelastic neutron scattering INS in neon at the exchanged momenta indicated in the plot, the red line through data roughly connects the tops of inelastic  low exchanged momenta indicated in the plot, the red line through data roughly connects the tops of peaks. Data are redrawn with permission from [40].  inelastic peaks. Data are redrawn with permission from [40]. On this ground, it is reasonable to expect that even a simple fluid at some Q, T values can exhibit solid‐ like properties, such as, for instance, the ability of supporting transverse acoustic waves. This possibility  could only be tested using computer MD simulation, which can determine the correlation function between  transverse  components  of  atomic  velocities,  or  its  Fourier  transform,  customarily  referred  to  as  the  transverse current spectrum. The transverse plane is defined as orthogonal to the momentum exchanged  in the scattering event, Q . Indeed, the first indication of a high Q transverse acoustic propagation in a  Appl. Sci. 2016, 6, 64 8 of 31 On this ground, it is reasonable to expect that even a simple fluid at some Q, T values can exhibit solid-like properties, such as, for instance, the ability of supporting transverse acoustic waves. This possibility could only be tested using computer MD simulation, which can determine the correlation function between transverse components of atomic velocities, or its Fourier transform, customarily referred to as the transverse current spectrum. The transverse plane is defined as orthogonal to the momentum exchanged in the scattering event, }Q. Indeed, the first indication of a high Q transverse acoustic propagation in a monatomic system was inferred from the presence of a clear inelastic peak in the transverse current spectrum of a Lennard-Jones model representing Ar [41]. In this work, viscoelastic effects on the spectrum of density fluctuations were described assuming a Gaussian time decay of memory function. A successive MD simulation performed on a Lennard-Jones model of Ar at the triple point [42] used instead a “more standard” exponential ansatz for the memory function within the assumptions of either a single or a double timescale. It was observed that the two alternative hypotheses did not yield appreciably different best-fit results. Furthermore, this study confirmed the previous observation of a Q-decay of “the thermal” parameters D and g and indicated a relaxation time  ranging in the 10 ps interval with smooth variations. 2.6. 1978–1987: The Failure of the Three Modes Description High Q in Liquid Noble Gases and the Test of Kinetic and Mode Coupling Theories Successive INS works on Ne [43] and Ar [43–47] proposed a line-shape modeling consisting on the sum of generalized Lorentzian terms. Different versions of such a sum were used by superimposing the convergence of spectral moments of increasing order. Overall, it was observed that a spectral shape similar to the one in Equation (2) provides an accurate description of the spectrum of both liquid and supercritical noble gases. However, the use of such a model led to somehow controversial results for liquid sample at high Qs, as the presence of a propagation gap, that is a Q-region where ! = 0. A similar gap was also reported by INS measurements in molten salts [48] and liquid He [49,50] and its presence was also predicted by the kinetic theory [51]. Its physical origin was connected to the prevalence of dissipative forces over elastic ones, which prevent the sound from propagating at some Qs. In this regard, it is interesting that the gap seemingly disappeared upon increasing the density and approaching solidification [45]. An example of the pressure dependence of this effect is proposed by Figure 4. There, the various dispersion curves are divided for the corresponding sound velocity, thus expectedly joining the same hydrodynamic linear law, upon approaching the Q = 0 limit. From the plot it can be readily noticed that the Q-window for which ! = 0 reduces upon increasing the pressure. Although the presence of a region of forbidden sound propagation raised some initial interest among researchers, its physical significance seemed also controversial. In this regard, it should be acknowledged that the observed gap is centered on the position of the first diffraction peak, where the so-called de Gennes narrowing occurs [52], and the spectral shape is reduced to a narrow featureless peak. For this reason, the use of a “three pole” line-shape modeling may give questionable results in this Q-window, also considering that inelastic features in the spectrum become dramatically overdamped [53,54], and their real position somehow ill-determined. Apart from those based on Equation (2), no other line-shape modeling used in the literature ever indicate the occurrence of such a gap and, furthermore, its presence leads to a clear physical inconsistency. In fact from a simple finite Q extension of the compressibility theorem ([55], see also Equation (13a)) one has w ¥ k T{SpQq, from which it can be deduced that a vanishing ! implies s B s a diverging S(Q), which clearly has no physical foundation for a disordered system. Aside from these high Qs flaws, the “three pole” profile in Equation (2) has, in principle, a solid physical ground. In fact, from one side, it can be derived using a macroscopic description of density fluctuations as the hydrodynamic theory; on the other, it is consistent with the result of a truly microscopic approach as the kinetic theory [56,57]. This can be demonstrated by developing the S(Q,!) Appl. Sci. 2016, 6, 64 9 of 31 as a sum of generalized Lorentzian terms [58], upon retaining only the three dominant ones and Appl. Sci. 2016, 6, 64  10 of 34  superimposing on them the fulfilment of the first three sum rules. Argon at T = 120 K P = 400 bar P = 115 bar P = 20 bar 0 5 10 15 20 -1 Q(nm ) Figure 4. The sound dispersion curves measured in Ar at increasing pressure [47] and normalized to the  Figure 4. The sound dispersion curves measured in Ar at increasing pressure [47] and normalized to respective sound velocities, as derived from thermodynamic data [59]. The arrow indicates the presence of  the respective sound velocities, as derived from thermodynamic data [59]. The arrow indicates the a propagation gap, i.e. of a Q region where the sound frequency vanishes. The solid line represents the  presence of a propagation gap, i.e., of a Q region where the sound frequency vanishes. The solid line hydrodynamic limiting dispersion expectedly joined by all curves in the Q = 0 limit. The dashed curves are  represents the hydrodynamic limiting dispersion expectedly joined by all curves in the Q = 0 limit. the low Q prediction of the Mode Coupling Theory as derived for the curves of corresponding color.  The dashed curves are the low Q prediction of the Mode Coupling Theory as derived for the curves of corresponding color. It is worth noting that the kinetic approach provides, in principle, a microscopically rigorous theory  of density fluctuation. This stems from the assumption that the dynamic variables of the system depend on  It is worth noting that the kinetic approach provides, in principle, a microscopically rigorous both atomic velocities and spatial coordinates, as required for a reliable account of microscopic interactions.  theory of density fluctuation. This stems from the assumption that the dynamic variables of the Unfortunately, the predictions performed using the kinetic theory usually give poor results at high density  system depend on both atomic velocities and spatial coordinates, as required for a reliable account of due to the increasing weight of correlated collisions. The INS measurements of Postol and Pelizzari on  microscopic interactions. Unfortunately, the predictions performed using the kinetic theory usually supercritical  Ar  [60]  proposed  an  experimental  test  of  the  kinetic  theory  predictions  based  on  the  give poor results at high density due to the increasing weight of correlated collisions. The INS generalized  Enskog  approach.  As  a  result,  no  quantitative  agreement  was  demonstrated  between  measurements of Postol and Pelizzari on supercritical Ar [60] proposed an experimental test of the theoretical and experimental results, although at the low density (10.5 atoms/nm ) and high temperature  kinetic theory predictions based on the generalized Enskog approach. As a result, no quantitative (295 K) probed in the experiment it was reasonable to assume the kinetic theory description to hold validity.   agreement was demonstrated between theoretical and experimental results, although at the low density A successive work on liquid Ar at different pressures by de Schepper et al., whose results are reported  (10.5 atoms/nm ) and high temperature (295 K) probed in the experiment it was reasonable to assume in Figure 4, attempted a general test of the mentioned Lorentzian sum development of S(Q,ω) [47]. The  the kinetic theory description to hold validity. effect of spectral rule fulfillment was therein analyzed by comparing the results obtained by imposing the  A successive work on liquid Ar at different pressures by de Schepper et al., whose results are fulfillment of sum rules of increasing order ( 2). Furthermore, in such a work the authors attempted to  reported in Figure 4, attempted a general test of the mentioned Lorentzian sum development of describe the measured dispersion curves in terms of the predictions of the mode‐coupling theory (MCT)  S(Q,!) [47]. The effect of spectral rule fulfillment was therein analyzed by comparing the results (see e.g. [61]). The non‐analytic dispersion relations predicted by the MCT, having the form of truncated Q‐ obtained by imposing the fulfillment of sum rules of increasing order (¤ 2). Furthermore, in such expansions with fractional exponents, were compared with experimental dispersions. The accuracy of the  MCT a work  pred the ictio authors n can be attempted  judged by to comparing describe the  themeasur  dashed ed cu disper rves in sion  Figur curves e 4 wi inthterms  the loof w the Q po prrtio edictions n of the  dispersio of the mode-coupling n curves. The cotheory mparison (MCT  clearly ) (see demo e.g.nstrates [61]). The  that non-analytic  at the lowest dispersion  Qs the sound relations  disperpr sion edicted  curve  −1 is well described by the MCT for all explored pressures, although for Q > 4 nm  this theory does not provide  by the MCT, having the form of truncated Q-expansions with fractional exponents, were compared a co with nsistent experimental  account of dispersions.  the observeThe d beh accur avior acy  of of quasi the‐ela MCT sticpr and ediction  inelastcan ic linewidths be judged of by th comparing e spectrum.the   dashed curves in Figure 4 with the low Q portion of the dispersion curves. The comparison clearly −1 2.7. 1990: “Extended Hydrodynamics Modes” up to Q ≈ 1 nm   demonstrates that at the lowest Qs the sound dispersion curve is well described by the MCT for all explored pressures, although for Q > 4 nm this theory does not provide a consistent account of the observed behavior of quasi-elastic and inelastic linewidths of the spectrum. -1  /c (nm ) s s Propagation gap ( 0) s Appl. Sci. 2016, 6, 64 10 of 31 Appl. Sci. 2016, 6, 64  11 of 34  2.7. 1990: “Extended Hydrodynamics Modes” up to Q  1 nm After the first low Q measurement on Ne by Bell et al., a second INS experiment was performed After the first low Q measurement on Ne by Bell et al., a second INS experiment was performed by  1 1 by Bafile et al. [62] on supercritical Ar at extremely low Q’s (0.35 nm ¤ Q ¤ 1.25 nm ). −1  −1 Bafile et al. [62] on supercritical Ar at extremely low Q’s (0.35 nm ≤ Q ≤ 1.25 nm ). This measurement  This measurement further extended the probed dynamic region to lower Qs, thus reducing the further  extended  the  probed  dynamic  region  to  lower  Qs,  thus  reducing  the  gap  with  light  scattering  gap with light scattering measurements. Figure 5 displays two typical spectral shapes measured in measurements. Figure 5 displays two typical spectral shapes measured in this INS work, which clearly  this INS work, which clearly confirm the persistence of extended Brillouin peaks at mesoscopic scales. confirm the persistence of extended Brillouin peaks at mesoscopic scales.  -1 Q = 1 nm -1 Q = 0.5 nm 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  (meV) Figure  5.  Two  representative  INS  spectral  lineshapes  of  Ar  measured  by  Bafile  et  al.  [62]  at  low   Figure 5. Two representative INS spectral lineshapes of Ar measured by Bafile et al. [62] at low exchanged momenta.  exchanged momenta. Most importantly, in this measurement the superior accuracy in the count statistics coupled with the  Most importantly, in this measurement the superior accuracy in the count statistics coupled unprecedented  dense  Q‐grid,  enabled  a  very  detailed  analysis  of  the  Q‐dependence  of  line‐shape  with the unprecedented dense Q-grid, enabled a very detailed analysis of the Q-dependence of parameters of Equation (2). Best fit values of such parameters are reported in Figure 6 and therein compared  line-shape parameters of Equation (2). Best fit values of such parameters are reported in Figure 6 and with either the simple hydrodynamic prediction (Equations (3a–c)) or a higher‐order polynomial expansion  therein compared with either the simple hydrodynamic prediction (Equation (3a–c)) or a higher-order (see,  e.g.,  Equations  (42)–(45)  of  [23]).  