Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. Originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Three Species of the Genus Rosa

Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. Originating from Far Eastern... Article Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. Originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Three Species of the Genus Rosa 1,2, 3 4 3 Mayya P. Razgonova *, Bayana A. Bazhenova , Yulia Yu. Zabalueva , Anastasia G. Burkhanova , 5,6 7 1 8 Alexander M. Zakharenko , Andrey N. Kupriyanov , Andrey S. Sabitov , Sezai Ercisli 2,5,6 and Kirill S. Golokhvast N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia Department of Bioeconomy and Food Security, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia East Siberian State University of Technology and Management, Klyuchevskaya Str. 40V, 670013 Ulan-Ude, Russia K.G. Razumovsky Moscow State University of Technologies and Management, Zemlyanoy Val Str. 73, 109004 Moscow, Russia Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, Tomsk State University, Lenin Str. 36, 634050 Tomsk, Russia Citation: Razgonova, M.P.; Federal Research Center of Coal and Coal-Chemistry of SB RAS, 650000 Kemerovo, Russia Bazhenova, B.A.; Zabalueva, Y.Y.; Ataturk University, Kampusu Ataturk Universitesi, 25030 Yakutiye, Turkey Burkhanova, A.G.; * Correspondence: m.razgonova@vir.nw.ru Zakharenko, A.M.; Kupriyanov, A.N.; Sabitov, A.S.; Abstract: Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. contain a large number Ercisli, S.; Golokhvast, K.S. of target analytes which are bioactive compounds. High performance liquid chromatography Rosa davurica Pall., Rosa rugosa (HPLC), in combination with the ion trap (tandem mass spectrometry), was used to identify target Thunb., and Rosa acicularic Lindl. analytes in MeOH extracts of R. rugosa, R. davurica, and R. acicularis, originating from the Russian Originating from Far East of Russia: Far East, Trans-Baikal Region, and Western Siberia. The results of initial studies revealed the pres- Screening of 146 Chemical ence of 146 compounds, of which 115 were identified for the first time in the genus Rosa (family Constituents in Three Species of the Genus Rosa. Appl. Sci. 2022, 12, 9401. Rosaceae). The newly identified metabolites belonged to 18 classes, including 14 phenolic acids and https://doi.org/10.3390/app12199401 their conjugates, 18 flavones, 7 flavonols, 2 flavan-3-ols, 2 flavanones, 3 stilbenes, 2 coumarins, 2 lignans, 9 anthocyanins, 3 tannins, 8 terpenoids, 3 sceletium alkaloids, 4 fatty acids, 2 sterols, 2 ca- Academic Editor: Monica Gallo rotenoids, 3 oxylipins, 3 amino acids, 5 carboxylic acids, etc. The proven richness of the bioactive Received: 19 August 2022 components of targeted extracts of R. rugosa, R. davurica, and R. acicularis invites extensive biotech- Accepted: 12 September 2022 nological and pharmaceutical research, which can make a significant contribution both in the field Published: 20 September 2022 of functional and enriched nutrition, and in the field of cosmetology and pharmacy. Publisher’s Note: MDPI stays neu- tral with regard to jurisdictional Keywords: Rosa rugosa; Rosa davurica; Rosa acicularis; ion trap; tandem mass spectrometry; claims in published maps and institu- polyphenolic compounds tional affiliations. 1. Introduction Copyright: © 2022 by the authors. Li- Plants have been used as medicines since the existence of human civilization [1,2]. censee MDPI, Basel, Switzerland. More than 35 thousand varieties of plants from different parts of the world are actively This article is an open access article used for medical purposes, since they contain numerous phytocomponents that can po- distributed under the terms and con- tentially treat many diseases, including infectious ones [3]. Numerous medical systems of ditions of the Creative Commons At- treatment, such as Ayurveda, Unani, homeopathy, naturopathy, Siddha, and others, rely tribution (CC BY) license (https://cre- ativecommons.org/licenses/by/4.0/). on plants as effective remedies for various life-threatening diseases [4,5]. Due to the Appl. Sci. 2022, 12, 9401. https://doi.org/10.3390/app12199401 www.mdpi.com/journal/applsci Appl. Sci. 2022, 12, 9401 15 of 29 presence of secondary metabolites in plants, they have significant potential as antimicro- bial agents. The diversity of these natural products offers an endless number of possibili- ties for the discovery of new drugs for the treatment of various diseases [6–8]. In recent years, traditional medicine based on oral herbal preparations has attracted the attention of both consumers and healthcare professionals. However, the use of these medicinal products requires improved knowledge of their composition and stability over time in order to support or validate these therapies in humans. Liquid preparations from medicinal plants, such as tinctures and extracts from plant buds, are typical products that are widely used but still poorly understood. Plant bud extracts are defined as extracts obtained exclusively from fresh buds, shoots, young leaves, and/or roots, which are mac- erated and extracted with hydro–glycerol and water–alcohol mixtures [9]. Kidney extracts represent a new category of herbal products well known and widely used in gemmother- apy, as well as in homeopathy and herbal medicine [10]. The genus Rosa (family Rosaceae) is represented on the territory of the Trans-Baikal region, Far East (Russian Federation), and Western Siberia by 3 species—Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. (Figures 1 and 2). Fresh fruits and leaves contain up to 900 mg% ascorbic acid per dry pulp weight. Fresh petals contain 0.25– 0.38% essential oil. Its neutral volatile fraction contains 86.3% phenylethyl alcohol, some linalool, citronellol, geraniol, nerol, etc. Eugenol was found in the phenolic fraction, phe- nylacetic, benzoic, and other acids in the acid fraction. R. rugosa is a medicinal plant widely used in traditional and folk medicine. Extracts of R. rugosa have been valued for Asian culinary, cosmetic, and aromatherapy purposes, and used in herbal medicines for diabetes mellitus and osteoarthritis. [11]. The medicinal effects seem to be involved in the presence of many phytochemicals in R. rugosa extracts, for example flavonoids, phenylpropanoid, tannins, fatty acids, and terpenoids [12]. (A) (B) Figure 1. (A) Rosa rugosa (Far Eastern Russia); (B) Rosa davurica (Trans-Baikal region). Appl. Sci. 2022, 12, 9401 16 of 29 Figure 2. Rosa acicularis (Western Siberia). Several studies have reported that some compounds from rose hip extracts exhibit anti-inflammatory activity in vitro. The anti-inflammatory property of the crude hydroal- coholic extract of rose hip has been proven in vivo, suggesting its potential role as one of the main therapies for the treatment of diseases associated with inflammation [13]. In Turkish folk medicine, a decoction of fresh rose hips is prepared and used to treat various stomach disorders [14]. Trans-Tiliroside (Tribuloside) has been found to be one of the main active components of aqueous acetone extracts from fruits and seeds that inhibit weight gain and lower plasma triglyceride levels in mice [15]. Additionally, clinical stud- ies have demonstrated the positive effect of rose hip powder in the treatment of osteoar- thritis [16]. Rose hip powder enhances in vitro anti-inflammatory and chondroprotective properties in leukocytes and primary chondrocytes of human peripheral blood [17]. Un- fortunately, to date, there are few data providing information on the biological action of extracts of buds and leaves, and it should be noted that these preparations have never been used for preclinical and clinical trials. The present investigation was designed to carry out a phytochemical study involving detailed metabolomic and comparative analysis of fruits and flowers of Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. originating from the Trans-Baikal region, Western Siberia, and Russian Far East. 2. Results Approximately 300 mass spectra were assessed for each analytical replicate and MS operating condition in this comprehensive approach for a complete screening of phyto- chemicals (Figure 3). Intens. x10 25 22 54 13 15 21 257 239 248 265 9 3 35 6 41 23 235 322 34 80249 276 29 268 281 251 274 16 19 2 23 4 44 48 52 56 104 277284 7 614 17228 53 3 32 1 3 37 38 39 4 43 5 49 47 53 57 7 7 7 71 2 3 4 7 7 7 77 8 9 6 8 8 8 884 1 2 0 3 8 8 89 7 6 92 167 171 226 237 242 250 264 273 27 28 82 1 81 10 2 18 22 0 2 2 27 6 33 04 4 42 0 46 50 55 4 58 5 5 69 0 61 62 63 6 6 6 67 7 6 8 90 88 9 9 94 3 9 9 5 1 1 1 1 6 70 0 0 0 105 106 107 108 0 2 3 1 1 1 10 10 11 1 91 118 1 31 1 1 1 19 2 2 2 2 1 1 1 1 3 5 6 4 2 3 3 3 135 133 134 9 0 1 21 137 36 1 1 13 4 4 1 19 0 1 4 4 147 1 3 45 1 1 10 52 51 54 1 15 56 5 1 174 75 17 180 9185 200 208 21121 22 2 4 16 2 1 1 2 2 2 7 8 2 2 0 227 2 3 230 23 236 2 24425 256 3 2 262 63 266 267 280 3 24 6 65 4 75 85 9199 89 112 1 1 11 1 1 1 121 120 1 1 6 5 47 22 1 12 27 8 138 14 1 12 4 4 149 148 6 51531 15 5 161 160 159 7 8 1 1 1 11 6 6 6 6 1 1 1 6 2 5 4 3 7 6 6 6 173 172 173 0 9 81 177 76 17 182 183 181 81 18 86 1 14 8 8 1 1 191 192 7 8 1 90 89 1 1 1 93 1 9 95 96 1 1 9 4 9 9 2 78 9 01 202 2 2 20 0 0 2 23 4 5 0 0 2 26 7 09 10 212 21 215 322 19 2 2 22 2 1 228 4 5 2 22 2 231 9 9 234 2 2 24 4 45 6 7 255 2 2 25 5 68 9 0 27 2 2 2275 0 71 72 72 27 283 92 2 28 8 8 2 25 6 7 8 8 2 28 9 2 90 91 2 2 92 9 9 295 3 4 296 297 0 10 20 30 40 50 Time [min] Rosa Rugosa Primorye MeOH_-1_01_896.d: BPC +All MS Rosa Rugosa Primorye MeOH_-1_01_896.d: BPC -All MS Rosa Rugosa Primorye MeOH_-1_01_896.d: UV Chromatogram, 230 nm Rosa Rugosa Primorye MeOH_-1_01_896.d: UV Chromatogram, 330 nm Figure 3. Representative chemical profiles of the R. rugosa (Primorye, Russia) total ion chromato- gram from the MeOH extract. Appl. Sci. 2022, 12, 9401 17 of 29 This procedure allowed a detailed evaluation of the rose MeOH extract fraction and the tentative identification of up to 146 phytochemicals (Table A1 (Appendix A)). The most represented classes of polyphenolic compounds were flavonoids (flavonols, fla- vones, flavan-3-ols, flavanones) with a total of 68 polyphenols identified for the first time. Some polyphenols were identified for the first time in the genus Rosa (family Rosaceae). These are the flavones: Chrysoeriol, Hispidulin, 5,7-Dimethoxyluteolin, Cirsimaritin, Cirsiliol, Tricin, Jaceosidin, Nevadensin, Syringetin, Isovitexin, Genistein C-glucoside malonylated, Chrysin 6-C-glucoside-6″-O-deoxyhexoside; flavanols: Dihydrokaempferol, Rhamnetin II, Kaempferol-3-O-α-L-rhamnoside, Taxifolin-O-pentoside, Taxifolin-3-O- hexoside, Isorhamnetin triacetyl hexoside; flavan-3-ols: Epiafzelechin and Gallocatechin; flavanone: Naringenin, Fustin; phenolic acids: Caffeic acid, Citric acid, Hydroxy methoxy dimethylbenzoic acid, Hydroxyferulic acid, Ellagic acid, p-Coumaroylquinic acid, Gink- goic acid, Salvianolic acid D, Salvianolic acid B; stilbenes: Pinosylvin, Resveratrol, 3-Hy- droxyresveratrol; lignans: Pinoresinol, Arctigenin; coumarins: 3,4,5–Trimethoxycouma- rin, Fraxin; anthocyanins: Cyanidin 3-O-glucoside, Delphinidin O-pentoside, Pelargo- nidin 3-O-(6-O-malonyl-β-D-glucoside), Cyanidin 3-(6″-Succinyl-Glucoside), Delphinidin malonyl hexoside, Cyanidin 3-O-dioxayl-glucoside, Delphinidin 3,5-dihexoside, etc. 3. Discussion A total of 146 compounds were identified in extracts of Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. based on their accurate MS, fragment ions, and by searching online databases and the reported literature. A total of 115 compounds were identified for the first time in the genus Rosa (family Rosaceae). The newly identified me- tabolites belonged to 18 classes, including 14 phenolic acids and their conjugates, 18 fla- vones, 7 flavonols, 2 flavan-3-ols, 2 flavanones, 3 stilbenes, 2 coumarins, 2 lignans, 9 an- thocyanins, 3 tannins, 8 terpenoids, 3 sceletium alkaloids, 4 fatty acids, 2 sterols, 2 carote- noids, 3 oxylipins, 3 amino acids, 5 carboxylic acids, etc. Metabolomic screening of poly- phenols from extracts of R. rugosa, R. davurica, and R. acicularis included flavones, flavo- nols, flavan-3-oles, flavanones, anthocyanins, condensed tannins, phenolic acids, lignans, stilbenes, and coumarins. 3.1. Dimethoxyflavones The flavones 5,7-Dimethoxyluteolin (compound 5), Cirsimaritin (compound 6), Chrysoeriol methyl ether (compound 7), Cirsiliol (compound 8), Tricin (compound 9), Ja- ceosidin (compound 10), and Syringetin (compound 13) (Table A1 (Appendix A)) have been already characterized as components of Syzygium aromaticum [18], Ocimum [19], Ros- marinus officinalis [20], Bougainvillea [21], Triticum aestivum [22]; millet grains [23]; Sasa veitchii; Phyllostachys nigra [24], etc. Thus, the flavone Jaceosidin was found in extracts of R. davurica. The flavone 5,7-Dimethoxyluteolin was found in extracts of R. rugosa and R. davurica. The CID-spectrum (collision induced dissociation spectrum) in negative ion modes of Tricin from extracts of R. davurica is shown in Figure 4. Appl. Sci. 2022, 12, 9401 18 of 29 Intens. 230. Ros a da vurica _-1_01_1737.d: -MS, 50.3min #1926 1- x10 503.27 1- 1- 0.5 517.20 329.19 1- 1- 2- 475.06 257.14 413.13 641.21 671.17 0.0 1- x10 230. Ros a da vurica _-1_01_1737.d: -MS2(329.19), 50.3min #1929 313.89 229.09 259.06 x10 230. 1- Ros a davurica _-1_01_1737.d: -MS3(329.19->313.89), 50.4min #1933 298.91 0.5 1- 270.99 0.0 230. Ros a davurica _-1_01_1737.d: -MS4(329.19->313.89->298.91), 50.5min #1936 1- 270.94 3- 226.92 200 250 300 350 400 450 500 550 600 650 m/z Figure 4. CID-spectrum of Tricin from extracts of R. davurica, m/z 329.19. The [M – H] ion produced three fragment ions at m/z 313, m/z 259, and m/z 229 (Fig- ure 4). The fragment ion with m/z 313 produced two daughter ions at m/z 298 and m/z 271. The fragment ion with m/z 298 yielded two daughter ions at m/z 271 and m/z 227. It was identified in the bibliography in extracts of Triticum aestivum [22]; millet grains [23]; Sasa veitchii; Phyllostachys nigra [24]. 3.2. Trimethoxyflavones The flavones Nevadensin (compound 12) and Pentahydroxy trimethoxy flavone (compound 15) (Table A1 (Appendix A)) have been already characterized as components of Ocimum [19], F. glaucescens; C. edulis [25], Mentha [26], etc. Thus, the flavone Nevadensin was found in extracts of R. acicularis. The CID-spectrum in positive ion modes of Ne- vadensin from extracts of R. acicularis is shown in Figure 5. Intens. 206. 1+ Rosa Acicula ris Kemerovo MeOH_-1_01_9 01.d: +MS, 38.7min #1509 1+ x10 345.0 8 396.19 3+ 1+ 1+ 2+ 1+ 1+ 1+ 2+ 1+ 0.5 1+ 487.14 1+ 181.09 409 .24 22 5.21 292.10 524.13 326.21 363.23 599.37 657.33 158.22 0.0 x10 206. 1+ Ros a Acicula ris Kemerovo Me OH_-1_01_901.d: +MS2(345.08), 38.7min #1510 330.0 3 212.96 1+ x10 206. Rosa Acicula ris Kemerovo MeOH_-1_01_901.d: +MS3(3 45.08->330.03), 38.8min #1514 31 4.99 x10 206. Rosa Acicula ris Kemerovo MeOH_-1_01_9 01.d: +MS4(345 .08->3 30.03->314.99), 38.9min #1518 1+ 286.9 9 2 + 1+ 182.98 1 33.12 259.04 312 .96 200 300 400 500 600 m/z Figure 5. CID-spectrum of Nevadensin from extracts of R. acicularis, m/z 346.86. The [M + H] ion produced two fragment ions at m/z 330 and m/z 212 (Figure 5). The fragment ion with m/z 330 yielded one daughter ion at m/z 314. The fragment ion with m/z 314 yielded five daughter ions at m/z 312, m/z 286, m/z 259, m/z 182, and m/z 133. It was identified in the bibliography in extracts of Ocimum [19] and Mentha [26]. 3.3. Trihydroxyflavones The flavones Apigenin (compound 2), Chrysoeriol (compound 3), Isovitexin (com- pound 16), and flavonol Isokaempferide (compound 22) have been already characterized as components of Mentha [26], Hedyotis diffusa [27], Andean blueberry [28], Stevia rebaudiana [29], Rosa rugosa [30], Propolis [31], Rhus coriaria [32], Mexican lupine species [33], etc. Appl. Sci. 2022, 12, 9401 19 of 29 Thus, the flavonol Isokaempferide was found in extracts of R. davurica. The CID-spectrum in positive ion modes of Isokaempferide from extracts of R. davurica is shown in Figure 6. Intens. 73. Rosa da vurica _-1_01_1736.d: +MS, 9.4 min #376 1+ 1+ 1+ 2+ x10 2+ 1+ 280.90 231.95 261.00 301.96 1+ 1+ 2+ 0.5 366.9 1 394.9 1 209.00 342.95 454.95 184.04 0.0 x10 73. 1+ Ros a da vurica _-1_01_1736.d: +MS2(301.96), 9.5 min #380 300.9 4 274.92 3+ 1+ 2+ 212.32 256.94 324.68 184.9 1 381.01 348.77 436.8 0 470.90 x10 1+ 73. Ros a da vurica _-1_01_1736.d: +MS3(301.96->300.94), 9.6 min #384 285.83 241.96 306.20 200.93 73. Ros a da vurica _-1_01_1736.d: +MS4(301.96->300.94->285.83), 9.7 min #386 239.83 200 250 300 350 400 450 m/z Figure 6. CID-spectrum of Isokaempferide from extracts of R. davurica, m/z 301.96. The [M + H] ion produced five fragment ions at m/z 300, m/z 274, m/z 256, m/z 212, and m/z 184 (Figure 6). The fragment ion with m/z 300 yielded three daughter ions at m/z 285, m/z 241, and m/z 200. The fragment ion with m/z 285 yielded one daughter ion at m/z 239. It was identified in the bibliography in extracts of Rosa rugosa [30] and Propolis [31]. 3.4. Tetrahydroxyflavones The flavonols Kaempferol (compound 20), Dihydrokaempferol (compound 21), Kaempferol-3-O-α-L-rhamnoside (compound 30), Kaempferol diacetyl hexoside (com- pound 34), Kaempferol 3-O-rutinoside (compound 35), and Kaempferol 3-O-deoxyhexo- sylhexoside (compound 36) have been already characterized as components of F. glau- cescens [25], Andean blueberry [28], Rhus coriaria (Sumac) [32], Lonicera japonica [34], Potato leaves [35], Rapeseed petals [36], Echinops lanceolatus [37], Camellia kucha [38]. Thus, the fla- vonol Kaempferol was found in extracts of R. rugosa, R. davurica, and R. acicularis. The CID-spectrum in positive ion modes of luteolin from extracts of D. palmatum is shown in Figure 7. Intens. 