In  the  same  Figure,  the  result  previously  obtained  by  Bell  and  polynomial expansion (see, e.g., Equations (42)–(45) of [23]). In the same Figure, the result previously collaborator on neon is also reported for comparison along with the corresponding simple hydrodynamic  obtained by Bell and collaborator on neon is also reported for comparison along with the corresponding prediction of Equations (3a–c).   simple hydrodynamic prediction of Equation (3a–c). All hydrodynamic curves included in the figure were obtained using thermodynamic and transport  All hydrodynamic curves included in the figure were obtained using thermodynamic and parameters reported in the original works.  transport Overalparameters l, data in Figru eported re 6 confirm in the that original  the Q‐works. dependence of line‐shape parameters is roughly consistent  with the low Q approximation in Equations (3a–c). This clearly indicates that “extended hydrodynamic”  Overall, data in Figure 6 confirm that the Q-dependence of line-shape parameters is roughly modes survive well above the hydrodynamic limit, up to Q values exceeding the light scattering domain  consistent with the low Q approximation in Equation (3a–c). This clearly indicates that “extended by nearly two orders of magnitude.   hydrodynamic” modes survive well above the hydrodynamic limit, up to Q values exceeding the light scattering domain by nearly two orders of magnitude. 2.8. 1998: First IXS Measurements of the THz Spectrum of Noble Gases  2.8. 1998: First IXS Measurements of the THz Spectrum of Noble Gases The  only  THz  spectroscopic  technique available until  the  mid‐90s  was  INS,  a  method  intrinsically  hampered by kinematic constraints (see, e.g., [63] pp. 63–101) limiting the accessible portion of dynamic  The only THz spectroscopic technique available until the mid-90s was INS, a method intrinsically plane  (Q,ω).  These  limitations  are  particularly  penalizing  at  low  Qs,  where  the  collective  nature  of  hampered by kinematic constraints (see, e.g., [63] pp. 63–101) limiting the accessible portion of dynamic structural  rearrangements  become  dominating,  as  well  as  at  large ω  values,  where  instead  short‐time,  plane (Q,!). These limitations are particularly penalizing at low Qs, where the collective nature of collisional events have a visible influence on density fluctuations.   structural rearrangements become dominating, as well as at large ! values, where instead short-time, These problems were successfully overcome after the development of the first high resolution IXS, a  collisional events have a visible influence on density fluctuations. spectroscopic technique virtually free from kinematic limitations [2,64].  These problems were successfully overcome after the development of the first high resolution IXS, a spectroscopic technique virtually free from kinematic limitations [2,64]. Intensity (arbit. units) Appl. Sci. 2016, 6, 64  12 of 34  Appl. Sci. 2016, 6, 64 11 of 31 0.4 Ne at T= 70 K, n =14.45 atoms/nm Ar at T = 301 K, n = 5.04 atoms/nm 0.3 0.2 0.1 0.0 0.12 0.09 0.06 0.03 0.00 0.08 0.06 0.04 0.02 0.00 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 -1 Q(nm ) Figure 6. Relevant shape parameters of the S(Q,ω) of supercritical Ne and Ar as measured, at the indicated  Figure 6. Relevant shape parameters of the S(Q,!) of supercritical Ne and Ar as measured, at the thermodynamic  conditions,  in  [40,62],  respectively.  The  reported  solid  and  dashed  lines  are  the  indicated thermodynamic conditions, in [40,62], respectively. The reported solid and dashed lines are hydrodynamic  predictions  referring  to  symbols  of  corresponding  color  as  derived  from  the  lowest  Q  the hydrodynamic predictions referring to symbols of corresponding color as derived from the lowest expansion in Equations (3a–c).  Q expansion in Equation (3a–c). The first IXS measurement on a dense noble gas was performed on deeply supercritical neon (T = 295  The first IXS measurement on a dense noble gas was performed on deeply supercritical neon K,  n  =  29.1  atoms/nm )  and  discussed  in  combination  of  a  MD  simulation  on  a  Lennard‐Jones  model  (T = 295 K, n = 29.1 atoms/nm ) and discussed in combination of a MD simulation on a Lennard-Jones representative of the same sample [65]. In Figure 7, two representative IXS spectra (upper panels) and  model representative of the same sample [65]. In Figure 7, two representative IXS spectra (upper panels) corresponding MD simulations (lower panels) are compared (middle panels) after the former have been  and corresponding MD simulations (lower panels) are compared (middle panels) after the former multiplied  with  the  detailed  balance  factor  and  convoluted  with  the  instrumental  energy  resolution  have been multiplied with the detailed balance factor and convoluted with the instrumental energy function. The good agreement between measured and computed line‐shapes suggests that the Lennard‐ resolution function. The good agreement between measured and computed line-shapes suggests that Jones model provides a consistent description of the spectrum. Furthermore, it is apparent that even at Q  the Lennard-Jones model provides −1 a consistent description of the spectrum. Furthermore, it is apparent values extending well above 1 nm , the inelastic peaks are visible in the MD simulated line‐shapes and, in  that even at Q values extending well above 1 nm , the inelastic peaks are visible in the MD simulated spite of some resolution limitations, in the experimental spectra as well.   line-shapes and, in spite of some resolution limitations, in the experimental spectra as well.  z (meV)  z (meV)  (meV) s Appl. Sci. 2016, 6, 64  13 of 34  Appl. Sci. 2016, 6, 64 12 of 31 -1 -1 Q = 2 nm Q = 5 nm 0.8 1.2 1.0 0.6 0.8 0.4 0.6 0.4 0.2 0.2 0.0 0.0 0.8 1.2 1.0 0.6 0.8 0.4 0.6 0.4 0.2 0.2 0.0 0.0 0.95 0.95 0.76 0.76 0.57 0.57 0.38 0.38 0.19 0.19 0.00 0.00 -6 -3 0 3 6 -10 -5 0 5 10   (meV) Fi Figure gure 7.7. Up Upper per pan panels: els: lolow w Q Q inelast inelastic ic X‐X-ray ray scatte scattering ring IXS IXS  spe spectra ctra memeasur asured ed on on dee deeply ply sup super ercriti critical cal neon  (T neon  =295 ( TK, =295  n = 29.1 K, n atoms/n = 29.1 atoms/nm m ). The ra).wThe  data raw  (opdata en circles) (open ar cirecles)  comar pa ere compar d with ed corwith respo corr ndin esponding g resolution  fu resolution nctions (dfunctions ashed lines) (dashed . Lowe lines). r paneLower ls: corrpanels: espondin corr g MD esponding  spectraMD  com spectra puted on computed  a Lennaon rd aJo Lennar nes mo ddel  representative  of  the  same  sample  (blue  lines).  Middle  panels:  Comparison  between  IXS  spectra  (open  Jones model representative of the same sample (blue lines). Middle panels: Comparison between circles) and the corresponding molecular dynamics (MD) ones convoluted with the resolution functions (red  IXS spectra (open circles) and the corresponding molecular dynamics (MD) ones convoluted with the lines). Data are redrawn with permission from [65], which is copyrighted bt the American Physical Society.  resolution functions (red lines). Data are redrawn with permission from [65], which is copyrighted bt the American Physical Society. At this stage, a pending question relates to the Q‐threshold, Qh, defining the limit of validity for the  “extended hydrodynamic” regime. Based on the fit of MD spectra reported in Figure 8 and discussed in Refs.  At this stage, a pending question relates to the Q-threshold, Q , defining the limit of validity −1 [65–67], one could conclude that, at least for dense supercritical neon, Qh is as high as 7.5 nm . According  for the “extended hydrodynamic” regime. Based on the fit of MD spectra reported in Figure 8 and to the plot, the transport parameters derived from best‐fit results through Equations (3a–c) are essentially  discussed in Refs. [65–67], one could conclude that, at least for dense supercritical neon, Q is as high consistent with the macroscopic, or hydrodynamic, limit at least for Q lower than the values included in  as 7.5 nm . According to the plot, the transport parameters derived from best-fit results through the shadowed area. Thanks to the high statistical accuracy of Q‐dependent data in Figure 8, one may infer  Equation (3a–c) are essentially consistent with the macroscopic, or hydrodynamic, limit at least for that the simple hydrodynamic approximation is not accurate for the thermal diffusivity. In fact, low‐Q  Q lower than the values included in the shadowed area. Thanks to the high statistical accuracy values of DT seem slightly lower than the macroscopic value.   of Q-dependent data in Figure 8, one may infer that the simple hydrodynamic approximation is not accurate for the thermal diffusivity. In fact, low-Q values of D seem slightly lower than the macroscopic value. Intensity (arbit. units) ApAppl. pl. ScSci. i. 2016 2016 , 6,, 64 6, 64 13 14 of of 31 34  Mesoscopic regime Extended Hydrodynamics 0.25 b) 0.20 0.15 0.10 0.05 0.00 c) 0.14 0.07 0.00 0 5 10 15 20 25 -1 Q(nm ) Figure 8. The relevant transport parameters deduced from the fits of of IXS spectra of deeply supercritical  Figure 8. The relevant transport parameters deduced from the fits of of IXS spectra of deeply neon [67] and those of MD spectra from a Lennard Jones model representative of the same sample [65]. The  supercritical neon [67] and those of MD spectra from a Lennard Jones model representative of the same shadowed area roughly locates the transition from the extended hydrodynamics and the mesoscopic regime.  sample [65]. The shadowed area roughly locates the transition from the extended hydrodynamics and Horizontal dashed lines represent the macroscopic (hydrodynamic) values deduced from thermodynamic  the mesoscopic regime. Horizontal dashed lines represent the macroscopic (hydrodynamic) values [59] and US spectroscopy data [28].  deduced from thermodynamic [59] and US spectroscopy data [28]. 2.9. The Onset of a Positive Sound Dispersion in Liquid Noble Gases  2.9. The Onset of a Positive Sound Dispersion in Liquid Noble Gases In the various works on noble gases reported in literature, it was observed that transport parameters  In the various works on noble gases reported in literature, it was observed that transport drastically change upon relatively moderate P and T variations. This may not be surprising, given that the  parameters drastically change upon relatively moderate P and T variations. This may not be surprising, large  compressibility  of  these  systems  leads  to  substantial  variations  of  inter‐particle  distances  and,  given that the large compressibility of these systems leads to substantial variations of inter-particle consequently, of interaction strengths.  distances and, consequently, of interaction strengths. For instance, clear transformations were observed in the Q‐dependence of the acoustic frequency and  For instance, clear transformations were observed in the Q-dependence of the acoustic frequency damping when measured either in the liquid or in the supercritical phase. In particular, it was generally  and damping when measured either in the liquid or in the supercritical phase. In particular, it was found that, in liquid Ne and Ar [43,44,58,68] ωs systematically exceeds the hydrodynamic prediction at  generally found that, in liquid Ne and Ar [43,44,58,68] ! systematically exceeds the hydrodynamic low/intermediate Qs. A similar effect was also observed ins liquid He [48,69,70], although the quantum  prediction at low/intermediate Qs. A similar effect was also observed in liquid He [48,69,70], although character of this sample makes this finding less straightforward to interpret. Furthermore, in liquid phase  sample the quantum s an “anom charaacter lous”of Qthis ‐depend sample ence makes  was al this so re finding portedless  for th straightforwar e sound absodrp totion int erpr coeffici et. ent, Furthermor  as derive,ed  frin om liquid  the wid phase th ofsamples  inelastican  pe“anomalous” aks, zs. ConverQ sely, -dependence  all these di was spersi also ve ref eported fects see for m to the dsound isappear absorption  at extreme  supercritical conditions [40,62,65,66].   