45. Ros a Acicula ris Ke merovo Me OH_-1_01_899.d: +MS, 14.3mi n #554 1+ 1+ x10 229.04 287.12 1+ 1 1+ 2+ 1+ 317.11 3+ 1+ 205.04 367.14 143.02 434.83 477.00 x10 1+ 45. Ros a Aci cularis Ke merovo Me OH_-1_01_899.d: +MS2(287.12), 14.4mi n #556 175.09 1+ 1+ 157.04 269.08 1+ 1+ 139.07 242.10 213.96 1+ x10 45. Ros a Acicula ris Kemerovo Me OH_-1_01_899.d: +MS3(287.12->175.09), 14.4mi n #560 157.07 1.0 0.5 139.10 0.0 x10 45. Rosa Acicula ri s Keme rovo MeOH_-1_01_899.d: +MS4(287.12->175.09->157.07), 14.5mi n #564 5+ 139.05 150 200 250 300 350 400 450 m/z Figure 7. CID-spectrum of Kaempferol from extracts of R. acicularis, m/z 287. The [M + H] ion produced six fragment ions at m/z 269, m/z 242, m/z 213, m/z 175, m/z 157, and m/z 139 (Figure 7). The fragment ion with m/z 175 yielded two daughter ions at m/z 157 and m/z 139. It was identified in the bibliography in extracts of Andean blueberry [28], Rhus coriaria (Sumac) [32], Lonicera japonica [34], and Potato leaves [35]. Appl. Sci. 2022, 12, 9401 20 of 29 3.5. Pentahydroxyflavones The flavonols Quercetin (compound 23), Morin (compound 24), Rhamnetin I (com- pound 25), Rhamnetin II (compound 26), Isorhamnetin (compound 27), Avicularin (com- pound 31), Taxifolin-O-pentoside (compound 32), Taxifolin-3-O-hexoside (compound 33), and Isorhamnetin triacetyl hexoside (compound 37) have been already characterized as components of Bougainvillea [21], Rosa rugosa [30], Propolis [31], Rhus coriaria [32], and Po- tato leaves [35]. Thus, the flavonol Taxifolin-O-pentoside was found in extracts of R. davu- rica. The CID-spectrum in negative ion modes of Taxifolin-O-pentoside from extracts of R. davurica is shown in Figure 8. Intens. 112. Ros a da vurica _-1_01_1732.d: -MS, 32.3min #1237 1- x10 300.99 1- 1- 0.5 435.03 3- 248.08 602.61 0.0 x10 112. Ros a da vurica _-1_01_1732.d: -MS2(435.03), 32.3min #1240 302.91 1- 1- 300.94 387.03 177.02 x10 112. Ros a davurica _-1_01_1732.d: -MS3(435.03->300.94), 32.4min #1244 284.89 177.04 x10 112. Ros a da vurica_-1_01_1732.d: -MS4(435.03->300.94->284.89), 32.5min #1246 1- 1.0 240.97 0.5 175.00 0.0 0 200 400 600 800 1000 m/z Figure 8. CID-spectrum of Taxifolin-O-pentoside from extracts of R. davurica, m/z 285.03. The [M − H] ion produced three fragment ions at m/z 387, m/z 300, and m/z 177 (Fig- ure 8). The fragment ion with m/z 300 yielded two daughter ions at m/z 284 and m/z 177. The fragment ion with m/z 284 yielded two daughter ions at m/z 240 and m/z 175. It was identified in the bibliography in extracts of millet grains [23] and A. cordifolia [25]. 3.6. Flavan-3-ols The flavan-3-ols Epiafzelechin (compound 38), Catechin (compound 39), (epi)Cate- chin (compound 40), and Gallocatechin (compound 41) have been characterized as com- ponents of millet grains [23], G. linguiforme [25], Camellia kucha [38], strawberry, cherimoya [39], Rosa rugosa [40], Myrtle [41], Radix polygoni multiflori [42], Licania ridigna [43], and Rhodiola rosea [44]. The flavan-3-ol Gallocatechin (compound 41) was found in extract of R. rugosa and R. davurica. The CID-spectrum in negative ion modes of Gallocatechin from R. rugosa is shown in Figure 9. Intens. 124. 1- Ros a Rugos a Primorye MeOH_-1_01_897.d: -MS, 22.5min #876 x10 305.10 1- 1- 449.23 1- 1- 0.5 1- 1- 3- 1- 381.20 11 1.11 477.21 547.31 191.05 245.04 272.99 515.19 0.0 1- x10 124. Ros a Rugos a Primorye MeOH_-1_01_897.d: -MS2(305.10 ), 22.5min #877 273.04 x10 1- 124. Ros a Rugos a Primorye MeOH_-1_01_897.d: -MS3(305.10->273.04 ), 22.6min #881 245.04 0.5 1- 217.06 0.0 x10 124. Ros a Rugos a Primorye MeOH_-1_01_897.d: -MS4(305.10->273.04->245.0 4), 22.7min #885 1- 1.0 217.02 0.5 173.04 145.20 243.11 0.0 50 100 150 200 250 300 350 400 450 500 550 m/z Figure 9. CID-spectrum of Gallocatechin from R. rugosa, m/z 305.10. Appl. Sci. 2022, 12, 9401 21 of 29 The [M − H] ion produced one fragment ion at m/z 273 (Figure 9). The fragment ion with m/z 273 yielded two daughter ions at m/z 269 and m/z 217. The fragment ion with m/z 245 yielded four daughter ions at m/z 243, m/z 217, m/z 173, and m/z 145. It was identified in the bibliography in extracts from G. linguiforme [25], Licania ridigna [43], and Rhodiola rosea [44]. 3.7. Condensed Tannin Prodelphinidin A-type (compound 83) and (S)-Flavogallonic acid (compound 84) have been already characterized as components of Vitis vinifera [45], Terminalia arjuna [46], and R. rugosa [47]. CID-spectrum in positive ion modes of (S)-Flavogallonic acid from R. davurica is shown in Figure 10. The [M + H] ion produced four fragment ions at m/z 453, m/z 407, m/z 321, m/z 247, and m/z 205 (Figure 10). The fragment ion with m/z 407 yielded three daughter ions at m/z 389, m/z 307, and m/z 205. This compound was identified in the bibliography in extracts from Terminalia arjuna [46] and R. rugosa [47]. Intens. 249. Rosa da vurica _-1_01_1732.d: +MS, 55.1min #2152 1+ 1+ x10 1+ 471.11 782.26 1 282.97 3+ 999.22 1121.55 x10 249. Ros a da vurica _-1_01_1732.d: +MS2(471.11), 55.1min #2154 407.06 205.06 453.05 247.04 321.10 x10 249. Ros a da vurica _-1_01_1732.d: +MS3(471.11->407.06), 55.2min #2158 205.07 307.16 389.04 249. Rosa da vurica _-1_01_1732.d: +MS4(471.11->407.06->205.07), 55.3min #2161 177.12 131.17 0 200 400 600 800 1000 m/z Figure 10. CID-spectrum of (S)-Flavogallonic acid from extracts of R. davurica, m/z 471.11. The polyphenol composition distribution table of varieties Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. is shown below [Table 1]. The comparison table shows the presence of some polyphenols in three types of the genus Rosa (kaempferol, ellagic acid). Some polyphenols are present in only one variety of the genus Rosa. Table 1. The flavonoid composition distribution of varieties R. rugosa Thumb., R. davurica Pall., and R. acicularis Lindl. Blue square—presence in extracts of R. rugosa; red square—in extracts of R. davu- rica; green square—in extracts of R. acicularis. Class of R. R. R. No. Identified Compounds Compounds rugosa davurica acicularis 1 Flavone Hydroxy-methoxy (iso) flavone * 2 Flavone Apigenin 3 Flavone Chrysoeriol [Chryseriol] * 4 Flavone Hispidulin * 5 Flavone 5,7-Dimethoxyluteolin * 6 Flavone Cirsimaritin * 7 Flavone Chrysoeriol methyl ether * 8 Flavone Cirsiliol * 9 Flavone Tricin * 10 Flavone Jaceosidin * 11 Flavone 5,6,4′-Trihydroxy-7,8-dimetoxyflavone * 12 Flavone Nevadensin * Appl. Sci. 2022, 12, 9401 22 of 29 13 Flavone Syringetin * 14 Flavone Dihydroxy-tetramethoxy(iso)flavone * 15 Flavone Pentahydroxy trimethoxy flavone * 16 Flavone Isovitexin * 17 Flavone Genistein C-glucoside malonylated * 18 Flavone Chrysin 6-C-glucoside-6″-O-deoxyhexoside * 19 Flavone Diosmin * 20 Flavonol Kaempferol 21 Flavonol Dihydrokaempferol * 22 Flavonol Isokaempferide [3-O-Methylkaempferol] 23 Flavonol Quercetin 24 Flavonol Morin 25 Flavonol Rhamnetin I 26 Flavonol Rhamnetin II * 27 Flavonol Isorhamnetin 28 Flavonol Myricetin 29 Flavonol Mearnsetin * 30 Flavonol Kaempferol-3-O-α-L-rhamnoside * 31 Flavonol Avicularin 32 Flavonol Taxifolin-O-pentoside * 33 Flavonol Taxifolin-3-O-hexoside * 34 Flavonol Kaempferol diacetyl hexoside 35 Flavonol Kaempferol 3-O-rutinoside 36 Flavonol Kaempferol 3-O-deoxyhexosylhexoside 37 Flavonol Isorhamnetin triacetyl hexoside * 38 Flavan-3-ol Epiafzelechin [(epi)Afzelechin] * 39 Flavan-3-ol Catechin [D-Catechol] 40 Flavan-3-ol (+)-Epicatechin * 41 Flavan-3-ol Gallocatechin [+(-)Gallocatechin] * 42 Flavanone Naringenin [Naringetol; Naringenine] 43 Flavanone Fustin [2,3-Dihydrofistein] * 44 Flavanone Eriodictyol [3′,4′,5,7-tetrahydroxy-flavanone] 45 Flavanone Eriodictyol-7-O-glucoside * Hydroxycinnami 46 Caffeic acid * c acid 47 Phenolic acid Quinic acid 48 Phenolic acid Citric acid [Anhydrous; Citrate] * 49 Phenolic acid trans-Ferulic acid 50 Phenolic acid Hydroxy methoxy dimethylbenzoic acid * 51 Phenolic acid Syringic acid 52 Phenolic acid 3,3,4,4-Tetrahydroxy-5-oxo-cyclohexanecarboxylic acid * 53 Phenolic acid Hydroxyferulic acid * Hydroxycinnami 54 Sinapic acid [trans-Sinapic acid] c acid 55 Phenolic acid 2,4,6-Trihydroxy-3,5-dimethoxybenzoic acid * Hydroxybenzoic 56 Ellagic acid * acid 58 Phenolic acid p-Coumaroylquinic acid * 58 Phenolic acid Ginkgoic acid * Appl. Sci. 2022, 12, 9401 23 of 29 1-[(Acetyl-L-cysteinyl)oxy]-2,3,4,5-tetrahydroxycyclohexane-1- 59 Phenolic acid carboxylic acid * 60 Phenolic acid Chlorogenic acid [3-O-Caffeoylquinic acid] * 61 Phenolic acid Neochlorogenic acid [5-O-Caffeoylquinic acid] 62 Phenolic acid Rosmarinic acid 63 Phenolic acid 5-Hydroxy feruloyl hexose * 64 Phenolic acid Salvianolic acid D * 65 Phenolic acid Salvianolic acid B [Danfensuan B] * 66 Stilbene Pinosylvin * 67 Stilbene Resveratrol * 68 Stilbene 3-Hydroxyresveratrol * 69 Lignan Pinoresinol * 70 Lignan Arctigenin * 71 Coumarin 3,4,5-Trimethoxycoumarin * 72 Coumarin Fraxin (Fraxetin-8-O-glucoside) * 73 Anthocyanidin Anthocyanidin [cyanidin chloride; Cyanidin] * 74 Anthocyanidin Petunidin * Cyanidin-3-O-glucoside [Cyanidin 3-O-beta-D-Glucoside; 75 Anthocyanidin Kuromarin] * 76 Anthocyanidin Delphinidin O-pentoside * 77 Anthocyanidin Pelargonidin 3-O-(6-O-malonyl-beta-D-glucoside) * 78 Anthocyanidin Cyanidin 3-(6″-Succinyl-Glucoside) * 79 Anthocyanidin Delphinidin malonyl hexoside * 80 Anthocyanidin Cyanidin-3-O-dioxayl-glucoside * 81 Anthocyanidin Delphinidin 3,5-dihexoside * 82 Tannin Prodelphinidin A-type * Hydrolysable 83 (S)-Flavogallonic acid tannin 84 Ellagitannin Punicalin alpha * 85 Phenylpropanoid Coniferin * 86 Gallate ester Ethyl gallate * 87 Gallate ester Beta-Glucogallin * 88 Dihydrochalcone Phloretin [Dihydronaringenin; Phloretol] * 89 Flavonoid Diphylloside B * Demethylanhydroicaritin-7-O-glucopyranosyl-3-O-acetylated 90 Flavonoid rhamnopyranosyl-xylopyranoside * * Polyphenols identified for the first time in genus Rosa. The following polyphenols are present in only R. rugosa: Hydroxy-methoxy (iso)fla- vone, Chrysoeriol, Hispidulin, Cirsiliol, 5,6,4′-Trihydroxy-7,8-dimetoxyflavone, Dihy- droxy-tetramethoxy (iso)flavone, Pentahydroxy trimethoxy flavone, Isovitexin, Chrysin 6-C-glucoside-6″-O-deoxyhexoside, Kaempferol-3-O-α-L-rhamnoside, Naringenin, Eri- odictyol-7-O-glucoside, trans-Ferulic acid, 3,3,4,4-Tetrahydroxy-5-oxo-cyclohexanecar- boxylic acid, Ginkgoic acid, 1-[(Acetyl-L-cysteinyl)oxy]-2,3,4,5-tetrahydroxycyclohexane- 1-carboxylic acid, Neochlorogenic acid, Rosmarinic acid, Salvianolic acid D, Pinosylvin, Pinoresinol, 3,4,5-rimethoxy coumarin, Fraxin, Anthocyanidin [cyanidin chloride; Cya- nidin], Cyanidin-3-O-dioxayl-glucoside. The following polyphenols are present in only R. davurica—Chrysoeriol methyl ether, Tricin, Jaceosidin, Syringetin, Genistein C-glucoside malonylated, Diosmin, Dihy- drokaempferol, Isokaempferide, Isorhamnetin, Myricetin, Mearnsetin, Taxifolin-O-pento- side, Kaempferol diacetyl hexoside, Kaempferol 3-O-rutinoside, Epiafzelechin, Appl. Sci. 2022, 12, 9401 24 of 29 (epi)Catechin, Fustin, Hydroxy methoxy dimethylbenzoic acid, Hydroxyferulic acid, Sin- apic acid, p-Coumaroylquinic acid, Salvianolic acid B, Cyanidin-3-O-glucoside, Del- phinidin-O-pentoside, Pelargonidin-3-O-(6-O-malonyl-beta-D-glucoside), Delphinidin malonyl hexoside, Delphinidin 3,5-dihexoside, (S)-Flavogallonic acid, Punicalin alpha, Coniferin. The following polyphenols are present in only R. acicularis—Cirsimaritin, Ne- vadensin, Morin, Rhamnetin I, Rhamnetin II, Nevadensin, Taxifolin-3-O-hexoside, Kaempferol 3-O-deoxyhexosylhexoside, Isorhamnetin triacetyl hexoside, Eriodictyol, 2,4,6-Trihydroxy-3,5-dimethoxybenzoic acid, Arctigenin, Prodelphinidin A-type, Ethyl gallate, Diphylloside B. Thus, 146 metabolome compounds were identified in the extracts of R. rugosa, R. da- vurica, and R. acicularis, many of which are characteristic of the genus Rosa (family Rosaceae). Of these, 115 components were identified for the first time in the genus Rosa. These are flavones: Chrysoeriol, Hispidulin, 5,7-Dimethoxyluteolin, Cirsimaritin, Cirsiliol, Tricin, Jaceosidin, Nevadensin, Syringetin, Isovitexin, Genistein C-glucoside malonylated, Chrysin 6-C-glucoside-6″-O-deoxyhexoside; flavanols: Dihydrokaempferol, Rhamnetin II, Kaempferol-3-O-α-L-rhamnoside, Taxifolin-O-pentoside, Taxifolin-3-O- hexoside, Isorhamnetin triacetyl hexoside; flavan-3-ols: Epiafzelechin and Gallocatechin; flavanones: Naringenin, Fustin; phenolic acids: Caffeic acid, Citric acid, Hydroxy methoxy dimethylbenzoic acid, Hydroxyferulic acid, Ellagic acid, p-Coumaroylquinic acid, Gink- goic acid, Salvianolic acid D, Salvianolic acid B; stilbenes: Pinosylvin, Resveratrol, 3-Hy- droxyresveratrol; lignans: Pinoresinol, Arctigenin; coumarins: 3,4,5–Trimethoxycouma- rin, Fraxin; anthocyanins Cyanidin 3-O-glucoside, Delphinidin O-pentoside, Pelargonidin 3-O-(6-O-malonyl-β-D-glucoside), Cyanidin 3-(6″-Succinyl-Glucoside), Delphinidin malo- nyl hexoside, Cyanidin 3-O-dioxayl-glucoside, Delphinidin 3,5-dihexoside, etc. 4. Materials and Methods 4.1. Materials Aboveground phyto Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. collected during expedition work on the territory of the Russian Far East, Trans-Baikal Region, and Western Siberia during the period of ripening (July–September, 2020). Phyto mass of R. davurica was collected on the territory of Buryatia (N 52°21′97″ E 108°59′84″), in September 2020. Phyto mass of R. rugosa was collected on the territory of Primorsky Krai, Russia (N 42°36′10″ E 131°10′55″), during the period from 10 to 20 August, 2020. Phyto mass of R. acicularis was collected on the territory of Kemerovo, Western Siberia (N 55°21′15′’ E 86°05′23″), in August 2020. All samples were morphologically authenticated according to the current standard of Pharmacopoeia of the Eurasian Economic Union [48]. The results were obtained using the equipment of the Center for Collective Use of Scientific Equipment of TSU named after G.R. Derzhavin. 4.2. Chemicals and Reagents HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), MS-grade formic acid was from Sigma-Aldrich (Steinheim, Germany). Ultra-pure water was prepared from a SIEMENS ULTRA clear (SIEMENS water technologies, Germany), and all other chemicals were analytical grade. 4.3. Fractional Maceration To obtain highly concentrated extracts, fractional maceration was applied. In this case, the total amount of the extractant (methyl alcohol of reagent grade) is divided into 3 parts and is consistently infused on potato with the first part, then with the second and third. The infusion time of each part of the extractant was 7 days. Appl. Sci. 2022, 12, 9401 25 of 29 4.4. Liquid Chromatography HPLC was performed using Shimadzu LC-20 Prominence HPLC (Shimadzu, Japan), equipped with an UV-sensor and a Shodex ODP-40 4E reverse phase column to perform the separation of multicomponent mixtures. The gradient elution program was as follows: 0.01–5 min, 100% CH3CN; 5–45 min, 100–25% CH3CN; 45–55 min, 25–0% CH3CN; control washing: 55–60 min, 0% CH3CN. The entire HPLC analysis was conducted with an ESI detector at wavelengths of 230 ηm and 330 ηm; the temperature corresponded to 17 °C. The injection volume was 1 mL. 4.5. Mass Spectrometry MS analysis was performed on an ion trap amaZon SL (BRUKER DALTONIKS, Ger- many) equipped with an ESI source in negative and positive ion modes. The optimized parameters were obtained as follows: ionization source temperature: 70 °C, gas flow: 4 l/min, nebulizer gas (atomizer): 7.3 psi, capillary voltage: 4500 V, end plate bend voltage: 1500 V, fragmentary: 280 V, collision energy: 60 eV. A four-stage ion separation mode (MS/MS mode) was implemented. 5. Conclusions The extracts of Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. con- tain a large number of polyphenolic complexes which are biologically active compounds. For the most complete and safe extraction, the method of maceration with MeOH was used. To identify target analytes in extracts, HPLC was used in combination with the ion trap. The results of a preliminary study showed the presence of 146 bioactive compounds, of which 115 were identified for the first time in the genus Rosa (family Rosaceae). Of these 115 chemical compounds identified for the first time in the genus Rosa, 70 compounds belonged to the polyphenolic group: 18 flavones, 7 flavonols, 3 flavan-3-ols, 2 flavanones, 14 phenolic acids, 3 stilbenes, 2 lignans, 2 coumarins, 9 anthocyanidins, 3 tannins, etc. The proven richness of the bioactive components of targeted extracts of R. rugosa, R. davurica, and R. acicularis invites extensive biotechnological and pharmaceutical research, which can make a significant contribution both in the field of functional and enriched nutrition, and in the field of cosmetology and pharmacy. It should also be noted that the variability of the genus Rosa (family Rosaceae) contributes to the selection of the most drought-re- sistant species and samples for household, decorative, and forest reclamation needs in the arid climatic zones of Eurasia. It is important to note that the useful properties of the genus Rosa (family Rosaceae) are: food (R. rugosa, R. acicularis), perfumery (R. acicularis, R. ecae), nectariferous (R. canina, R. cinnamomea), decorative (R. acicularis, R. rugosa), and soil-strengthening (R. acicularis, R. rugosa, R. spinosissima). A wide variety of biologically active polyphenolic compounds opens up rich opportunities for the creation of new drugs, as well as bioactive additives based on extracts from the genus Rosa. Author Contributions: Conceptualization, B.A.B., A.N.K. and M.P.R.; methodology, Y.Y.Z., A.G.B. and M.P.R.; software, M.P.R.; validation, A.N.K., M.P.R. and K.S.G.; formal analysis, M.P.R. and A.M.Z.; investigation, A.S.S. and S.E.; resources, K.S.G., B.A.B., and Y.Y.Z.; data curation, B.A.B.; writing—original draft preparation—M.P.R. and A.M.Z.; writing—review and editing A.M.Z. and K.S.G.; visualization, M.P.R. and A.M.Z.; supervision, K.S.G.; project administration, B.A.B., K.S.G. and