coefficient, as derived from the width of inelastic peaks, z . Conversely, all these dispersive effects These trends are clearly exemplified by Figure 9, which compares spectral parameters obtained in  seem to disappear at extreme supercritical conditions [40,62,65,66]. supercritical [65] and liquid [71] neon. Overall, data reported therein indicate that, while in liquid Ne the  These trends are clearly exemplified by Figure 9, which compares spectral parameters obtained sound frequency (ωs) and absorption (zs) at low Qs are, respectively, higher and lower than predicted by  in supercritical [65] and liquid [71] neon. Overall, data reported therein indicate that, while in liquid Equations (3a–c), no substantial discrepancy is instead observed in supercritical Ne. In Figure 9 it can be  Ne the sound frequency (! ) and absorption (z ) at low Qs are, respectively, higher and lower than s s predicted by Equations (3a–c), no substantial discrepancy is instead observed in supercritical Ne. In Figure 9 it can be also noticed that for the latter sample the agreement with the simple hydrodynamic prediction is excellent up to Q  7.5 nm . 6 2  2 10 D (m /s)   (m /s) c (m/s) L s T Appl. Sci. 2016, 6, 64  15 of 34  also noticed that for the latter sample the agreement with the simple hydrodynamic prediction is excellent  Appl. Sci. 2016, 6, 64 14 of 31 −1 up to Q ≈ 7.5 nm .  supercritical Ne liquid Ne viscoelastic A) B) consistency 8 0 effects with simple hydrodynamics D) C) 0 0 0 5 10 15 20 0 5 10 15 20 25 30 -1 Q(nm ) Figure  9.  Left  column:  shift  (panel  a)  and  half  width  (panel  c)  of  the  inelastic  peak  in  the  spectrum  of  Figure 9. Left column: shift (panel a) and half width (panel c) of the inelastic peak in the spectrum supercritical Ne at T = 294 K and n = 29 atoms/nm  as derived from a best fit line‐shape with Equation (2). Red  of supercritical Ne at T = 294 K and n = 29 atoms/nm as derived from a best fit line-shape with and  black  dots  are  IXS  and  MD  data  from  [65]  and  [67]  respectively.  Data  from  [65]  are  redrawn  with  Equation (2). Red and black dots are IXS and MD data from [65] and [67] respectively. Data from [65] permission from the original publication, under the copyright of the American Physical Society. The solid  are redrawn with permission from the original publication, under the copyright of the American lines  represent  the  corresponding  simplified  hydrodynamic  prediction  in  Equations  (3a–c).  In  which  Physical Society. The solid lines represent the corresponding simplified hydrodynamic prediction in literature values of thermodynamic properties [72] and bulk viscosity [28] coefficients were inserted. Right  Equation (3a–c) In which literature values of thermodynamic properties [72] and bulk viscosity [28] column: the corresponding quantities are reported for liquid neon at T = 35 K and n = 36.65 atoms/nm . These  coefficients were inserted. Right column: the corresponding quantities are reported for liquid neon data are adapted with permission from [71] , which is copyrighted by the American Physical Society.   at T = 35 K and n = 36.65 atoms/nm . These data are adapted with permission from [71] , which is copyrighted by the American Physical Society. As mentioned, “anomalous” dispersive effects observed for the liquid sample can be ascribed to the  onset of a viscoelastic response induced by the coupling with a relaxation process.  As mentioned, “anomalous” dispersive effects observed for the liquid sample can be ascribed to To illustrate this point,  it is useful to recognize that, in a spectroscopy experiment, the scattering‐ the onset of a viscoelastic response induced by the coupling with a relaxation process. excited acoustic waves cause a time‐dependent perturbation of the local equilibrium of the target sample.  To illustrate this point, it is useful to recognize that, in a spectroscopy experiment, the As a response, decay channels redistribute the energy carried by the acoustic wave toward some internal  scattering-excited acoustic waves cause a time-dependent perturbation of the local equilibrium of the degrees of freedom of the fluid. These energy rearrangements ultimately drive the sample to relax in a new  target sample. As a response, decay channels redistribute the energy carried by the acoustic wave local equilibrium within a timescale τ.   toward some internal degrees of freedom of the fluid. These energy rearrangements ultimately drive Two limiting scenarios can thus occur: (1) the time‐dependent acoustic perturbation has period, 2π/ωs,  the sample to relax in a new local equilibrium within a timescale . much longer than any internal degrees of freedom of the system. Under these conditions, the latter relaxes  Two limiting scenarios can thus occur: (1) the time-dependent acoustic perturbation has period, to equilibrium “instantaneously” (i.e., within a timescale τ << 1/ωs) and the acoustic propagation essentially  ta2kes p/! place , much  over longer  success than ive any equiinternal librium st degr ates ees  (viof sco fru eedom s limit)of ; (2 the ) Conv system. erselUnder y, if the these  acouconditions, stic wave has the an  ex latter tremel relaxes y short to pe equilibrium riod, it “perceives” “instantaneously”  internal rearra (i.e. ng ,ement within s as a timescale frozen‐like (<< τ >>1 1/ /!ωs)) an and d does the acoustic not couple  with them. Consequently, the acoustic propagation is elastic, i.e., it occurs with virtually no energy loss  propagation essentially takes place over successive equilibrium states (viscous limit); (2) Conversely, if (elastic limit).   the acoustic wave has an extremely short period, it “perceives” internal rearrangements as frozen-like Therefore, when a relaxation is active, the response of a system to the acoustic propagation depends  ( >> 1/! ) and does not couple with them. Consequently, the acoustic propagation is elastic, i.e., it on how the acoustic frequency, ωs, compares to the relaxation time. When ωs increases from the viscous  occurs with virtually no energy loss (elastic limit). Therefore, when a relaxation is active, the response of a system to the acoustic propagation depends on how the acoustic frequency, ! , compares to the relaxation time. When ! increases s s from the viscous (!  << 1) to the elastic limit (!  >> 1), the viscoelastic transition manifests itself s s through a systematic decrease of acoustic dissipation and a corresponding increase of sound velocity. Since in scattering experiments ! is typically varied by changing Q (through the dispersion relation ! = ! (Q)), in these measurements viscoelastic behavior is reflected by a Q-increase of ! and s s s a Q-decrease of z .  z (meV)  ( meV) S s Appl. Sci. 2016, 6, 64 15 of 31 This explains why in panels 9b and 9d these shape parameters are, at the lowest Qs, respectively larger and lower than their hydrodynamic predictions. Once the phenomenological signature of a viscoelastic behavior is experimentally assessed, a more quantitative understanding of this phenomenon could only come from the modeling of measured line-shape with a viscoelastic model. The next section is devoted to the derivation of such a model within the framework of the memory function formalism. 3. A Model for the Measured Spectral Shape 3.1. The Memory Function Formalism Let Aptq  rA ptq..........A ptqs be a vector whose components are stochastic variables describing 1 n the properties of a system of N interacting particles (with N > u). It can be shown that under very general conditions, the equation of motion of Aptq has the following form: Ñ Ñ Ñ dAptq iW  Aptq Kptq Apt  tqdt f ptq (4) dt In the formula above the following quantities have been introduced: B F B F Ñ Ñ Ñ Ñ The antisymmetric matrix iW  Ap0q, iLAp0q  Ap0q, Ap0q is the proper frequency of the system, which describes the oscillatory behavior of Aptq. This matrix depends on equilibrium (static) properties of the system. Here the symbol x.......y indicates a statistical (thermal) average. Ñ Ñ ip1PqLt The variable f ptq  e ip1  PqLAp0q is the random fluctuating force. Noticeably, the B F Ñ Ñ presence of the p1  Pq term implies that Ap0q, f ptq  0, namely that the fluctuating force is orthogonal (statistically uncorrelated) to Ap0q. B F B F Ñ Ñ Ñ Ñ The matrix Kptq  f , f ptq  Ap0q, Ap0q is memory matrix, or memory function if  = 1, as in the cases of interest here. It is worth noticing that the integrand in Equation (4) includes all Aptq values between 0 and t, “weighted” by the memory, which thus defines the ability of the system to keep memory of the past. B F Ñ Ñ The equation of motion for the correlation matrix Cptq  AptqAp0q can be readily derived from Ñ Ñ Equation (4) through a scalar product, while using the orthogonality between Ap0q and f ptq. Explicitly: dCptq iW  Cptq Kptq Cpt  tqdt (5) dt Equations (4) and (5) are referred to as memory equation or generalized Langevin equation either for dynamic variables or for their correlations, respectively. When dealing with a single dynamic variable, time reversal requirements impose W = 0. Using a procedure described in various monographies [22,63], the Langevin equation can be solved following an iterative approach, which eventually leads to the following recursive formula: Cpsq K p0q 1 1 rs s (6) Cp0q K p0q K p0q s . . . customarily referred to as the continued fraction expansion. Here K (t) is the i-th (iteration) order memory function associated to the variable of interest, Appl. Sci. 2016, 6, 64 16 of 31 zt Cpsq  dte Cptq while is the Laplace transform of the correlation function. The t = 0 values of the i-th order memory function K (t) can be determined by superimposing the sum rule fulfillment, which for the few lowest orders yields: A E K p0q  w (7a) .. @ D @ D 4 2 w w K p0q K p0q    @ D  @ D (7b) 2 0 2K p0q w w .. @ D @ D 6 4 w w K p0q 1 K p0q    @ D  @ D (7c) 2 2 2K p0q D w w 2 2 d Cptq 1 8  1 n n n Herexw y  i r s rCp0qs  w CpwqdwrCp0qs is the n-order spectral moment dt t0 of the correlation function C(!). Among all possible fluctuating variables, we are here interested in density fluctuations since the Fourier-Laplace transform of their correlation function, S(Q,!) is directly measured by both IXS and INS. S(Q,!) can be derived as the Fourier anti-transform of the intermediate scattering function A E Ñ Ñ Ñ Ñ FpQ, tq  drp r , tqdr p r , 0q exp iQ  r d r . The latter can be expressed through the continued fractions expansion of Equation (4), whose 2-nd order truncation yields: @ D FpQ, sq SpQq s m pQ, sq Where m pQ, sq is the second order memory function for density fluctuations while S(Q) = F(Q,0) is the static structure factor. The S(Q,!) can be derived from Equation (7) as follows: @ D SpQ, wq 1 FpQ, s  iwq 1 Re  Re iw SpQq p SpQq p iw m pQ, s  iwq The last term of the above formula can be calculated explicitly to eventually obtain: @ D 2 1 w m pQ, wq SpQ, wq 1 (8) @ D SpQq p 2 2 2 2 1 rw  w  wm pQ, wqs w rm pQ, wqs L L where m pQ, wq and m pQ, wq are, respectively, real and imaginary parts of the Fourier transform L L of m (Q,t). At this stage, the problem of choosing the most appropriate model is shifted from S(Q,!) to m (Q,t), or m (Q,!). In many literature works on liquid systems attempting a memory function L L based modeling of the spectrum (see e.g. [13,73]), it can be shown that a sensible ansatz for the time dependent memory function is given by: 2 2 m pQ, tq  D exppt{t q D exppt{t q 2G dptq (9) L T a m T a The three terms in the right hand side of Equation (9) are (from left): (1) The thermal contribution. The first term describes diffusive thermal motions triggered by 2  1 spontaneous temperature gradients. Its timescale and amplitude are t  pgD Q q and T T 2 2 D  pg  1qpc Qq respectively, with D , c , and being the generalized diffusivity, the T T T isothermal velocity and the constant pressure to constant volume specific heats ratio. Appl. Sci. 2016, 6, 64 17 of 31 (2) The viscous relaxation contribution. The second term accounts for relaxation processes affecting 2 2 2 2 the viscosity and having a timescale t and amplitude D  pc  gc qQ , where c is the a 8 a 8 generalized infinite frequency or “elastic” sound velocity of the sample. (3) The instantaneous contribution. The last term accounts for the coupling of density fluctuations with the ultra-fast vibrational dynamics here accounted by a (t) profile. It was often found that the amplitude 2G has a quadratic Q-dependence and is essentially insensitive to thermodynamic changes [20]. It is immediate to recognize that real and imaginary parts of Fourier transform of the memory function in Equation (9) read as: t t T a 1 2 2 m pQ, wq  D D G (10a) L T a 2 2 1 pwt q 1 pwt q 2 2 pwt q pwt q 2 T a 2 2 wm pQ, wq  D D (10b) L T a 2 2 1 pwt q 1 pwt q T a respectively. These two equations can be inserted in Equation (8) to obtain a model for the classical part of the line-shape. It should be emphasized that at mesoscopic scales all transport and thermodynamic coefficients introduced above and in the following, unless otherwise specified, are Q-dependent generalizations of their macroscopic counterparts, although such a dependence in not made explicit in the notation. The model used for the memory function often results from suitable approximation of Equation (9) as appropriate to the sample, thermodynamic conditions and dynamic range probed. For simplest systems as noble gases, the single exponential decay or viscoelastic model has shown to provide a reasonable approximation [42]. Regardless on the approximation adopted, the exponential ansatz for the viscoelastic term, lends itself two at least these two fundamental objections: (1) In principle, structural relaxation phenomena in highly viscous systems can be better described by assuming a stretched exponential rather than a simple exponential time-decay of the memory function [17,74,75]. However, the use of this model would introduce an unwanted additional parameter (the stretching coefficient) and, perhaps more importantly, its Fourier transform cannot be cast on an analytical form. Fortunately, for simplest systems as noble gases, of interest in this paper, it is reasonable to assume that the simple exponential decay is a rather accurate approximation. (2) A second remark concerns the possible presence in the spectrum of a second inelastic excitation as observed in systems as diverse as liquid water [73,76–78], tetrahedrally arranged glasses [79], glass formers [80] liquid metals [81–85], complex biophysical samples [86–88] and mixtures [89]. The presence of this low frequency mode in the S(Q,!) is customarily ascribed to the onset of shear mode propagation, although this assignment could seem suspicious as S(Q,!) couples primarily with longitudinal movements only. In a liquid, the onset of shear waves in the spectrum of density fluctuations can only occur via the so-called longitudinal-transverse coupling [73,76,90], that is a mixing between acoustic modes having orthogonal polarization. The presence of this mode-mixing is not properly accounted for by any known analytic model for the memory function. However, such a coupling has never been observed in noble gases, likely due to the highly isotropic character of their interatomic interaction, and will not be discussed in the remainder of this paper. 