S.E. All authors have read and agreed to the published version of the manuscript. Funding: The work was carried out with the support of the grant Young Scientists ESSTUM 2022 and according to No. 0662-2019-0003, “Genetic resources of vegetable and melons of the world col- lection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources: effective ways of expanding diversity, disclosing the patterns of hereditary variability, use of adaptive potential”. Institutional Review Board Statement: No applicable. Informed Consent Statement: No applicable. Appl. Sci. 2022, 12, 9401 26 of 29 Data Availability Statement: No applicable. Acknowledgments: Research work according to No. 0662-2019-0003 “Genetic resources of vegeta- ble and melons of the world collection of N.I. Vavilov All-Russian Institute of Plant Genetic Re- sources: effective ways of expanding diversity, disclosing the patterns of hereditary variability, use of adaptive potential”. Conflicts of Interest: The authors declare no conflict of interest. Appl. Sci. 2022, 12, 9401 27 of 29 Appendix A Table A1. Compounds identified from the extracts of Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. in positive and negative ionization modes by HPLC–ion trap–MS/MS. Molecular Molecular 2 3 4 No. Class of Compounds Identified Compounds Formula Mass Ion [M − Ion [M + Fragmentation Fragmentation Fragmentation References − + H] H] MS/MS MS/MS MS/MS POLYPHENOLS 1 Flavone Hydroxy-methoxy (iso) flavone * C16H12O4 268.2641 269 252 221 190 Propolis [31] Hedyotis diffusa [27]; Andean Apigenin [5,7-Dixydroxy-2- blueberry [28]; Stevia 2 Flavone (40Hydroxyphenyl)-4H-Chromen-4- C15H10O5 270.2369 271 253 224 rebaudiana [29]; Rosa rugosa One] [30]; Propolis [31] Mentha [25]; Propolis [31]; 3 Flavone Chrysoeriol [Chryseriol] * C16H12O6 300.2629 301 269; 195 241 Rhus coriaria [32]; Mexican lupine species [33] Mentha [25]; Cirsium 4 Flavone Hispidulin * C16H12O6 300.2629 301 269; 241; 197 224; 180; 153 japonicum [49] 212; 285; 184; 5 Flavone 5,7-Dimethoxyluteolin * C17H14O6 314.2895 313 113; 145; 185 Syzygium aromaticum [18] Cirsimaritin [Scrophulein; 4′,5- 300; 240; 213; 272; 227; 185; Ocimum [19]; Rosmarinus 6 Flavone Dihydroxy-6,7-Dimethoxyflavone; 7- C17H14O6 314.2895 315 185 185 168; 135 officinalis [20] Methylcapillarisin] * 7 Flavone Chrysoeriol methyl ether * C17H14O6 314.2895 315 287; 241; 187 187 169 Bougainvillea [21] 8 Flavone Cirsiliol * C17H14O7 330.2889 329 229 211; 127 209; 125 Ocimum [19] Triticum aestivum [22]; millet Tricin [5,7,4′-trihydroxy-3′,5′- 9 Flavone C17H14O7 330.2889 329 314; 259; 229 299; 271 271; 227 grains [23]; Sasa veitchii; dimetoxyflavone] * Phyllostachys nigra [24] Jaceosidin [5,7,4′-trihydroxy-6′,5′- 10 Flavone C17H14O7 330.2889 331 303; 185 Mentha [26,50] dimetoxyflavone] * 5,6,4′-Trihydroxy-7,8-dimetoxyflavone F. glaucescens; F. herrerae [25]; 11 Flavone C17H14O7 330.2889 331 299; 179 211 * Mentha [26] 286; 259; 183; 12 Flavone Nevadensin * C18H16O7 344.3154 345 330 315 Ocimum [19]; Mentha [26] 133 Appl. Sci. 2022, 12, 9401 28 of 29 13 Flavone Syringetin * C17H14O8 346.2883 347 317; 218 289; 218 261; 191 C. edulis [25] 14 Flavone Dihydroxy-tetramethoxy(iso)flavone * C19H18O8 374.3414 375 343 315 225 Propolis [31] 377; 375; 275; 15 Flavone Pentahydroxy trimethoxy flavone * C18H16O10 392.3136 393 357 329; 286 F. glaucescens; C. edulis [25] millet grains [23]; Isovitexin [Saponaretin; Homovitexin; 415; 335; 243; 261; 243; 191; 16 Flavone C21H20O10 432.3775 433 135 Phyllostachys nigra [24]; Rhus Apigenin-6-C-Glucoside] * 175 155 coriaria [32] 17 Flavone Genistein C-glucoside malonylated * C24H22O13 518.4237 517 473; 455 455; 413; 339 425 Mexican lupine species [33] Chrysin 6-C-glucoside-6″-O- 400; 363; 305; 130; 162; 191; 18 Flavone C27H30O13 562.5193 563 Passiflora incarnata [51] deoxyhexoside * 239 214 F. glaucescens [25]; Mentha Diosmin [Diosmetin-7-O-rutinoside; 591; 429; 355; 19 Flavone C28H32O15 608.5447 609 285 269 [26]; Lemon [39]; Grataegi Barosmin; Diosimin] * 269 Fructus [52] Andean blueberry [28]; Rhus Kaempferol [3,5,7-Trihydroxy-2-(4- coriaria (Sumac) [32]; Lonicera 20 Flavonol C15H10O6 286.2363 287 187; 227 189; 125 hydro- xyphenyl)-4H-chromen-4-one] japonica [34]; Potato leaves [35]; Rapeseed petals [36] F. glaucescens [25]; Andean Dihydrokaempferol [Aromadendrin; blueberry [28]; Echinops 21 Flavonol C15H12O6 288.2522 287 259; 185; 117 215 197 Katuranin] * lanceolatus [37]; Camellia kucha [38] Isokaempferide [3-O- 300; 274; 257; 22 Flavonol C16H12O6 300.2629 301 286; 242; 201 240 Rosa rugosa [30]; Propolis [31] Methylkaempferol] 212; 184 Bougainvillea [21]; Propolis 23 Flavonol Quercetin C15H10O7 302.2357 303 285 257 201;117 [31]; Rosa rugosa [30]; Rhus coriaria [32]; Potato leaves [35] Morin [Aurantica; Calico Yellow; Rosa rugosa [30]; Red wines 24 Flavonol Toxylon Pomiferum; 2′,3,4′,5,7- C15H10O7 302.2357 301 283; 265; 221 221 203; 151; 127 [53] Pentahydroxyflavone] Rhamnetin I [beta-Rhamnocitrin; 299; 269; 233; Rosa rugosa [30]; Rhus coriaria 25 Flavonol C16H12O7 316.2623 317 147; 123 Quercetin 7-Methyl ether] 185; 165 L. (Sumac) [32] Syzygium aromaticum [18]; 165;185; 155; Propolis [31]; Rhus coriaria L. 26 Flavonol Rhamnetin II * C16H12O7 316.2623 317 147; 123 119 123 (Sumac) [32]; Spondias purpurea [54] Appl. Sci. 2022, 12, 9401 29 of 29 Rosmarinus officinalis [20]; Andean blueberry [28]; Rosa Isorhamnetin [Isorhamnetol; Quercetin 285; 234; 190; 27 Flavonol C16H12O7 316.2623 317 256; 214 229; 201 rugosa [30]; Propolis [31]; 3′-Methyl ether; 3-Methylquercetin] 156 Vaccinium macrocarpon [55]; Embelia [56] millet grains [23]; F. glaucescens [25]; Andean 28 Flavonol Myricetin C15H10O8 318.2351 319 289; 217; 185 261; 191 blueberry [28]; Rosa rugosa [30]; Propolis [31]; Vaccinium macrocarpon [55] 29 Flavonol Mearnsetin * C16H12O8 332.2617 331 287 259 215; 187; 159 Eucalyptus [57] C.edulis; F. glaucescens [25]; 415; 313; 241; Rhus coriaria [32]; Cassia 30 Flavonol Kaempferol-3-O-α-L-rhamnoside * C21H20O10 432.3775 433 123; 257; 239 195 abbreviata [58]; Euphorbia hirta [59] Avicularin (Quercetin 3-Alpha-L- 273; 229; 192; Propolis [31]; Eucalyptus 31 Flavonol C20H18O11 434.3503 433 301 169; 151 Arabinofuranoside; Avicularoside) 179; 151 Globulus [60]; Rosa rugosa [61] Taxifolin-O-pentoside millet grains [23]; A. cordifolia 32 Flavonol C20H20O11 436.371 435 301; 177 285; 177 241; 175 [Dihydroquercetin pentoside] * [25] millet grains [23]; Andean Taxifolin-3-O-hexoside 287; 305; 334; 268; 256; 227; 33 Flavonol C21H22O12 466.3922 467 blueberry [28]; Euphorbia hirta [Dihydroquercetin-3-O-hexoside] * 449 202 [59]; Rubus ulmifolius [62] 34 Flavonol Kaempferol diacetyl hexoside C25H24O13 532.4503 533 432; 531; 289 415; 295 385 A. cordifolia [25] Rhus coriaria [32]; Lonicera 35 Flavonol Kaempferol 3-O-rutinoside C27H30O15 594.5181 595 285; 165 165 japonica [34]; Camellia kucha [38]; Strawberry [39] Stevia rebaudiana [29]; Rosa Kaempferol 3-O- 36 Flavonol C27H30O15 594.5181 595 287; 263; 165 213; 197; 165 157; 145 rugosa [40]; Spondias purpurea deoxyhexosylhexoside [54] 443; 417; 317; 329; 311; 255; 37 Flavonol Isorhamnetin triacetyl hexoside * C28H28O15 604.5129 605 A. cordifolia [25] 279 211 A. cordifolia; F. glaucescens; F. 38 Flavan-3-ol Epiafzelechin [(epi)Afzelechin] * C15H14O5 274.2687 275 244; 157 157; 215 127 herrerae [25]; Cassia abbreviata [58]; Cassia granidis [63] Appl. Sci. 2022, 12, 9401 30 of 29 millet grains [23]; C. edulis [25]; Camellia kucha [38]; strawberry, cherimoya [39]; 39 Flavan-3-ol Catechin [D-Catechol] C15H14O6 290.2681 291 272; 174 245 198 Rosa rugosa [40]; Myrtle [41]; Radix polygoni multiflori [42]; Rosa rugosa [64] Andean blueberry [28]; C. edulis [25]; Camellia kucha 40 Flavan-3-ol (epi)Catechin * C15H14O6 290.2681 291 273; 117 255; 145 [38]; Radix polygoni multiflori [42] G. linguiforme [25]; Licania 41 Flavan-3-ol Gallocatechin [+(-)Gallocatechin] * C15H14O7 306.2675 307 291 263; 189 206 ridigna [43]; Rhodiola rosea [44] G. linguiforme [25]; Andean blueberry [28]; Stevia rebaudiana [29]; Rosa rugosa 42 Flavanone Naringenin [Naringetol; Naringenine] C15H12O5 272.5228 273 153; 256 125 [30]; Mexican lupine species [33]; Rapeseed petals [36]; Punica granatum [65] 43 Flavanone Fustin [2,3-Dihydrofistein] * C15H12O6 288.2522 289 269; 140 179 F. glaucescens; F. pottsii [25] Rosmarinus officinalis [20]; Eriodictyol [3′,4′,5,7-tetrahydroxy- 269; 241; 155; 267; 251; 223; Andean blueberry [28]; Rosa 44 Flavanone C15H12O6 288.2522 287 249; 199; 155 flavanone] 127 183; 155 rugosa [30]; Propolis [31]; Embelia [56] Eriodictyol-7-O-glucoside Impatients glandulifera Royle 45 Flavanone C21H22O11 450.3928 449 269; 151 225 [Pyracanthoside; Miscanthoside] * [66] Triticum [22]; millet grains [23]; Lonicera japonica [24]; 46 Hydroxycinnamic acid Caffeic acid * C9H8O4 180.1574 181 135 119 Radix polygoni multiflori [42]; Mentha [50]; Malva sylvestris [67] Andean blueberry [28]; Stevia rebaudiana [29]; Rhus coriaria 47 Phenolic acid Quinic acid C7H12O6 192.1666 193 191; 147 173; 136 131 [32]; Lonicera japonicum [34]; Camellia kucha [38]; Rosa rugosa [40] Appl. Sci. 2022, 12, 9401 31 of 29 Stevia rebaudiana [29]; Potato leaves [35]; Strawberry, 48 Phenolic acid Citric acid [Anhydrous; Citrate] * C6H8O7 192.1235 191 111; 173 111 Lemon, Cherimoya, Papaya, Passion fruit [39]; Mentha [50]; Punica granatum [65] millet grains [23]; Rosa rugosa 49 Phenolic acid trans-Ferulic acid C10H10O4 194.184 195 153 125 [30]; Sanguisorba officinalis [68] Hydroxy methoxy dimethylbenzoic 50 Phenolic acid C10H12O4 196.1999 195 129; 177 F. herrerae; F. glaucescens [25] acid * Bougainvillea [21]; millet grains [29]; A. cordifolia; G. 51 Phenolic acid Syringic acid C9H10O5 198.1727 199 157; 183; 119 142 linguiforme; F. glaucescens [25]; Rosa rugosa [30]; Actinidia [69] 3,3,4,4-Tetrahydroxy-5-oxo- 52 Phenolic acid C7H10O7 206.1501 207 161; 189 143 119 Actinidia [69] cyclohexanecarboxylic acid * 53 Phenolic acid Hydroxyferulic acid * C10H10O5 210.1834 211 193 175 133 Andean blueberry [28] millet grains [23]; Andean blueberry [28]; Rosa rugosa 54 Hydroxycinnamic acid Sinapic acid [trans-Sinapic acid] C11H12O5 224.2100 225 209 139; 192 [30]; Rapeseed petals [36]; Cherimoya [39] 2,4,6-Trihydroxy-3,5-dimethoxybenzoic 229; 211; 185; 55 Phenolic acid C9H10O7 230.1715 231 168; 143 127 Actinidia [69] acid * 155 Ellagic acid [Benzoaric acid; Rhus coriaria [32]; Eucalyptus 56 Hydroxybenzoic acid C14H6O8 302.1926 301 256 185 Elagostasine; Lagistase; Eleagic acid] * [57]; Eucalyptus Globulus [60] Andean blueberry [28]; F. 57 Phenolic acid p-Coumaroylquinic acid * C16H18O8 338.3093 339 191; 320; 252 149 glaucescens [25]; Eucalyptus Globulus [60]; Actinidia [69] Ginkgoic acid [Ginkgolic acid; 58 Phenolic acid C22H34O3 346.5036 347 301; 130 130 Propolis [31] Romanicardic acid] * 1-[(Acetyl-L-cysteinyl)oxy]-2,3,4,5- 59 Phenolic acid tetrahydroxycyclohexane-1-carboxylic C12H19O9NS 353.3456 354 335 192; 286 132; 176 Actinidia [69] acid * Appl. Sci. 2022, 12, 9401 32 of 29 Bougainvillea [21]; Andean blueberry [28]; Rhus coriaria Chlorogenic acid [3-O-Caffeoylquinic [32]; Lonicera japonicum [34]; 60 Phenolic acid C16H18O9 354.3087 353 191 173 acid] * Potato leaves [35]; Rapeseed petals [28]; Vaccinium macrocarpon [55] Andean blueberry [28]; Stevia rebaudiana [29]; Rosa rugosa Neochlorogenic acid [5-O- [30]; Lonicera japonicum [34]; 61 Phenolic acid C16H18O9 354.3087 353 173; 111 Caffeoylquinic acid] Euphorbia hirta [59]; Crataegus monogyna, Sambucus nigra [67] Rosmarinus officinalis [20]; 343; 327; 301; Mentha [26]; Rosa rugosa [30]; 62 Phenolic acid Rosmarinic acid C18H16O8 360.3148 361 253; 121 225; 210; 179 253; 19; 161 Mentha [70]; Huolisu Oral Liquid [71]; Rosemary [72] 63 Phenolic acid 5-Hydroxy feruloyl hexose * C16H20O10 372.3240 373 211; 277; 354 175 millet grains [23] Mentha [70,73]; Salvia 64 Phenolic acid Salvianolic acid D * C20H18O10 418.3509 417 373 347; 303 multiorrizae [74] Bougainvillea [21]; Mentha [50]; Huolisu Oral Liquid 65 Phenolic acid Salvianolic acid B [Danfensuan B] * C36H30O16 718.6138 719 521; 199 475 [71]; Mentha [73]; Salvia miltiorrhiza [74] Pinosylvin [3,5-Stilbenediol; Trans-3,5- Pinus resinosa [75]; Pinus 66 Stilbene C14H12O2 212.2439 213 195; 171 143 127 Dihydroxystilbene] * sylvestris [76] A. cordifolia; F. glaucescens; F. Resveratrol [trans-Resveratrol; 3,4′,5- 169; 210; 141; herrerae [25]; Radix polygoni 67 Stilbene C14H12O3 228.2433 229 141 113 Trihydroxystilbene; Stilbentriol] * 115 multiflori [42]; Embelia [56]; Vine stilbenoids [77] G. linguiforme [25]; Vine 68 Stilbene 3-Hydroxyresveratrol [Piceatannol] * C14H12O4 244.2427 245 199; 112 112 stilbenoids [77]; Oenocarpus bataua [78] Passiflora incarnata [51]; 69 Lignan Pinoresinol * C20H22O6 358.3851 359 340; 208 322; 196 274; 214 Punica granatum [65]; Appl. Sci. 2022, 12, 9401 33 of 29 Eucommia cortex [79]; Lignans [80] 354; 336; 283; 336; 318; 288; Lignans [80]; Triticum 70 Lignan Arctigenin * C21H24O6 372.4117 373 288; 236; 197 252; 211 252; 218 aestivum [81]; Forsythia [82] 71 Coumarin 3,4,5-Trimethoxycoumarin * C12H12O5 236.2207 237 192; 206; 178 132 130; 117 Propolis [31] Vitis vinifera [45]; Actinidia 72 Coumarin Fraxin (Fraxetin-8-O-glucoside) * C16H18O10 370.3081 371 191 127 [69]; Solanum tuberosum [83] F. herrerae [25]; Andean Anthocyanidin [cyanidin chloride; 73 Anthocyanidin C15H11O6+ 287.2442 287 213; 195; 167 196; 163; 125 blueberry [28]; Malpighia Cyanidin] * emarginata [84] 74 Anthocyanidin Petunidin * C16H13O7+ 317.2702 318 256; 300 228; 212; 184 212 A. cordifolia; C. edulis [25] Cyanidin-3-O-glucoside [Cyanidin 3- Triticum aestivum [22]; 75 Anthocyanidin C21H21O11+ 449.3848 447 285; 195 255 O-beta-D-Glucoside; Kuromarin] * Malpighia emarginata [84] Andean blueberry [28]; Myrtle [41]; Gaultheria 76 Anthocyanidin Delphinidin O-pentoside * C20H19O11 435.3583 435 303; 245 245; 149 mucronata; Gaultheria antarctica [85] Pelargonidin 3-O-(6-O-malonyl-beta-D- Gentiana lutea [86]; Wheat 77 Anthocyanidin C24H23O13 519.4388 519 271 253 glucoside) * [87] Cyanidin 3-(6″-Succinyl-Glucoside) 78 Anthocyanidin [Cyanidin 3-(6″-O-succinoyl-Beta-D- C25H25O14 549.4576 549 286 268 240 Wheat [87] Glucopyranoside)] * 465; 425; 287; 79 Anthocyanidin Delphinidin malonyl hexoside * C24H23O15 551.4304 551 271; 157 F. glaucescens [25] 80 Anthocyanidin Cyanidin-3-O-dioxayl-glucoside * C31H28O12 592.5468 593 287; 165 213; 153 Rubus ulmifolius [62] F. herrerae [25]; Andean 81 Anthocyanidin Delphinidin 3,5-dihexoside * C27H31O17 627.5248 627 413; 227 227; 351 blueberry [28]; Berberis microphylla [85] 241; 213; 165; 82 Tannin Prodelphinidin A-type * C30H26O13 594.5286 595 406; 287; 245 213 Vitis vinifera [45] 407; 321; 247; Terminalia arjuna [46]; Rosa 83 Hydrolysable tannin (S)-Flavogallonic acid C21H10O13 470.2963 471 205; 307; 389 177; 131 205 rugosa [47] 721; 449; 599; Myrtle [41]; Terminalia arjuna 84 Ellagitannin Punicalin alpha * C34H22O22 782.5253 783 596 535 [46]; Punica granatum [65] Appl. Sci. 2022, 12, 9401 34 of 29 Phenylpropanoid Coniferin [Coniferyl Alcohol Beta-D- Hedyotis diffusa [27]; Rhodiola 85 (cinnamic alcohol C16H22O8 342.3411 343 240 183 127 Glucoside] * crenulata [88] glycoside) Bougainvillea [21]; Terminalia 86 Gallate ester Ethyl gallate * C9H10O5 198.1727 197 169; 125 124 arjuna [46]; Euphorbia hirta [59] Syzygium aromaticum [18]; Beta-Glucogallin [1-O-Galloyl-Beta-D- Terminalia arjuna [46]; 87 Gallate ester Glucose; Galloyl glucose; Monogalloyl C13H16O10 332.2601 333 273; 227; 169 169; 191; 209 Euphorbia hirta [59]; Cassia glucose] * granidis [63] G. linguiforme [25]; Punica Phloretin [Dihydronaringenin; 255; 239; 229; 88 Dihydrochalcone C15H14O5 274.2687 275 257; 229; 215 granatum [65]; Malus Phloretol] * 210 toringoides [89] 647; 592; 531; 533; 484; 419; 89 Flavonoid Diphylloside B * C38H48O19 808.7763 809 483; 431; 369; 419 Huolisu Oral Liquid [71] 369; 269 Demethylanhydroicaritin-7-O- 675; 603; 541; 90 Flavonoid glucopyranosyl-3-O-acetylated C39H48O20 836.7854 837 441; 341 341; 241 Huolisu Oral Liquid [71] 503; 403 rhamnopyranosyl-xylopyranoside * OTHERS Cyclohexenecarboxylic A. cordifolia [25]; Camellia 91 Shikimic acid [L-Schikimic acid] * C7H10O5 174.1513 173 111 acid kucha [38]; Euphorbia hirta [59] Potato leaves [35]; Strawberry, 92 Vitamin L-Ascorbic acid [Vitamin C] C6H8O6 176.1241 175 127 Lemon, Papaya [39] 93 Monoterpenoid Methyl eugenol * C11H14O2 178.2277 179 161 133 Ocimum [19]; Olive leaves [90] Omega-hydroxy amino 94 Hydroxy decenoic acid * C10H18O3 186.2481 187 169; 142 141 F. glaucescens [25] acid Rapeseed petals [36]; Camellia L-Tryptophan [Tryptophan; (S)- kucha [38]; Passiflora incarnata 95 Essential amino acid C11H12N2O2 204.2252 205 186; 158 146; 169 144; 118 Tryptophan] * [51]; Euphorbia hirta [59]; Huolisu Oral Liquid [71] Caryophyllene oxide [Caryophyllene- 96 Sesquiterpenoid C15H24O 220.3505 221 161 147 Olive leaves [90] alpha-oxide] * 127; 145; 169; 97 3,4,5-Trimethoxyphenylacetic acid C11H14O5 226.2259 227 145; 117 127 Rosa rugosa [30] 199 Appl. Sci. 2022, 12, 9401 35 of 29 Myristoleic acid [Cis-9-Tetradecanoic 98 Omega-5 fatty acid C14H26O2 226.3550 227 209; 127 139 F. glaucescens [25] acid] * Quaianolide 99 Dehydrocostus Lactone * C15H18O2 230.3022 231 214 168 Weichang’an Pill [91] sesquiterpene lactone 100 Germacranolide Costunolide * C15H20O2 232.3181 233 186 168; 131 155 Weichang’an Pill [91] 101 Biphenyl derivative Randaiol * C15H14O3 242.2699 243 225; 211; 182 182; 167; 132 166 Magnolia officinalis [92] 102 Peptide 5-Oxo-L-propyl-L-isoleucine * C11H18N2O4 242.2716 243 197 165 137 Potato leaves [35] Hydroxy myristic acid [2S- Hydroxy 229; 222; 211; 103 Hydroxytetradecanoic acid; Alpha- C14H28O3 244.3703 245 227; 211; 201 F. pottsii [25] monocarboxylic acid 201 Hydroxy Myristic acid] * Medium-chain fatty 229; 202; 174; 104 Hydroxy dodecanoic acid * C12H22O5 