3.2. The Departure from the Hydrodynamic Shape of the Spectrum In the hydrodynamic regime, density fluctuations are probed for long time lapses (t >> ) over which the viscous relaxation is perceived as a very rapid decay, well approximated by a Markovian Appl. Sci. 2016, 6, 64 18 of 31 term (9 (t)) in the time-dependence of memory function. Overall, it can be shown that the following memory function: 2 2 2 m pQ, tq  pg  1qpc Qq exp gD Q t 2n Q dptq (11) T T L L,hyd is fully consistent with the Rayleigh-Brillouin triplet expressed by Equation (2) under the approximation defined by Equation (3a–c) As mentioned, at mesoscopic scales all parameter entering in Equation (11) should be generalized as Q dependent variables. Due to the lack of firm theories describing analytically the departure of the spectrum from the simple hydrodynamic regime, this Q-dependence is usually determined empirically through the best-fit modeling of spectra measured at different Qs. Albeit phenomenological in character, this approach has proven to be successful in shedding a deep light on the fast dynamics of various disordered systems, including noble gases. In particular, it has elucidated many phenomenological aspects associated to the coupling of density fluctuations with THz relaxation processes. 3.3. The Simple Viscoelastic Model The simplest method to account for THz viscoelastic effects on the spectrum of density fluctuation is to assume a single exponential decay of the memory function: m pQ, tq  D exppt{tq (12) L 2 where the amplitude of the memory function is fixed by the superimposition of sum rules to the spectrum, which eventually leads to: @ D k T 2 B 2 w  @ D  Q (13a) MSpQq @ D @ D w  (13b) @ D @ D 4 2 w w 2 2 2 @ D D  c  c Q   (13c) 8 0 w SpQq @ D here w  SpQq, while k and M are the Boltzmann constant and atomic mass, respectively; Equations (12) and (13a–c) define the so called Debye [91] or simple viscoelastic model [92]. Clearly, this model can hold validity only if: (1) thermal relaxations have a negligible weight on the time decay of memory function, i.e., if  1 and (2) the contribution from fast relaxation (term 9 (t) in Equation (9)) phenomena is also negligible. Conceptually, the simple viscoelastic description stems from the idea that, upon crossing the viscoelastic transition, the sound velocity c , changes from c  w {Q  B{r with B being the bulk 0 0 modulus—as appropriate for a liquid—to c  w {Q  M{r with M  B 4{3G and G being, 8 8 respectively, the elastic and the shear modulus—as appropriate for solids. The superimposition of sum rules links the finite Q generalization of B and M to the second and fourth normalized moments, respectively. In a way the viscoelastic model through the sum rules’ fulfillment interpolates between the low Q, viscous, response and the high Q elastic one. Specifically, one side, Equation (13a) extends to intermediate Qs the macroscopic compressibility result [55] c  K T{MSp0q on the other side, the T B high Q link between M and normalized fourth moment, [1] is here extended down to the same Qs values. 4. 2001–2007: The Memory Function-Based Modeling of IXS Spectra of Noble Gases The success of the memory function based modeling of experimental spectra was ultimately enabled by the dramatic improvement of the incident flux and, consequently, of the count statistics Appl. Sci. 2016, 6, 64 19 of 31 prompted by the development of IXS. Furthermore, these high fluxes coupled with the reduced beam cross section enabled spectroscopy measurements on substantially smaller samples, thus opening the access to extreme thermodynamic conditions. The first IXS work investigating viscoelastic effects on liquid and supercritical neon [6] took advantage of these opportunities there by exploring an unprecedented broad thermodynamic range. Measurements were performed on dense neon from liquid to supercritical conditions following both an isochoric (n = 29 atoms/nm ) and an isothermal (T = 32 K) path. The sound dispersion curves of neon determined in such a work are reported in Figure 10. Best fit values of w  c Q and w  c Q 0 0 8 8 derived from the best fit modeling of the line-shape are compared with the acoustic frequency evaluated from the position of the maxima of current spectra C (Q,!), W . The current spectrum is defined as the L l Fourier transform of the correlation function between longitudinal components of atomic velocities. The position of its maxima is often identified as the dominant acoustic frequency, this identification being rigorous in the hydrodynamic limit only. Within the viscoelastic approach, W is assumed to undergo a transition between the viscous and the elastic limit respectively represented by ! and ! . 0 8 Figure 10 displays the values of W , ! and ! of liquid (upper panel) and supercritical (bottom 0 8 panel) neon reported in Ref. [6] and compares them with the hydrodynamic straight line c Q. From the inspection of the two plots the following trends are readily noticed: (1) the liquid phase datum bears evidence for the more-than-linear behavior of W (purple dots) for Q ¤ 10 nm , i.e., the systematic bending of W upwards the hydrodynamic linear law and toward ! (the mentioned PSD effect) . Conversely, the liquid phase point is characterized by a sizable PSD. (2) At higher Qs one can observe the “backward transition” of W from ! to ! , which is actually l 8 0 joined for Q larger than the position of the first di Q (22 nm ). (3) Again, viscoelastic effects disappear in deeply supercritical conditions (lower panel) since ! , W and ! merge into each other (at least at the lowest Qs), thus suggesting that the viscous Appl. Sci. 2016, 6, 64  21 of 34  relaxation term in Equation (9) has a vanishing strength. Liquid, T = 40 K Supercritical, T = 294 K 0 3 6 9 12 15 18 21 24 27 30 -1 Q(nm ) Figure  10.  The  acoustic  frequency Ωl  derived  from  the  maxima  of  current  spectra  (magenta  dots)  are  Figure 10. The acoustic frequency W derived from the maxima of current spectra (magenta dots) are reported against the zero (black dots) and infinite frequency (blue dots) limiting dispersions extracted from  reported against the zero (black dots) and infinite frequency (blue dots) limiting dispersions extracted best fits the IXS spectra of neon. Fits were obtained with a single exponential viscoelastic model for the  memory function decay (Equation (12)). The linear hydrodynamic sound dispersion (Equation (3a)) is also  from best fits the IXS spectra of neon. Fits were obtained with a single exponential viscoelastic model reported for reference as derived using tabulated values of the adiabatic sound speed [71]. Data are adapted  for the memory function decay (Equations (12)). The linear hydrodynamic sound dispersion (see with permission from [6] copyrighted by American Physical Society.  Equations (3a)) is also reported for reference as derived using tabulated values of the adiabatic sound As  previously  mentioned,  the  validity  of  the  simple  viscoelastic  model  demands  that  the  thermal  speed [71]. Data are adapted with permission from [6] copyrighted by American Physical Society. contribution  to  the  memory  function  decay  has  negligible  amplitude  (γ ≈  1).  The  soundness  of  this  assumption is supported by the bottom panel of Figure 11, where the value of γ computed for supercritical  Ne [65,66] is reported.   (Q),  (Q),  (Q) (meV) 0  l Appl. Sci. 2016, 6, 64 20 of 31 As previously mentioned, the validity of the simple viscoelastic model demands that the thermal contribution to the memory function decay has negligible amplitude (  1). The soundness of this assumption is supported by the bottom panel of Figure 11, where the value of computed for Appl. Sci. 2016, 6, 64  22 of 34  supercritical Ne [65,66] is reported. 0.18 0.09 0.00 2.1 1.8 1.5 1.2 0.9 0.6 0.3 0.0 0 5 10 15 20 25 30 -1 Q( nm ) Figure 11. Lower panel: the generalized specific heat ratio as derived from MD computations for Lennard  Figure 11. Lower panel: the generalized specific heat ratio as derived from MD computations for Jones models simulating deeply supercritical neon ([66], red dots). The unit value is reported as a dashed  Lennard Jones models simulating deeply supercritical neon ([66], red dots). The unit value is reported line for reference. Lower panel: the thermal diffusivity, as derived from MD simulations in [66], while using  as a dashed line for reference. Lower panel: the thermal diffusivity, as derived from MD simulations the simplified hydrodynamic expression in Equation (3c). In all plots horizontal dashed line indicate the  in [66], while using the simplified hydrodynamic expression in Equations (3c). In all plots horizontal macroscopic values (from National Institute of Standards and Technology NIST database [72] of the symbols  dashed line indicate the macroscopic values (from National Institute of Standards and Technology having corresponding color.  NIST database [72] of the symbols having corresponding color. The curve is consistent with the macroscopic limit at the lowest Qs. Overall, it can be inferred that the  The curve is consistent with the macroscopic limit at the lowest Qs; however both curves suggest −1 weight of the thermal contribution (proportional to γ − 1) is drastically reduced beyond Q ≈ 7 nm  since  that the weight of the thermal contribution (proportional to  1) is drastically reduced beyond therein γ differs from 1 by less than 10%.   Q  7 nm since therein differs from 1 by less than 10%. The generalized thermal diffusivity obtained from the same work is reported in the upper plot. One  The generalized thermal diffusivity obtained from the same work is reported in the upper plot. can confidently conclude that thermal diffusivity drastically decreases with Q consistently with the INS  One can confidently conclude that thermal diffusivity drastically decreases with Q consistently with result of Bell et al. [40]. Furthermore, it appears that in the supercritical sample the departure from the  the INS result of Bell et al. [40]. Furthermore, it appears that in the supercritical sample the departure hydrodynamic value happens at higher Q values and is much smoother. This seems consistent with the  −1 from the hydrodynamic value happens at higher Q values and is much smoother. This seems consistent extended hydrodynamic behavior (up to ≈8 nm ) of acoustic parameters already discussed in reference to  with the extended hydrodynamic behavior (up to 8 nm ) of acoustic parameters already discussed Figure 10. It has to be noticed that trends similar to the ones in Figure 11 were also reported in a previous  MD in rwork eference  on ato LeFigur nnard e Jones 10. It sy has steto m re bepresenta noticedtive that oftr Ar ends  at th similar e triple to po the int.ones    in Figure 11 were also reported in a previous MD work on a Lennard Jones system representative of Ar at the triple point. A final remark concerns the instantaneous term in the memory function decay (last term in Equation  (9)). It A is final reason remark able to concerns expect that the thinstantaneous is contribution term is rather in the  wememory ak for low function ‐viscosity decay  and non (last‐associ termate ind  fluids Equation  as noble (9)). gases. It is Th reasonable is conclusion to expect  is support that the this so contrib undness ution  of ais simple rather viweak scoelafor stic low-viscosity assumption. On and the  other hand in Ref. [42], using a double exponential model allows one to extract essentially the same value  non-associated fluids as noble gases. This conclusion is support the soundness of a simple viscoelastic −1 for the two timescales involved, at least for Q > 4–5 nm .  