246.3001 247 183; 156; 144 156 F. glaucescens [25] acid 156 Acyclic alcohol nitrile Rhodiola rosea [93]; Rhodiola 105 Rhodiocyanoside A * C11H17NO6 259.2558 260 186; 232 168 141 glycoside sacra [94] 106 Naphthoquinone Spinochrome A * C12H8O7 264.1877 265 247 219 Rhus coriaria [32] 107 Aporphine alkaloid Anonaine * C17H15NO2 265.3065 266 247; 190; 166 166 Magnolia officinalis [92] Ribonucleoside Lonicera japonica [34]; Huolisu 108 composite of adenine Adenosine * C10H13N5O4 267.2413 268 136 Oral Liquid [71] (purine) 3,4,8,9,10-Penthahydroxydibenzo 109 C13H8O7 276.1984 277 175; 231; 259 131; 177 Terminalia arjuna [46] [b,d]pyran-6-one * 244; 196; 164; 110 Linoleic acid amide * C18H33NO 279.4607 280 262 226; 196; 164 Propolis [31]; Rhus coriaria [32] 111 Oleamide * C18H35NO 281.4766 282 247 173; 201; 145 145 Propolis [31] 112 Terpenoid Rugosic acid A C15H22O5 282.3322 283 239; 265; 167 211 193; 170 Rosa rugosa [95] 113 Alkaloid Mesembrenol * C17H23NO3 289.3694 290 272; 146 224; 182 164 Sceletium [96] A. cordifolia [25]; Sceletium 114 Alkaloid Mesembranol * C17H25NO3 291.3853 292 274; 226; 111 121 [96] 219; 203; 191; 115 Brevifolincarboxylic acid * C13H8O8 292.4131 291 247 191 Euphorbia hirta [59] 175; 147 3′-Methoxy-4′-O-methyl 116 Alkaloid C18H25NO3 303.3960 304 257; 195; 153 231; 149 213 A. cordifolia [25] joubertimine * Tanshinone IIB [(S)-6- 293; 265; 253; Huolisu Oral Liquid [72]; 117 Diterpenoid C19H18O4 310.3438 311 264; 192; 159 (Hydroxymethyl)-1,6-Dimethyl-6,7,8,9- 228; 181 Salviae Miltiorrhizae [97] Appl. Sci. 2022, 12, 9401 36 of 29 Tetrahydrophenanthro [1,2-B]Furan- 10,11-Dione] * 11-Hydroperoxy-octadecatrienoic acid 291; 247; 198; 118 Oxylipins C18H30O4 310.4284 309 181 Potato leaves [35] * 183 119 Tyramines N-Feruloyl tyramine * C18H19NO4 313.3478 314 296; 236; 175 222; 206; 178 222; 194; 180 Bougainvillea [21] Malus toringoides [89]; Ginkgo 120 Terpenoid trilactone Bilobalide [(-)-Bilobalide] * C15H18O8 326.2986 325 183 119; 199 biloba [98, 99] 9,10-Dihydroxy-8-oxooctadec-12-enoic Phyllostachys nigra [24]; 121 Oxylipins acid [oxo-DHODE; oxo-Dihydroxy- C18H32O5 328.4437 327 229; 291 211; 125 183 Bituminaria bituminosa [100] octadecenoic acid] * Sasa veitchii [24]; Bituminaria 13- Trihydroxy-Octadecenoic acid 291; 309; 239; 122 Oxylipins C18H34O5 330.4596 329 273; 217; 179 255; 228 bituminosa [100]; Broccoli [THODE] * 211; 197; 171 [101] 123 Sceletium alkaloid O-acetyl mesembrenol * C19H25NO4 331.4061 330 270; 226; 198 226; 209; 166 166 A. cordifolia [25] Rosmarinus officinalis [20]; 124 Diterpenoid Carnosic acid C20H28O4 332.4339 331 287; 243; 187 259 215 Rosemary [72]; Lepechinia [102] G. linguiforme; A. cordifolia; C. 125 Dihydroxy eicosatrienoic acid * C20H34O4 338.4816 339 321; 177 303; 274; 233 178; 148 edulis [25] 335; 308; 270; 317; 243; 215; 126 Berberine alkaloid Palmatine [Berbericinine; Burasaine] * C21H22NO4 352.4037 353 Ocotea [103]; Palmatine [104] 235; 195 160 127 Unsaturated fatty acid Dihydroxy docosanoic acid * C22H44O4 372.5824 373 341 327 A. cordifolia; F. pottsii [25] 363; 334; 290; 128 Unsaturated fatty acid Pentacosenoic acid * C25H48O2 380.6474 381 342; 303; 276 F. glaucescens [25] 261; 231 383; 369; 337; 350; 321; 285; A. cordifolia; C. edulis [25]; 129 Sterol Campesterol [Dihydrobrassicasterol] * C28H48O 400.6801 401 262 310; 279 249 Oryza sativa [105] 130 Alkaloid Erysothiopine * C19H21NO7S 407.4375 408 389 345; 183 299; 161 Camellia kucha [38] A. cordifolia; F. pottsii [25]; Stigmasterol [Stigmasterin; Beta- 131 Sterol C29H48O 412.6908 413 301 188 Hedyotis diffusa [27]; Olive Stigmasterol] * leaves [90] 132 Iridoid monoterpenoid Dihydroisovaltrate * C22H32O8 424.4847 425 365; 281 309; 235 Rhus coriaria [32] Anabolic steroid; Rhus coriaria [32]; Hylocereus 133 Androgen; Androgen Vebonol * C30H44O3 452.6686 453 435; 336; 226 336 209 polyrhizus [106] ester Appl. Sci. 2022, 12, 9401 37 of 29 Betulonic acid [Betunolic acid; 176; 395; 336; 134 Triterpenoid C30H46O3 454.6844 455 437; 357; 245 Rhus coriaria [32] Liquidambaric acid] * 261; 213 Sanguisorba officinalis [68]; 135 Triterpenoid Pomolic acid * C30H48O4 472.6997 473 413; 214 395; 255 241 Malus domestica [107] Thromboxane receptor 337; 263; 218; Rhus coriaria [32]; Hylocereus 136 Vapiprost * C30H39NO4 477.6350 478 181; 128 antagonist 173 polyrhizus [106] 137 Ursane triterpene Annurcoic acid * C30H46O5 486.6922 485 467; 423 424; 393; 335 413 Annurca apple [108] 138 Pentacyclic triterpenoid Methyl arjunolate * C31H50O5 502.7257 503 485; 205 397; 197 G. linguiforme; C. edulis [25] Indole sesquiterpene Rhus coriaria [32]; Hylocereus 139 Sespendole * C33H45NO4 519.7147 520 185; 502 125 alkaloid polyrhizus [106] 504; 448; 399; 486; 447; 424; 424; 350; 290; 140 Schisandrin Benzoylgomisin H * C30H34O8 522.5862 523 Schisandra chinensis [109, 110] 369 405; 362 252 Carica papaya [111]; Physalis 517; 499; 443; 499; 457; 363; 141 Carotenoid (all-E)-alpha-Cryptoxanthin C40H56O 552.872 553 535 peruviana [112]; Rosa rugosa 395 307 [113] 565; 467; 438; 204; 292; 218; 142 N’,N’,N’’’- Tri-p-coumaroyl spermidine C34H37N3O6 583.6741 584 147 Rosa rugosa [11]; Propolis [31] 387; 335 147 N’,N’,N’’’- Di-p-coumaroyl caffeoyl 582; 497; 438; 419; 328; 292; 143 C34H37N3O7 599.6735 600 147 Rosa rugosa [11] spermidine 420 274 144 Cycloartanol [Steroids] Cyclopassifloic acid glucoside * C37H62O12 698.8810 699 537; 421; 365 520 Passiflora incarnata [51] 719; 645; 566; 145 Carotenoid (all-E)-violaxanthin caproate * 755 755 657; 620 Carotenoids [114] Derivative of 146 Pheophytin b * C55H72N4O6 885.1834 886 607 547 475; 419 Physalis peruviana [112,115] Chlorophylle * Compounds identified for the first time in genus Rosa. Appl. Sci. 2022, 12, 9401 25 of 29 References 1. Thomas, E.; Vandebroek, I.; Sanca, S.; van Damme, P. Cultural Significance of Medicinal Plant Families and Species among Quechua Farmers in Apillapampa, Bolivia. J. Ethnopharmacol. 2009, 122, 60–67. 2. Sultana, A.; Hossain, M.J.; Kuddus, M.R.; Rashid, M.A.; Zahan, M.S.; Mitra, S.; Roy, A.; Alam, S.; Sarker, M.M.R.; Naina Mo- hamed, I. Ethnobotanical Uses, Phytochemistry, Toxicology, and Pharmacological Properties of Euphorbia neriifolia Linn. against Infectious Diseases: A Comprehensive Review. Molecules 2022, 27, 4374. 3. Abidullah, S.; Rauf, A.; Khan, S.W.; Ayaz, A.; Liaquat, F.; Saqib, S. A Comprehensive Review on Distribution, Paharmacological Uses and Biological Activities of Argyrolobium Roseum (Cambess.) Jaub. Spach. Acta Ecol. Sin. 2021, 42, 198–205. 4. Das, R.; Mitra, S.; Tareq, A.M.; Emran, T.B.; Hossain, M.J.; Alqahtani, A.M.; Alghazwani, Y.; Dhama, K.; Simal-Gandara, J. Me- dicinal plants used against hepatic disorders in Bangladesh: A comprehensive review. J. Ethnopharmacol. 2022, 282, 114588. 5. Mitra, S.; Lami, M.S.; Uddin, T.M.; Das, R.; Islam, F.; Anjum, J.; Hossain, M.J.; Emran, T.B. Prospective multifunctional roles and pharmacological potential of dietary flavonoid narirutin. Biomed. Pharmacother. 2022, 150, 112932. 6. Demain, A.L.; Fang, A. The Natural Functions of Secondary Metabolites. In History of Modern Biotechnology, I; Springer: Ber- lin/Heidelberg, Germany, 2000; pp. 1–39. 7. Wink, M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines 2015, 2, 251–286. 8. Anjum, J.; Mitra, S.; Das, R.; Alam, R.; Mojumder, A.; Emran, T.B.; Islam, F.; Rauf, A.; Hossain, M.J.; Aljohani, A.S.; et al. A renewed concept on the MAPK signaling pathway in cancers: Polyphenols as a choice of therapeutics. Pharmacol. Res. 2022, 184, 9. Campanini, E. Dizionario di Fitoterapia e Piante Medicinali, 2nd ed.; Tecniche Nuove: Milano, Italy, 2006; pp. 566–571. 10. Ieri, F.; Innocenti, M.; Possieri, L.; Gallori, S. Phenolic composition of “bud extracts” of Ribes nigrum L., Rosa canina L. and Tilia tomentosa M. J. Pharmaceut. Biomed. Analys. 2015, 115, 1–9. 11. Yang, Y.; Zhang, J.-J.; Zhou, Q.; Wang, L.; Huang, W.; Wang, R. Effect of ultrasonic and ball-milling treatment on cell wall, nutrients, and antioxidant capacity of rose (Rosa rugosa) bee pollen, and identification of bioactive components. J. Sci. Food Agric. 2019, 99, 5350–5357. https://doi.org/10.1002/jsfa.9774. 12. Hashidoko, Y. The phytochemistry of Rosa rugosa. Phytochemistry 1996, 43, 535–549. 13. Lattanzio, F.; Greco, E.; Carretta, D.; Cervellati, R.; Govoni, P.; Speroni, E. In vivo anti-inflammatory effect of Rosa canina L. extract. J. Ethnopharmacol. 2011, 137, 880–885. 14. Gurbuz, I.; Ustun, O.; Yesilada, E.; Sezik, E.; Kutsal, O. Anti-ulcerogenic activity of some plants used as folk remedy in Turkey. Ethnopharmacology 2003, 88, 93–97. 15. Ninomiya, K.; Matsuda, H.; Kubo, M.; Morikawa, T.; Nishida, N.; Yoshikawa, M. Potent anti-obese principle from Rosa canina: Structural requirements and mode of action of trans-tiliroside. Bioorganic Med. Chem. Lett. 2007, 17, 3059–3064. 16. Chrubasik, C.; Roufogalis, B.D.; Muller-Lander, U.; Chrubasik, S. A Systematic Review on the Rosa canina Effect and Efficacy Profiles. Phytother. Res. 2008, 22, 725–733. 