assumption. On the other hand in Ref. [42], using a double exponential model allows one to extract essentially the same value for the two timescales involved, at least for Q > 4–5 nm . 4.1. Microscopic vs. Structural Relaxations   4.1. Microscopic vs. Structural Relaxations The results discussed in [6] indicate that the relaxation phenomenon causing the viscoelastic response  of neon has a microscopic origin as opposite to the structural character of relaxations routinely observed in  The results discussed in [6] indicate that the relaxation phenomenon causing the viscoelastic associated  and/or  highly  viscous  fluids.  It  should  be  emphasized  that  structural  and  microscopic  response of neon has a microscopic origin as opposite to the structural character of relaxations relaxations have different physical origin and phenomenology: the former are cooperative in character and  routinely observed in associated and/or highly viscous fluids. It should be emphasized that structural involve readjustments of the structure in response to a mechanical or a scattering‐induced perturbation.  and microscopic relaxations have different physical origin and phenomenology: the former are Consequently, they are prevalent in glass‐forming systems or associated fluids, i.e., fluids with extended  cooperative in character and involve readjustments of the structure in response to a mechanical or network  of  bonds,  this  is,  e.g.,  liquid  water  [12,13,93–95],  hydrogen  fluoride  [14],  glycerol  [17].  Since  a scattering-induced perturbation. Consequently, they are prevalent in glass-forming systems or collective rearrangements of the structure are hampered by viscous processes, the timescale of structural  associated fluids, i.e., fluids with extended network of bonds, this is, e.g., liquid water [12,13,93–95], relaxation follows a temperature dependence roughly as steep as the one of viscosity.   hydrogen fluoride [14], glycerol [17]. Since collective rearrangements of the structure are hampered by 6 2 10 D (m /s) Appl. Sci. 2016, 6, 64 21 of 31 viscous processes, the timescale of structural relaxation follows a temperature dependence roughly as steep as the one of viscosity. Conversely, microscopic relaxations are induced by single molecules’ motions in the 10 s window and are dominating in simple systems, such as dense gases and non-associated, weakly viscous, fluids. These fast motions can be naturally identified with vibration-like cage oscillations. Due Appl. Sci. 2016, 6, 64  23 of 34  to their non-cooperative nature, microscopic relaxations are not significantly slowed down by viscosity and their timescale exhibits only a weak dependence on thermodynamic conditions. To quantitatively assess the hypothesized microscopic nature of viscoelastic pr−oce 13 sses in neon, Conversely, microscopic relaxations are induced by single molecules’ motions in the 10  s window  and are dominating in simple systems, such as dense gases and non‐associated, weakly viscous, fluids.  sensible variable to take as a reference is the mean free time between interatomic collisions, These  fast  motions  can  be  naturally  identified  with  vibration‐like  cage  oscillations.  Due  to  their  non‐ . This depends on atomic size, mass and shape, as well as on the interaction potential and cooperative  nature,  microscopic  relaxations  are  not  significantly  slowed  down  by  viscosity  and  their  thermodynamic state of the system. Without sophisticated calculations, a reasonable estimate can be timescale exhibits only a weak dependence on thermodynamic conditions.  obtained assuming as model a hard sphere gas following the Maxwell-Boltzmann statistics. For this To  quantitatively  assess  the  hypothesized  microscopic  nature  of  viscoelastic  processes  in  neon,  system the inter-collision time can be easily calculated as: sensible variable to take as a reference is the mean free time between interatomic collisions,τc. This depends  on atomic size, mass and shape, as well as on the interaction potential and thermodynamic state of the  system. Without sophisticated calculations, a reasonable estimate can be obtained assuming as model a  t  (14) hard sphere gas following the Maxwell‐Boltzmann statistics. For this system the inter‐collision time can be  16pd k T easily calculated as:  where d is the hard sphere diameter. In this context  can be identified as the characteristic timescale of τ  (14)  16πdk T interatomic interactions and for microscopic, or collisional, relaxations is reasonable that the relaxation time  and  have comparable values. In Figure 12 the Q-dependence of the reduced relaxation time where d is the hard sphere diameter. In this context τc can be identified as the characteristic timescale of  interatomic interactions and for microscopic, or collisional, relaxations is reasonable that the relaxation time  Y =  / is reported as obtained using  values measured in neon in Ref. In spite of the important τα and τc have comparable values. In Figure 12 the Q‐dependence of the reduced relaxation time Ψ = τα/τc  scattering of data, it is clear that for Q larger than about 8 nm Y approaches the unit value, as is reported as obtained using τα values measured in neon in Ref. In spite of the important scattering of data,  expected in the merely collisional limit. In this perspective, data in Figure 12 lead to the conclusion −1 it  is  clear  that  for  Q  larger  than  about  8  nm  Ψ  approaches  the  unit  value,  as  expected  in  the  merely  that for Q > 8 nm THz relaxation processes of neon are intimately related to interatomic−1collisions. collisional  limit.  In  this  perspective,  data  in  Figure  12  lead  to  the  conclusion  that  for  Q  >  8  nm   THz  This relamay xationbe  proce ansses expected  of neon conclusion, are intimatelyparticularly  related to intersince atomicr co elaxation llisions.  processes are activated by the This  may  be  an  expected  conclusion,  particularly  since  relaxation  processes  are  activated  by  the  coupling of density fluctuations with some internal degree of freedom of the system. Given that coupling  of  density  fluctuations  with  some  internal  degree  of  freedom  of  the  system.  Given  that  microscopic components of a monatomic fluid lack internal degrees of freedom, it seems natural to microscopic components of a monatomic fluid lack internal degrees of freedom, it seems natural to identify  identify local cage oscillations as the internal degree of freedom that density fluctuations couple to. local cage oscillations as the internal degree of freedom that density fluctuations couple to.   -3 n = 29 nm T = 32 K -3 T = 40 K n = 34.7 nm -3 T = 50 K n = 36.7 nm 10 -3 n = 38.5 nm 5 10 152025 30 -1 Q (nm ) Figure  12.  The  Q‐dependence  of  reduced  relaxation  time Ψ  = τα/τc  as  obtained  from  Ne  data  at  the  Figure 12. The Q-dependence of reduced relaxation time Y =  / as obtained from Ne data at thermodynamic conditions indicated in the plot. Data are adapted with permission from [6] copyrighted by  the thermodynamic conditions indicated in the plot. Data are adapted with permission from [6] American Physical Society. The horizontal line marks the unit value characteristic of the collisional regime.  copyrighted by American Physical Society. The horizontal line marks the unit value characteristic of the collisional regime. At this stage, THz viscoelastic data available in literature can be used to compare the case of Ne to the one even more studied of water. This comparison seems particularly meaningful due to the disparate nature of microscopic structure and, in particular, to the presence of a large-scale connectivity in water. Appl. Sci. 2016, 6, 64 22 of 31 A meaningful reference to compare viscoelastic effects in different materials is provided by the generalized longitudinal viscosity, whose link the viscoelastic spectral parameters is given by the formula: 2 2 rpw  w qt h  (15) Figure 7 displays the Q-dependence of  extracted (through Equation (15)) from the viscoelastic modeling of neon spectra in [6] at the thermodynamic conditions considered in Figure 4. Results on neon are compared with those obtained in liquid water from an IXS [13] and a joint INS and INS result on heavy water [78]. Some clear features readily emerge from the comparison: (1) Viscosity curves of Ne are only weakly dependent on thermodynamic conditions, although the macroscopic viscosity in the spanned thermodynamic interval undergoes important variations. Combined thermodynamic [72] and bulk viscosity data [28] of neon lead to estimate a more than 300% variation of  within the probed thermodynamic range, clearly non reproduced by mesoscopic measurements. Conversely, viscosity data of water in the same plot have a T dependence as sharp as the one of macroscopic viscosity [96]. This discrepancy is likely due to the large weight of structural processes in water, especially at the low Qs covered by data of [13]. Structural relaxations, owing to their collective nature can only be observed over long distances, or, equivalently, at high Qs and are expectedly dominating in associate liquids. (2) High T values of  approach from above low-Q neon data. This seems consistent with the inferred link between structural relaxation and local readjustment of the hydrogen bond (HB) network in water [12,13]. At the highest Ts the average number of HBs per molecule is sensibly lower which weakens the strength of structural relaxations [13,19]. (3) The strong Q-dependence of  in water suggests that at Q higher than the values covered by Ref. [13], viscosity curves of water and neon tend to get closer to each other also considering that the latter have an essentially flat Q-dependence at high Qs. This impression is confirmed by  data derived from extremely high resolution INS measurements of on deuterated water (line + open squares symbols) at T = 288 K, which covered a Q-range larger than those of other water data reported in the same plot. Overall, data in Figure 13 lead to the conclusion that the merely collisional component of relaxation in water becomes more relevant either at high T, i.e., upon approaching supercritical condition, or at Appl. Sci. 2016, 6, 64  25 of 34  high Qs, where structural relaxation become less prevalent. T= 277 K T= 288 K T= 333 K H O 1E-3 T= 433 K 1E-4 1E-5 Ne 1E-6 10 20 30 -1 Q (nm ) Figure 13. Longitudinal viscosity data derived using Equation (15) either from IXS measurements [13], on  Figure 13. Longitudinal viscosity data derived using Equation (15) either from IXS measurements [13], normal water (line + squares symbols), or from joint IXS and INS measurements [78] on heavy water (line +  on normal water (line + squares symbols), or from joint IXS and INS measurements [78] on heavy open squares). Data are redrawn with permission from [13] and [78] copyrighted by the American Physical  water Soci (line ety +.  open The  temperatu squares). res Data are  ind aricated e redrawn   in  the  plo with t.  Ne permission on  data  correspo fromn[d13  to ]  and the  sa [m 78e]  ther copyrighted modynamicby   the conditions and symbols as in Figure 4 and are redrawn with permission from [6] copyrighted by American  American Physical Society. The temperatures are indicated in the plot. Neon data correspond to the Physical Society.   same thermodynamic conditions and symbols as in Figure 4 and are redrawn with permission from [6] copyrighted by American Physical Society. 4.2. 2001–2003: Quantum Effects on the Line‐Shape  The treatment discussed so far is fully classical in character, being based on the assumption that all  involved operators are commuting and the correlation functions are even function of time or, equivalently,  that the spectral shape is symmetric in ω. It can be assumed that the onset of quantum effects primarily  induces an asymmetry on the shape of S(Q,ω) due to the different statistical population of states having  distinct ω values. In all experimental and computational works mentioned in this review, the spectrum is  described within a quasi‐classical approximation. According to such approximation, quantum effects only  influence the statistical populations of states having different ωs, through the so‐called detailed balance  principle [97]. This can be fulfilled in infinite possible ways; one of the most commonly used consisting in  the multiplication of the classical S(Q,ω) profile by the factor n(ω,) T = ω/[ kT1exp( ω/) kT], i.e.:  BB  ω 1   SQ (,ω)= S (Q,ω) (16)   C kT 1e xp( ω/) kT BB Here  is the “classical”, or symmetric, part of the spectrum which is essentially the Fourier  SQ (,ω) transform of the intermediate scattering F(Q,t). While deriving a model for  it is assumed that the  SQ (,ω) operator defining the time evolution of density are classical commuting variables. However, in real fluids  quantum deviations may be important.  In  this  respect,  it’s  worth  distinguishing  between  two  possible  quantum  effects  on  S(Q,ω):  i)  “diffraction”  or  “delocalization”  effects,  which  arise  from  the  non‐commutative  nature  of  Hamiltonian  operators; and ii) exchange effects, reflect the symmetry restriction to be fulfilled in a many body system  of identical particles.   1/ 2 Both effects depend on the de Broglie wavelengh  , however:  =2  π mk T  Diffraction  effects  are  relevant  only  when   matches  the  length‐scales  over  wich  the  interparticle  potential U(rij) varies apppreciably.   (Pa s) } Appl. Sci. 2016, 6, 64 23 of 31 4.2. 2001–2003: Quantum Effects on the Line-Shape The treatment discussed so far is fully classical in character, being based on the assumption that all involved operators are commuting and the correlation functions are even function of time or, equivalently, that the spectral shape is symmetric in !. It can be assumed that the onset of quantum effects primarily induces an asymmetry on the shape of S(Q,!) due to the different statistical population of states having distinct ! values. In all experimental and computational works mentioned in this review, the spectrum is described within a quasi-classical approximation. According to such approximation, quantum effects only influence the statistical populations of states having different !s, through the so-called detailed balance principle [97]. This can be fulfilled in infinite possible ways; one of the most commonly used consisting in the multiplication of the classical S(Q,!) profile by the factor npw, Tq  }w{k Tr1  expp}w{k Tqs, i.e.: B B }w 1 SpQ, wq  S pQ, wq (16) k T 1  expp}w{k Tq B B Here S pQ, wq is the “classical”, or symmetric, part of the spectrum which is essentially the Fourier transform of the intermediate scattering F(Q,t). While deriving a model for S pQ, wq it is assumed that the operator defining the time evolution of density are classical commuting variables. However, in real fluids quantum deviations may be important. In this respect, it’s worth distinguishing between two possible quantum effects on S(Q,!): i) “diffraction” or “delocalization” effects, which arise from the non-commutative nature of Hamiltonian operators; and ii) exchange effects, reflect the symmetry restriction to be fulfilled in a many body system of identical particles. 1{2 Both effects depend on the de Broglie wavelengh L  }p2p{mk Tq , however: Diffraction effects are relevant only when L matches the length-scales over wich the interparticle potential U(r ) varies apppreciably. ij Exchange effects are instead relevant when Lbecomes comparable with interatominc centers of mass distance and are thus observable only for small mass atoms, for which such a distance can be relatively small. These effects only emerge at very low temperature and responsible for few “spectacular” quanto-mechanical manifestations, such as, e.g., Bose condensation and superfluidity. One can reasonably assume that all sampple considerd in this review are either fully classical or moderately quantum fluids, for which exchange effects can be discarded, while quantum deviation can be achieved through h ¯ -order corrections of classical results. For moderately quantum fluids, one can still derive F(Q,t) using a memory function formalism. However, the operators defining the Hamiltonian of the system are generally non-commuting. For these systems, the time dependence of density fluctuation is derived as the solution of the Heisenberg equation of motion: . i drpQ, tq  irdr, Hs  rexpriQ r ptqs , Hs (17) where the Hamiltonian, H, for a N particle system reads as: ¸ ¸ H  U r (18) ij 2M i1,...N ij where r is the Laplacian operator and U r is a pair potential acting between the i-th and j-th atoms. i ij Three IXS works performed at the beginning of the new millennium were focused on the onset of quantum effects on the spectrum of supercritical He [98] and liquid Ne [99,100]. Whilst in the first work , quantum effects were investigated for moderate Qs as a function of temperature and density; in the two IXS works on Ne, due to the unprecedented wide Q range the whole transition in Q form the classical (continuous) to the quantum (single particle) regimes was crossed. Appl. Sci. 2016, 6, 64 24 of 31 In all these IXS works, quantum effects were sought for in the coefficients governing the short time dynamics, i.e. the spectral moments, which for a quantum fluid read as: n n n n xw y  1{i pB {Bt q Fpq, tq|  xrrrr, Hs Hs .......Hsy| (19) t0 t0 In principle thexw y can be computed from direct integration of IXS intensity. However, a rigorous computation is non-trivial, since one must cope with all spurious intensity effects and the contribution to the integral from the finite instrumental resolution. One can easily eliminate spurious intensity effect—as long as these are !-independent—by dealing with spectral moments’ ratios. Conversely, eliminating the resolution contribution would require a numerical deconvolution of the measured line-shape, which is ill-determined unless the spectral shapes has the form of a single featureless peak. In the IXS works mentioned above spectral moments were instead computed from direct integration of best fit (non-convoluted) model line-shape. This procedure led to estimate that, for instance, quantum effects in the neon measurement of Figures 12 and 13 although clearly sizable, are < 15%–20%, even at the lowest Ts and/or the highest densities. This estimate is roughly consistent with the one reported by Bell et al. [40]. One may wonder what influence these effects can have on the relaxation process. It can be shown that the so-called quantum viscoelastic [101], an exponential ansatz, can still be used. The direct consequence of quantum effects is a global softening of the interaction potential. This stems from the delocalized nature of the tagged particle, which enables a deeper penetration in the region where the interatomic potential is repulsive. 5. 2006-Present: Toward a New Vision of the Supercritical Phase Based on the results previously discussed, it may be natural to conclude that the viscoelastic behavior is a dynamic fingerprint of the liquid phase, which disappears when supercritical conditions are reached. Indeed, the PSD has often been considered an almost universal feature of liquid aggregates, since almost ubiquitously observed in liquid systems as disparate as, for instance hard sphere [102] and Lennard-Jones models [103], noble gases [43,46,71], as well as diatomic [8], associated [12,13] and glass forming [15,17] systems. Its disappearance at deeply supercritical conditions was considered as an indication that supercritical fluids do not exhibit a high frequency viscoelasticity. The actual test of this conjecture requires a thorough investigation of the THz spectral shape of supercritical fluid at extreme P and T values. For many decades, this has been an almost prohibitive task, owing to a number of experimental difficulties. As mentioned, the development of IXS brought about a substantial narrowing of the beam cross section, while the improved performance of undulators and crystal optics have dramatically enhanced the flux achievable in ordinary THz spectroscopy measurements. This paved the way to new class of IXS experiments at extreme pressures based upon the use of diamond anvil cells (DACs). Taking advantage of this opportunity, an IXS DACs measurement on deeply supercritical oxygen demonstrated that a PSD of about 20% in amplitude is visible at temperatures as high as nearly twice the critical one [104]. The results of this measurement imposed a global revision of the previous idea that THz viscoelasticity phenomena could represent a dynamical fingerprint of the liquid phase. Another breakthrough came from a successive joint IXS and MD work on Ar at extreme pressures [105], which showed the occurrence of a dynamic transition upon crossing a boundary in the supercritical domain. A dramatic reduction in the amplitude of PSD was, in fact, observed upon crossing the Widom line [106] and was interpreted as a crossover between a “liquid like” and a “gas like” sub-regions of the supercritical phase. As a reminder, the Widom line is defined as the locus of specific heat maxima, which emanates from the critical point toward the supercritical domain with essentially the same slope as the coexistence line. For this reason, the Widom line is often considered a “prosecution” of the coexistence line beyond the critical point. Perhaps the most intriguing aspect of these results is that the mere existence of a boundary in the thermodynamic plane challenges the long-standing vision of the supercritical phase as intrinsically uniform [107], thus opening up unexplored theoretical scenarios and novel investigation opportunities. Appl. Sci. 2016, 6, 64 25 of 31 Another important result came from the recent conclusion that PSD effects are intimately related to the onset of shear propagation. The occurrence of a shear mode propagation in argon was first demonstrated by a MD simulation on a Lennard Jones Ar [41,42]. As a common result, it was observed that at some wavelengths transverse current spectra bore evidence for a well-defined maximum, indicating the occurrence of a shear mode propagation. More recently, a joint IXS and MD simulation work on deeply supercritical argon [108] evidenced a close connection between the ability of a fluid system to support shear mode propagation and the presence of a sizeable PSD. In this work IXS spectra were measured along a nearly isobaric path (with P  1 GPa) with T spanning the 300 K–436 K temperature range, while MD data spanned the same isobar within a larger T-interval (up to 800 K). As a result, it was there shown that the disappearance of the PSD in deep supercritical conditions is accompanied by a parallel shear modes overdamping (see Figure 14). Overall, the fundamental character of the PSD and its link to thermodynamic transformations (previously disputed by [109]), are convincingly demonstrated in the work of Bolmatov et al. There, in fact, the PSD and the shear mode propagation are linked together and interpreted as different manifestations of the same universal property of fluids: the onset of a high frequency viscoelasticity. Appl. Sci. 2016, 6, 64  28 of 34  The results of this work suggest that the dynamic response of supercritical fluids is characterized by different regimes characteristic of distinct thermodynamic subdomains: (1) A gas‐like domain, featured by the absence of PSD effects and the related inability of the fluid to  (1) A gas-like domain, featured by the absence of PSD effects and the related inability of the fluid to support transverse wave propagation and   support transverse wave propagation and (2) A liquid‐like domain in which the system exhibits merely viscoelastic features such as a sizable PSD  and the onset of shear mode propagation.  (2) A liquid-like domain in which the system exhibits merely viscoelastic features such as a sizable PSD and the onset of shear mode propagation. Furthermore, in the work of Bolmatov and collaborators [108] the Frenkel line [110] was identified as  the crossover line between the two thermodynamic regions. The interpretation of the Frenkel line as a  Furthermore, in the work of Bolmatov and collaborators [108] the Frenkel line [110] was identified crossover  line  demarcating  the  presence/absence  of  transverse  acoustic  propagation  was  originally  as the crossover line between the two thermodynamic regions. The interpretation of the Frenkel line as discussed in [111]. It was also previously predicted that the occurrence, across the Frenkel line, of both  a crossover line demarcating the presence/absence of transverse acoustic propagation was originally dynamic and structural crossovers accompanied by changes in phonon states [112–115]. Finally, it is worth  mentioning a more recent work on deeply supercritical Ar [116], which provides compelling evidence for  discussed in [111]. It was also previously predicted that the occurrence, across the Frenkel line, of both important  dynamical  changes  occurring  upon  crossing  the  Frenkel  line  and  having  the  form  of  strong  dynamic and structural crossovers accompanied by changes in phonon states [112–115]. Finally, it is localization of the longitudinal sound mode.  worth mentioning a more recent work on deeply supercritical Ar [116], which provides compelling Most  importantly,  the  assessed  parallelism  between  the  disappearance  of  the  PSD  and  the  evidence for important dynamical changes occurring upon crossing the Frenkel line and having the overdamping  of  shear  mode  finally  indicates  that  the  observed  viscoelastic  behavior  in  noble  gases  is  form of strong localization of the longitudinal sound mode. related relaxation process primarily affecting the shear viscosity.   T = 600 K 12 T = 300 K 0 5 10 15 20 -1 Q (nm ) Figure 14. The dispersion curve of deeply supercritical Ar at P = 1 GPa, as evaluated from the maxima  Figure 14. The dispersion curve of deeply supercritical Ar at P = 1 GPa, as evaluated from the position  of  MD  simulated  longitudinal  (red  dots)  and  transverse  current  spectra  (open  circles).  The  maxima position of MD simulated longitudinal (red dots) and transverse current spectra (open circles). corresponding  hydrodynamic  dispersion  is  also  reported  as  a  dashed  line  for  comparison.  Adapted  with  The corresponding hydrodynamic dispersion is also reported as a dashed line for comparison. Adapted permission from [108]. Copyright (2016) of American Chemical Society.   with permission from [108]. Copyright (2016) of American Chemical Society. 6. Conclusions and Future Perspectives  In summary, this brief review shows that THz studies on simplest systems as noble gases have, across  the years, evidenced a rather complex behavior. The study of relaxation processes in these systems and, in  particular,  the  comparison  with  those  observed  in  more  complex,  associated  fluids  led  the  scientific  community to identify a new class of relaxation phenomena completely different from structural (or α‐ )relaxations routinely observed glass formers and highly viscous materials. These phenomena are faster (in  the  sub‐ps)  and  only  weakly  dependent  on  thermodynamic  conditions.  Furthermore,  their  timescale  is  weekly affected by first neighbors’ arrangement, as suggested to its flat Q‐dependence, which presents no  reminiscence of S(Q) oscillations. These collisional relaxations become visible also in associate fluids at  temperature approaching critical conditions—due to the decrease in network connectivity—and/or over    ,  (meV) L t Appl. Sci. 2016, 6, 64 26 of 31 Most importantly, the assessed parallelism between the disappearance of the PSD and the overdamping of shear mode finally indicates that the observed viscoelastic behavior in noble gases is related relaxation process primarily affecting the shear viscosity. 6. Conclusions and Future Perspectives This brief review results THz studies on the viscoelastic response of simplest systems as noble gases have, across the years evidenced a rather complex behavior. The study of relaxation processes in noble gases and, in particular, the comparison with those observed in more complex, associated fluids led the scientific community to identify a new class of relaxation phenomena completely different from structural (or -)relaxations routinely observed glass formers and highly viscous materials. These new relaxation phenomena are faster (in the sub-ps) and only weakly dependent on thermodynamic conditions. Furthermore, their timescale is weekly affected by first neighbors’ arrangement, as suggested to its flat Q-dependence which presents no reminiscence of S(Q) oscillations. These collisional relaxations become visible also in associate fluids at temperature approaching critical conditions—due to the decrease in network connectivity—and/or over short distances, over which collective rearrangements cannot take place. These phenomena have recently observed to drastically affect the shear components of viscosity and to be intimately related to the presence of transverse acoustic modes propagation. Most importantly, the study of viscoelastic phenomena at extreme supercritical conditions challenges the long-standing vision of the supercritical phase as inherently uniform state of matter. Nowadays these results call for a new and more complex understanding of the supercritical domain, based on the existence of liquid-like (viscoelastic) and gas-like (merely viscous) sub-domains separated by a thermodynamic boundary. Shedding further light onto this revolutionary hypothesis is certainly one of the main motivations for the scientific community working in the field. Looking ahead, further advances in the study of relaxation phenomena in noble gases and more specifically in noble gases are still held back by inherent limitation in the used techniques. If from one side INS is still hampered by both incident flux and kinematic limitation, the main drawback of current IXS is the broad and slowly decaying (essentially Lorentzian) resolution wings. When focusing on relaxation processes the relevant spectral information is gathered in the extremely low frequency or quasi-elastic spectral window, often on the side of a dominating central peak. A narrow resolution width is thus required to properly resolve the spectral features of interest, while a superior contrast is necessary to discern them from the broad wings of the elastic line. Fortunately, a new concept optics for both monochromatization and energy analysis holds the promise for new generation spectrometers meting the required performance [117]. This will enable to perform IXS experiments with a resolution function <1 meV broad and essentially Gaussian in shape. The feasibility of such high resolution optical schemes has been demonstrated in a recent work [118], while a beamline based on this working principle has recently become operative at the new synchrotron NSLS II of Brookhaven National Laboratory [119]. This new opportunity is certainly quite encouraging and, in the near future, deemed to further advance our knowledge of the complex THz dynamics of simple liquids. Acknowledgments: I wish to thank Tawandra Rowell-Cunsolo for the help in the manuscript preparation. Work performed at the National Synchrotron Light Source II, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. Conflicts of Interest: The authors declare no conflict of interest. References 1. Lovesey, S.W. Theory of Neutron Scattering from Condensed Matter; Clarendon Press: Oxford, UK, 1984; Volume 1. 2. Sinha, S.K. Theory of inelastic X-ray scattering from condensed matter. J. Phys. Condens. Matter. 2001, 13, 7511–7523. [CrossRef] Appl. Sci. 2016, 6, 64 27 of 31 3. Berne, B.J.; Pecora, R. Dynamic Light Scattering; John Wiley: New York, NY, USA, 1976. 4. Zwanzig, R. Lectures in Theoretical Physiscs; Brittin, W., Ed.; Wiley-Inerscience: New York, NY, USA, 1961; Volume 3, pp. 106–141. 5. Mori, H. A continued-fraction representation of the time-correlation functions. Prog. Theor. Phys. 1965, 34, 399–416. [CrossRef] 6. Cunsolo, A.; Pratesi, G.; Verbeni, R.; Colognesi, D.; Masciovecchio, C.; Monaco, G.; Ruocco, G.; Sette, F. Microscopic relaxation in supercritical and liquid neon. J. Chem. Phys. 2001, 114, 2259–2267. [CrossRef] 7. Bencivenga, F.; Cunsolo, A.; Krisch, M.; Monaco, G.; Orsingher, L.; Ruocco, G.; Sette, F.; Vispa, A. Structural and collisional relaxations in liquids and supercritical fluids. Phys. Rev. Lett. 2007, 98, 085501. [CrossRef] [PubMed] 8. Bencivenga, F.; Cunsolo, A.; Krisch, M.; Monaco, G.; Ruocco, G.; Sette, F. Adiabatic and isothermal sound waves: The case of supercritical nitrogen. Europhys. Lett. 2006, 75, 70–76. [CrossRef] 9. Scopigno, T.; Balucani, U.; Ruocco, G.; Sette, F. Evidence of two viscous relaxation processes in the collective dynamics of liquid lithium. Phys. Rev. Lett. 2000, 85, 4076–4079. [CrossRef] [PubMed] 10. Scopigno, T.; Balucani, U.; Ruocco, G.; Sette, F. Inelastic X-ray scattering study of the collective dynamics in simple liquid metals. J. Non-Cryst. Solids 2002, 312–314, 121–127. [CrossRef] 11. Scopigno, T.; Ruocco, G.; Sette, F. Microscopic dynamics in liquid metals: The experimental point of view. Rev. Mod. Phys. 2005, 77, 881–933. [CrossRef] 12. Cunsolo, A.; Ruocco, G.; Sette, F.; Masciovecchio, C.; Mermet, A.; Monaco, G.; Sampoli, M.; Verbeni, R. Experimental determination of the structural relaxation in liquid water. Phys. Rev. Lett. 1999, 82, 775–778. [CrossRef] 13. Monaco, G.; Cunsolo, A.; Ruocco, G.; Sette, F. Viscoelastic behavior of water in the terahertz-frequency range: An inelastic X-ray scattering study. Phys. Rev. E 1999, 60, 5505–5521. [CrossRef] 14. Angelini, R.; Giura, P.; Monaco, G.; Ruocco, G.; Sette, F.; Verbeni, R. Structural and microscopic relaxation processes in liquid hydrogen fluoride. Phys. Rev. Lett. 2002, 88, 255503. [CrossRef] [PubMed] 15. Fioretto, D.; Buchenau, U.; Comez, L.; Sokolov, A.; Masciovecchio, C.; Mermet, A.; Ruocco, G.; Sette, F.; Willner, L.; Frick, B.; et al. High-frequency dynamics of glass-forming polybutadiene. Phys. Rev. E 1999, 59, 4470–4475. [CrossRef] 16. Scarponi, F.; Comez, L.; Fioretto, D.; Palmieri, L. Brillouin light scattering from transverse and longitudinal acoustic waves in glycerol. Phys. Rev. B 2004, 70, 054203. [CrossRef] 17. Giugni, A.; Cunsolo, A. Structural relaxation in the dynamics of glycerol: A joint visible, UV and X-ray inelastic scattering study. J. Phys. Condens. Matter. 2006, 18, 889–902. [CrossRef] 18. Comez, L.; Fioretto, D.; Monaco, G.; Ruocco, G. Brillouin scattering investigations of fast dynamics in glass forming systems. J. Non-Cryst. Solids 2002, 307, 148–153. [CrossRef] 19. Bencivenga, F.; Cimatoribus, A.; Gessini, A.; Izzo, M.G.; Masciovecchio, C. Temperature and density dependence of the structural relaxation time in water by inelastic ultraviolet scattering. J. Chem. Phys. 2009, 131, 144502. [CrossRef] [PubMed] 20. Bencivenga, F.; Cunsolo, A.; Krisch, M.; Monaco, G.; Ruocco, G.; Sette, F. High frequency dynamics in liquids and supercritical fluids: A comparative inelastic X-ray scattering study. J. Chem. Phys. 2009, 130, 064501. [CrossRef] [PubMed] 21. Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Oxford University Press: Oxford, UK, 1989. 22. Boon, J.P.; Yip, S. Molecular Hydrodynamics; Courier Dover Publications: Dover, UK, 1980. 23. Bafile, U.; Guarini, E.; Barocchi, F. Collective acoustic modes as renormalized damped oscillators: Unified description of neutron and X-ray scattering data from classical fluids. Phys. Rev. E 2006, 73, 061203. [CrossRef] [PubMed] 24. Brillouin, L. Diffusion of light and X-rays by a transparent homogeneous body. Ann. Phys. 1922, 17, 88. 25. Landau, L.; Placzek, G. The structure of undisplaced scattered lines. Physik. Z. Sowjet. 1934, 5, 172. 26. Fabelinskii, I. Some aspects of the molecular scattering of light in liquids. Phys. Usp. 1957, 63, 355–410. [CrossRef] 27. Fleury, P.A.; Boon, J.P. Brillouin scattering in simple liquids—Argon and neon. Phys. Rev. 1969, 186, 244–254. [CrossRef] 28. Castillo, R.; Castaneda, S. The bulk viscosity in dense fluids. Int. J. Thermophys. 1988, 9, 383–390. [CrossRef] Appl. Sci. 2016, 6, 64 28 of 31 29. Rouch, J.; Lai, C.C.; Chen, S.H. Brillouin-scattering studies of normal and supercooled water. J. Chem. Phys. 1976, 65, 4016–4021. [CrossRef] 30. Fleury, P.; Boon, J.-P. Laser light scattering in fluid systems. Advances in Chemical Physics 1973, 24, 1–93. 31. Chen, S.H.; Eder, O.J.; Egelstaf, P.; Haywood, B.C.G.; Webb, F.J. Co-operative modes of motion in simple liquids. Phys. Lett. 1965, 19, 269–271. [CrossRef] 32. Kroô, N.; Borgonovi, G.; Skôld, K.; Larsson, K.-E. Inelastic scattering of cold neutrons by condensed argon. In Proceedings of the Symposium on Inelastic Scattering of Neutrons, Bombay, India, 15–19 December 1964; IAEA: Bombay, India, 1964. 33. Sköld, K.; Larsson, K.E. Atomic motion in liquid argon. Phys. Rev. 1967, 161, 102–116. [CrossRef] 34. Randolph, P.D.; Singwi, K.S. Slow-neutron scattering and collective motions in liquid lead. Phys. Rev. 1966, 152, 99. [CrossRef] 35. Rahman, A. Propagation of density fluctuations in liquid rubidium: A molecular-dynamics study. Phys. Rev. Lett. 1974, 32, 52–54. [CrossRef] 36. Price, D.L. Effects of a volume-dependent potential on equilibrium properties of liquid sodium. Phys. Rev. A 1971, 4, 358–363. [CrossRef] 37. Bell, H.G.; Kollmar, A.; Alefeld, B.; Springer, T. Investigation of collective excitations in liquid neon by means of neutron-scattering at small scattering vectors. Phys. Lett. A 1973, 45, 479–480. [CrossRef] 38. Henshaw, D.G.; Woods, A.D.B. Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Phys. Rev. 1961, 121, 1266–1274. [CrossRef] 39. Dorner, B.; Plesser, T.; Stiller, H. Brillouin scattering of neutrons from liquids. Discuss. Faraday Soc. 1967, 43, 160–168. [CrossRef] 40. Bell, H.; Moellerwenghoffer, H.; Kollmar, A.; Stockmeyer, R.; Springer, T.; Stiller, H. Neutron Brillouin- scattering in fluid neon. Phys. Rev. A 1975, 11, 316–327. [CrossRef] 41. Ailawadi, N.K.; Rahman, A.; Zwanzig, R. Generalized hydrodynamics and analysis of current correlation functions. Phys. Rev. A 1971, 4, 1616–1625. [CrossRef] 42. Levesque, D.; Verlet, L.; Kürkijarvi, J. Computer "experiments" on classical fluids. Iv. Transport properties and time-correlation functions of the lennard-jones liquid near its triple point. Phys. Rev. A 1973, 7, 1690–1700. [CrossRef] 43. Van Well, A.A.; Verkerk, P.; de Graaf, L.A.; Suck, J.B.; Copley, J.R.D. Density-fluctuations in liquid argon—Coherent dynamic structure factor along the 120-K isotherm obtained by neutron-scattering. Phys. Rev. A 1985, 31, 3391–3414. [CrossRef] [PubMed] 44. De Schepper, I.M.; Verkerk, P.; van Well, A.A.; de Graaf, L.A. Short-wavelength sound modes in liquid argon. Phys. Rev. Lett. 1983, 50, 974–977. [CrossRef] 45. Verkerk, P.; van Well, A.A.; de Schepper, I.M. Disappearance of the sound-propagation gap in liquid argon at very high-densities. J. Phys. C: Solid State Phys. 1987, 20, L979–L982. [CrossRef] 46. Van Well, A.A.; de Graaf, L.A. Density fluctuations in liquid argon. Ii. Coherent dynamic structure factor at large wave numbers. Phys. Rev. A 1985, 32, 2384–2395. [CrossRef] [PubMed] 47. De Schepper, I.M.; Verkerk, P.; van Well, A.A.; de Graaf, L.A. Non-analytic dispersion relations in liquid argon. Phys. Lett. A 1984, 104, 29–32. [CrossRef] 48. McGreevy, R.L.; Mitchell, E.W.J. Collective modes in molten alkaline earth chlorides: III. Inelastic neutron scattering from molten MGCL2 and CACL2. J. Phys. C Solid State Phys. 1985, 18, 1163–1178. [CrossRef] 49. Crevecoeur, R.M.; Verberg, R.; de Schepper, I.M.; de Graaf, L.A.; Montfrooij, W. Overdamped phonons in fluid helium at 4 K. Phys. Rev. Lett. 1995, 74, 5052–5055. [CrossRef] [PubMed] 50. Montfrooij, W.; de Graaf, L.A.; de Schepper, I.M. Viscoelastic behavior of helium at 39-K and 114-bar. Phys. Rev. A 1991, 44, 6559–6563. [CrossRef] [PubMed] 51. Zuilhof, M.J.; Cohen, E.G.D.; de Schepper, I.M. Sound-propagation in fluids and neutron-spectra. Phys. Lett. A 1984, 103, 120–125. [CrossRef] 52. De Gennes, P.G. Liquid dynamics and inelastic scattering of neutrons. Physica 1959, 25, 825–839. [CrossRef] 53. Lovesey, S.W. Comment on “short-wavelength sound modes in liquid argon”. Phys. Rev. Lett. 1984, 53, 401. [CrossRef] 54. De Schepper, I.M.; Verkerk, P.; van Well, A.A.; de Graaf, L.A.; Cohen, E.G.D. de Schepper et al. Respond. Phys. Rev. Lett. 1985, 54, 158. [CrossRef] Appl. Sci. 2016, 6, 64 29 of 31 55. Hansen, J.-P.; McDonald, I.R. Chapter 3—Static properties of liquids: Thermodynamics and structure. In Theory of Simple Liquids, 3rd ed.; Hansen, J.-P., McDonald, I.R., Eds.; Academic Press: Burlington, VT, USA, 2006; pp. 46–77. 56. Cohen, E.G.D. Fifty years of kinetic theory. Physica A 1993, 194, 229–257. [CrossRef] 57. Yip, S. Renormalized kinetic-theory of dense fluids. Annu. Rev. Phys. Chem. 1979, 30, 547–577. [CrossRef] 58. Kamgar-Parsi, B.; Cohen, E.G.; de Schepper, I.M. Dynamical processes in hard-sphere fluids. Phys. Rev. A 1987, 35, 4781–4795. [CrossRef] [PubMed] 59. Rabinovich, V.A.; Vasserman, A.A.; Nedostup, V.I.; Veksler, L.S. Thermophysical Properties of Neon, Argon, Krypton, and Xenon; Hemisphere Pub. Corp.: Washington, DC, USA, 1987. 60. Postol, T.A.; Pelizzari, C.A. Neutron-scattering study of thermally excited density fluctuations in a dense classical fluid. Phys. Rev. A 1978, 18, 2321–2336. [CrossRef] 61. Ernst, M.H.; Haines, L.K.; Dorfman, J.R. Theory of transport coefficients for moderately dense gases. Rev. Mod. Phys. 1969, 41, 296–316. [CrossRef] 62. Bafile, U.; Verkerk, P.; Barocchi, F.; de Graaf, L.A.; Suck, J.; Mutka, H. Onset of depature from linearized hydrodynamic behavior in argon gas studied with neutron brillouin scattering. Phys. Rev. Lett. 1990, 65, 2394–2397. [CrossRef] [PubMed] 63. Balucani, U.; Zoppi, M. Dynamics of the Liquid State; Clarendon Press Oxford: Oxford, UK, 1994. 64. Krisch, M.; Sette, F. Neutron and X-ray Spectroscopy; Springer Verlag: Berlin, Germany, 2007; pp. 317–370. 65. Cunsolo, A.; Pratesi, G.; Ruocco, G.; Sampoli, M.; Sette, F.; Verbeni, R.; Barocchi, F.; Krisch, M.; Masciovecchio, C.; Nardone, M. Dynamics of dense supercritical neon at the transition from hydrodynamical to single-particle regimes. Phys. Rev. Lett. 1998, 80, 3515–3518. [CrossRef] 66. Cunsolo, A.; Pratesi, G.; Rosica, F.; Ruocco, G.; Sampoli, M.; Sette, F.; Verbeni, R.; Barocchi, F.; Krisch, M.; Masciovecchio, C.; et al. Is there any evidence of a positive sound dispersion in the high frequency dynamics of noble gases? J. Phys. Chem. Sol. 2000, 61, 477–483. [CrossRef] 67. Cunsolo, A. Relaxation phenomena in the THZ dynamics of simple fluids probed by inelastic X-ray scattering. PhD Thesis, Université J. Fourier, Grenoble, France, 1999. 68. Verkerk, P.; van Well, A.A. Short wavelength sound dispersion in liquid argon close to solidification. Physica B + C 1986, 136, 168–171. [CrossRef] 69. Cowley, R.A.; Woods, A.D.B. Neutron scattering from liquid helium at high energies. Phys. Rev. Lett. 1968, 21, 787–789. [CrossRef] 70. Montfrooij, W.; de Graaf, L.A.; de Schepper, I.M. Propagating microscopic temperature-fluctuations in a dense helium fluid at 13.3-K. Phys. Rev. B 1992, 45, 3111–3114. [CrossRef] 71. Van Well, A.A.; de Graaf, L.A. Density fluctuations in liquid neon studied by neutron scattering. Phys. Rev. A 1985, 32, 2396–2412. [CrossRef] [PubMed] 72. Thermodynamic Data are from the Database. Available online: http://webbook.nist.gov/chemistry/ form-ser.html (accessed on 1 September 2015). 73. Pontecorvo, E.; Krisch, M.; Cunsolo, A.; Monaco, G.; Mermet, A.; Verbeni, R.; Sette, F.; Ruocco, G. High-frequency longitudinal and transverse dynamics in water. Phys. Rev. E 2005, 71, 011501. [CrossRef] [PubMed] 74. Torre, R.; Bartolini, P.; Righini, R. Structural relaxation in supercooled water by time-resolved spectroscopy. Nature 2004, 428, 296–299. [CrossRef] [PubMed] 75. Masciovecchio, C.; Santucci, S.C.; Gessini, A.; Di Fonzo, S.; Ruocco, G.; Sette, F. Structural relaxation in liquid water by inelastic UV scattering. Phys. Rev. Lett. 2004, 92, 255507. [CrossRef] [PubMed] 76. Sampoli, M.; Ruocco, G.; Sette, F. Mixing of longitudinal and transverse dynamics in liquid water. Phys. Rev. Lett. 1997, 79, 1678–1681. [CrossRef] 77. Cimatoribus, A.; Saccani, S.; Bencivenga, F.; Gessini, A.; Izzo, M.G.; Masciovecchio, C. The mixed longitudinal-transverse nature of collective modes in water. New J. Phys. 2010, 12, 053008. [CrossRef] 78. Cunsolo, A.; Kodituwakku, C.N.; Bencivenga, F.; Frontzek, M.; Leu, B.M.; Said, A.H. Transverse dynamics of water across the melting point: A parallel neutron and X-ray inelastic scattering study. Phys. Rev. B 2012, 85. [CrossRef] 79. Cunsolo, A.; Li, Y.; Kodituwakku, C.N.; Wang, S.; Antonangeli, D.; Bencivenga, F.; Battistoni, A.; Verbeni, R.; Tsutsui, S.; Baron, A.Q.; et al. Signature of a polyamorphic transition in the Thz spectrum of vitreous GEO2. Sci. Rep. 2015, 5, 14996. [CrossRef] [PubMed] Appl. Sci. 2016, 6, 64 30 of 31 80. Scopigno, T.; Pontecorvo, E.; Di Leonardo, R.; Krisch, M.; Monaco, G.; Ruocco, G.; Ruzicka, B.; Sette, F. High-frequency transverse dynamics in glasses. J. Phys. Condens. Matter. 2003, 15, S1269–S1278. [CrossRef] 81. Hosokawa, S.; Inui, M.; Kajihara, Y.; Matsuda, K.; Ichitsubo, T.; Pilgrim, W.C.; Sinn, H.; Gonzalez, L.E.; Gonzalez, D.J.; Tsutsui, S.; et al. Transverse acoustic excitations in liquid Ga. Phys. Rev. Lett. 2009, 102, 105502. [CrossRef] [PubMed] 82. Giordano, V.M.; Monaco, G. Inelastic X-ray scattering study of liquid Ga: Implications for the short-range order. Phys. Rev. B 2011, 84, 052201. [CrossRef] 83. Hosokawa, S.; Inui, M.; Kajihara, Y.; Matsuda, K.; Ichitsubo, T.; Pilgrim, W.C.; Sinn, H.; Gonzalez, L.E.; Gonzalez, D.J.; Tsutsui, S.; et al. Transverse excitations in liquid Ga. Eur. Phys. J. 2011, 196, 85–93. 84. Hosokawa, S.; Munejiri, S.; Inui, M.; Kajihara, Y.; Pilgrim, W.C.; Ohmasa, Y.; Tsutsui, S.; Baron, A.Q.; Shimojo, F.; Hoshino, K. Transverse excitations in liquid sn. J. Phys. Condens. Matter. 2013, 25, 112101. [CrossRef] [PubMed] 85. Hosokawa, S.; Pilgrim, W.C.; Sinn, H.; Alp, E.E. The possibility of transverse excitation modes in liquid Ga. J. Phys. Condens. Matter. 2008, 20, 114107. [CrossRef] [PubMed] 86. Paciaroni, A.; Orecchini, A.; Haertlein, M.; Moulin, M.; Conti Nibali, V.; De Francesco, A.; Petrillo, C.; Sacchetti, F. Vibrational collective dynamics of dry proteins in the terahertz region. J. Phys. Chem. B 2012, 116, 3861–3865. [CrossRef] [PubMed] 87. Violini, N.; Orecchini, A.; Paciaroni, A.; Petrillo, C.; Sacchetti, F. Neutron scattering investigation of high-frequency dynamics in glassy glucose. Phys. Rev. B 2012, 85, 134204. [CrossRef] 88. Li, M.D.; Chu, X.Q.; Fratini, E.; Baglioni, P.; Alatas, A.; Alp, E.E.; Chen, S.H. Phonon-like excitation in secondary and tertiary structure of hydrated protein powders. Soft Matter. 2011, 7, 9848–9853. [CrossRef] 89. Cunsolo, A.; Kodituwakku, C.N.; Bencivenga, F.; Said, A.H. Shear propagation in the terahertz dynamics of water-glycerol mixtures. J. Chem. Phys. 2013, 139, 184507. [CrossRef] [PubMed] 90. Balucani, U.; Brodholt, J.P.; Vallauri, R. Dynamical properties of liquid water. J. Phys. Condens. Matter. 1996, 8, 9269–9274. [CrossRef] 91. Debye, P. Zur theorie der spezifischen wärmen. Ann. Phys. 1912, 344, 789–839. [CrossRef] 92. Lovesey, S.W. Density fluctuations in classical monatomic liquids. J. Phys. C Solid State Phys. 1971, 4, 3057–3064. [CrossRef] 93. Magazu, S.; Maisano, G.; Majolino, D.; Mallamace, F.; Migliardo, P.; Aliotta, F.; Vasi, C. Relaxation process in deeply supercooled water by mandelstam-brillouin scattering. J. Phys. Chem. 1989, 93, 942–947. [CrossRef] 94. Maisano, G.; Migliardo, P.; Aliotta, F.; Vasi, C.; Wanderlingh, F.; Darrigo, G. Evidence of anomalous acoustic behavior from brillouin-scattering in supercooled water. Phys. Rev. Lett. 1984, 52, 1025–1028. [CrossRef] 95. Cunsolo, A.; Nardone, M. Velocity dispersion and viscous relaxation in supercooled water. J. Chem. Phys. 1996, 105, 3911–3917. [CrossRef] 96. Franks, F. Water: A Comprehensive Treatise; Plenum: New York, NY, USA, 1972; Volume 1. 97. Coester, F. Principle of detailed balance. Phys. Rev. 1951, 84, 1259. [CrossRef] 98. Verbeni, R.; Cunsolo, A.; Pratesi, G.; Monaco, G.; Rosica, F.; Masciovecchio, C.; Nardone, M.; Ruocco, G.; Sette, F.; Albergamo, F. Quantum effects in the dynamics of he probed by inelastic X-ray scattering. Phys. Rev. E 2001, 64, 021203. [CrossRef] [PubMed] 99. Monaco, G.; Cunsolo, A.; Pratesi, G.; Sette, F.; Verbeni, R. Deep inelastic atomic scattering of X-rays in liquid neon. Phys. Rev. Lett. 2002, 88, 227401. [CrossRef] [PubMed] 100. Cunsolo, A.; Monaco, G.; Nardone, M.; Pratesi, G.; Verbeni, R. Transition from the collective to the single-particle regimes in a quantum fluid. Phys. Rev. B 2003, 67, 024507. [CrossRef] 101. Rabani, E.; Reichman, D.R. A self-consistent mode-coupling theory for dynamical correlations in quantum liquids: Rigorous formulation. J. Chem. Phys. 2002, 116, 6271–6278. [CrossRef] 102. Gotze, W.; Mayr, M.R. Evolution of vibrational excitations in glassy systems. Phys. Rev. E 2000, 61, 587–606. [CrossRef] 103. De Schepper, I.M.; Cohen, E.G.; Bruin, C.; van Rijs, J.C.; Montfrooij, W.; de Graaf, L.A. Hydrodynamic time correlation functions for a lennard-jones fluid. Phys. Rev. A 1988, 38, 271–287. [CrossRef] [PubMed] 104. Gorelli, F.; Santoro, M.; Scopigno, T.; Krisch, M.; Ruocco, G. Liquidlike behavior of supercritical fluids. Phys. Rev. Lett. 2006, 97, 245702. [CrossRef] [PubMed] Appl. Sci. 2016, 6, 64 31 of 31 105. Simeoni, G.G.; Bryk, T.; Gorelli, F.A.; Krisch, M.; Ruocco, G.; Santoro, M.; Scopigno, T. The widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids. Nat. Phys. 2010, 6, 503–507. [CrossRef] 106. Widom, B. Phase Transitions and Critical Phenomena; Domb, C.G., Ed.; Academic Press: Waltham, MA, USA, 1972; Volume 2. 107. Zemansky, Y. Heat and Thermodynamics : An Intermediate Textbook, 7th ed.; McGraw-Hill: New York, NY, USA, 1937. 108. Bolmatov, D.; Zhernenkov, M.; Zavyalov, D.; Stoupin, S.; Cai, Y.Q.; Cunsolo, A. Revealing the mechanism of the viscous-to-elastic crossover in liquids. J. Phys. Chem. Lett. 2015, 6, 3048–3053. [CrossRef] [PubMed] 109. Brazhkin, V.V.; Fomin, Y.D.; Lyapin, A.G.; Ryzhov, V.N.; Tsiok, E.N.; Trachenko, K. “Liquid-gas” transition in the supercritical region: Fundamental changes in the particle dynamics. Phys. Rev. Lett. 2013, 111, 145901. [CrossRef] [PubMed] 110. Frenkel, J. Kinetic Theory of Liquids; Oxford University Press: Oxford, UK, 1947. 111. Brazhkin, V.V.; Fomin, Y.D.; Lyapin, A.G.; Ryzhov, V.N.; Trachenko, K. Two liquid states of matter: A dynamic line on a phase diagram. Phys. Rev. E 2012, 85, 031203. [CrossRef] [PubMed] 112. Bolmatov, D.; Musaev, E.T.; Trachenko, K. Symmetry breaking gives rise to energy spectra of three states of matter. Sci. Rep. 2013, 3, 2794. [CrossRef] [PubMed] 113. Bolmatov, D.; Brazhkin, V.V.; Trachenko, K. The phonon theory of liquid thermodynamics. Sci. Rep. 2012, 2, 421. [CrossRef] [PubMed] 114. Bolmatov, D.; Zavyalov, D.; Zhernenkov, M.; Musaev, E.T.; Cai, Y.Q. Unified phonon-based approach to the thermodynamics of solid, liquid and gas states. Ann. Phys. 2015, 363, 221–242. [CrossRef] 115. Bolmatov, D.; Brazhkin, V.V.; Trachenko, K. Thermodynamic behaviour of supercritical matter. Nat. Commun. 2013, 4, 2331. [CrossRef] [PubMed] 116. Bolmatov, D.; Zhernenkov, M.; Zav’yalov, D.; Stoupin, S.; Cunsolo, A.; Cai, Y.Q. Thermally triggered phononic gaps in liquids at thz scale. Sci. Rep. 2016, 6, 19469. [CrossRef] [PubMed] 117. Shvyd’ko, Y. X-ray Optics—High-Energy-Resolution Applications, Optical Science; Springer: Berlin, Germany; New York, NY, USA, 2004; Volume 98. 118. Shvyd’ko, Y.; Stoupin, S.; Shu, D.; Collins, S.P.; Mundboth, K.; Sutter, J.; Tolkiehn, M. High-contrast sub-millivolt inelastic X-ray scattering for nano- and mesoscale science. Nat. Commun. 2014, 5, 4219. [CrossRef] [PubMed] 119. Cai, Y.Q.; Coburn, D.S.; Cunsolo, A.; Keister, J.W.; Honnicke, M.G.; Huang, X.R.; Kodituwakku, C.N.; Stetsko, Y.; Suvorov, A.; Hiraoka, N.; et al. The ultrahigh resolution ixs beamline of nsls-II: Recent advances and scientific opportunities. J. Phys. Conf. Ser. 2013, 425, 202001. [CrossRef] © 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Journal

Applied SciencesMultidisciplinary Digital Publishing Institute

Published: Feb 26, 2016

There are no references for this article.