17. Schwager, J.; Richard, N.; Schoop, R.; Wolfram, S. A Novel Rose Hip Preparation with Enhanced Anti-Inflammatory and Chon- droprotective Effects. Mediat. Inflamm. 2014, 105710. 18. Fathoni, A.; Saepudin, E.; Cahyana, A.H.; Rahayu, D.U.C.; Haib, J. Dentification of nonvolatile compounds in clove (Syzygium aromaticum) from Manado. AIP Conf. Proc. 1862, 2017, 030079. 19. Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J. Liq. Chromatogr. Relat. Tech. 2016, 39, 225–238. 20. Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules 2016, 21, 1576. 21. El-Sayed, M.A.; Abbas, F.A.; Refaat, S.; El-Shafae, A.M.; Fikry, E. UPLC-ESI-MS/MS Profile of The Ethyl Acetate Fraction of Aerial Parts of Bougainvillea ‘Scarlett O’Hara’ Cultivated in Egypt. Egypt. J. Chem. 2021, 64, 22. 22. Sharma, M.; Sandhir, R.; Singh, A.; Kumar, P.; Mishra, A.; Jachak, S.; Singh, S.P.; Singh, J.; Roy, J. Comparison analysis of phe- nolic compound characterization and their biosynthesis genes between two diverse bread wheat (Triticum aestivum) varieties differing for chapatti (unleavened flat bread) quality. Front. Plant. Sci. 2016, 7, 1870. 23. Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and char- acterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods 2011, 3, 144–158. 24. Van Hoyweghen, L.; De Bosscher, K.; Haegeman, G.; Deforce, D.; Heyerick, A. In Vitro Inhibition of the Transcription Factor NF-kB and Cyclooxygenase by Bamboo Extracts. Phytother. Res. 2014, 28, 224–230. 25. Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Com- ponents from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS –Bioassay Guided Approach. J. Chrom. Sci. 2021, 59, 618–626. 26. Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography—High resolution mass spectrometry. Molecules 2017, 22, Appl. Sci. 2022, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci Appl. Sci. 2022, 12, x FOR PEER REVIEW 26 of 29 27. Chen, X.; Zhu, P.; Liu, B.; Wei, L.; Xu, Y. Simultaneous determination of fourteen compounds of Hedyotis diffusa Willd extract in rats by UHPLC-MS/MS method: Application to pharmacokinetics and tissue distribution study. J. Pharmaceut. Biomed. Analys. 2018, 159, 490–512. 28. Aita, S.E.; Capriotti, A.L.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.M.; Piovesana, S.; Lagana, A. Andean Blueberry of the Genus Disterigma: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Separations 2021, 8, 58. 29. Lee, S.Y.; Shaari, K. LC–MS metabolomics analysis of Stevia rebaudiana Bertoni leaves cultivated in Malaysia in relation to dif- ferent developmental stages. Phytochem. Analys. 2021, 33, 249–261. 30. Olech, M.; Pietrzak, W.; Nowak, R. Characterization of Free and Bound Phenolic Acids and Flavonoid Aglycones in Rosa rugosa Thunb. Leaves and Achenes Using LC–ESI–MS/MS–MRM Methods. Molecules 2020, 25, 1804. 31. Belmehdi, O.; Bouyahya, A.; József, J.E.K.Ő.; Cziáky, Z.; Zengin, G.; Sotkó, G.; Elbaaboua, A.; Senhaji, N.S.; Abrini, J. Synergistic interaction between propolis extract, essential oils, and antibiotics against Staphylococcus epidermidis and methicillin resistant Staphylococcus aureus. Int. J. Second Metab. 2021, 8, 195–213. 32. Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arraes-Roman, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. 33. Wojakowska, A.; Piasecka, A.; Garcia-Lopez, P.M.; Zamora-Natera, F.; Krajewski, P.; Marczak, L.; Kachlicki, P.; Stobiecki, M. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC–MS techniques. Phyto- chemistry 2013, 92, 71–86. 34. Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. 35. Rodriguez-Perez, C.; Gomez-Caravaca, A.M.; Guerra-Hernandez, E.; Cerretani, L.; Garcia-Villanova, B.; Verardo, V. Compre- hensive metabolite profiling of Solanum tuberosum L. (potato) leaves T by HPLC-ESI-QTOF-MS. Molecules 2018, 112, 390–399. 36. Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC−HESI-MS/MS. Agric. Food Chem. 2019, 67, 11053–11065.. 37. Seukep, A.J.; Zhang, Y.-L.; Xu, Y.-B.; Guo, M.-Q. In Vitro Antibacterial and Antiproliferative Potential of Echinops lanceolatus Mattf. (Asteraceae) and Identification of Potential Bioactive Compounds. Pharmaceuticals 2020, 13, 59. 38. Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non- targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Camellia kucha (Chang et Wang) Chang]. Food Res. Int. 2020, 138, 109789. 39. Spinola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. 40. Nijat, D.; Lu, C.-F.; Lu, J.-J.; Abdulla, R.; Hasan, A.; Aidarhan, N.; Aisa, H.A. Spectrum-effect relationship between UPLC fin- gerprints and antidiabetic and antioxidant activities of Rosa rugosa. J. Chromatogr. B 2021, 1179, 496–507. 41. D’Urso, G.; Sarais, G.; Lai, C.; Pizza, C.; Montoro, P. LC-MS based metabolomics study of different parts of myrtle berry from Sardinia (Italy). J. Berry Res. 2017, 7, 217–229. 42. Zhu, Z.-W.; Li, J.; Gao, X.-M.; Amponsem, E.; Kang, L.-Y.; Hu, L.-M.; Zhang, B.-L.; Chang, Y.-X. Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in Radix polygoni multiflori by LC–MS/MS. J. Pharmaceut. Biomed. Analys. 2012, 62, 162–166. 43. De Freitas, M.A.; Silva Alves, A.I.; Andrade, J.C.; Leite-Andrade, M.C.; Lucas dos Santos, A.T.; de Oliveira, T.F.; dos Santos, F.; Silva Buonafina, M.D. Evaluation of the Antifungal Activity of the Licania Rigida Leaf Ethanolic Extract against Biofilms Formed by Candida Sp. Isolates in Acrylic Resin Discs. Antibiotics 2019, 8, 250. 44. Zakharenko, A.M.; Razgonova, M.P.; Pikula, K.S.; Golokhvast, K.S. Simultaneous determination of 78 compounds of Rhodiola rosea extract using supercritical CO2-extraction and HPLC-ESI-MS/MS spectrometry. HINDAWY. Biochem. Res. Int. 2021, 2021, 45. Goufo, P.; Singh, R.K.; Cortez, I. Phytochemical A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. Antioxidants. 2020, 9, 398. 46. Singh, J.; Kumar, S.; Rathi, B.; Bhrara, K.; Chhikara, B.S. Therapeutic analysis of Terminalia arjuna plant extracts in combinations with different metal nanoparticles. J. Mater. NanoSci. 2015, 2, 1–7. 47. Gu, D.; Yang, Y.; Bakri, M.; Chen, Q.; Xin, X.; Aisa, H.A. A LC/QTOF–MS/MS Application to Investigate Chemical Compositions in a Fraction with Protein Tyrosine Phosphatase 1B Inhibitory Activity from Rosa Rugosa Flowers. Phytochem. Anal. 2013, 24, 661–670. 48. Pharmacopoeia of the Eurasian Economic Union, Approved by Decision of the Board of Eurasian Economic Commission No. 100 Dated August 11, 2020. Available online: http://www.eurasiancommission.org/ru/act/texnreg/deptexreg/LSMI/Docu- ments/Фармакопея%20Союза%2011%2008.pdf (accessed on 1 January 2020). 49. Zhang, Z.; Jia, P.; Zhang, X.; Zhang, Q.; Yang, H.; Shi, H.; Zhang, L. LC-MS/MS determination and pharmacokinetic study of seven flavonoids in rat plasma after oral administration of Cirsium japonicum DC. extract. J. Ethnopharmacol. 2014, 158, 66–75. Appl. Sci. 2022, 12, x FOR PEER REVIEW 27 of 29 50. Marzouk, M.M.; Hussein, S.R.; Elkhateeb, A.; El-shabrawy, M.; Abdel-Hameed, E.-S.S.; Kawashty, S.A. Comparative study of Mentha species growing wild in Egypt: LC-ESI-MS analysis and chemosystematic significance. J. Appl. Pharm. Sci. 2018, 8, 116– 51. Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Chaves, D.S.A; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawik- owska, A.; Kachlicki, P.; Mikolajczak, P.L.; et al. Comparison of bioactive compounds content in leaf extracts of Passiflora incar- nata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Braz. J. Pharmacol. 2018, 28, 179–191. 52. Huang, Y.; Yao, P.; Leung, K.W.; Wang, H.; Kong, X.P.; Wang, L.; Dong, T.T.X.; Chen, Y.; Tsim, K.W.K. The Yin-Yang Property of Chinese Medicinal Herbs Relates to Chemical Composition but Not Anti-Oxidative Activity: An Illustration Using Spleen- Meridian Herbs. Front. Pharmacol. 2018, 9, 1304. 53. Sun, J.; Liang, F.; Bin, Y.; Li, P.; Duan, C. Screening Non-colored Phenolics in Red Wines using Liquid Chromatography/Ultra- violet and Mass Spectrometry/Mass Spectrometry Libraries. Molecules 2007, 12, 679–693. 54. Engels, C.; Gräter, D.; Esquivel, P.; Jiménez, V.M.; Gänzle, M.G.; Schieber, A. Characterization of phenolic compounds in jocote (Spondias purpurea L.) peels by ultra-high-performance liquid chromatography/electrospray ionization mass spectrometry. Food Res. Int. 2012, 46, 557–562. 55. Rafsanjany, N.; Senker, J.; Brandt, S.; Dobrindt, U.; Hensel, A. In Vivo Consumption of Cranberry Exerts ex Vivo Antiadhesive Activity against FimH-Dominated Uropathogenic Escherichia coli: A Combined in Vivo, ex Vivo, and in Vitro Study of an Extract from Vaccinium macrocarpon. J. Agric. Food Chem. 2015, 63, 8804–8818. 56. Vijayan, K.P.R.; Raghu, A.V. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett. 2019, 52, 653–670. 57. Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Neto, C.P. Characterization of Phenolic Components in Polar Extracts of Eucalyptus globulus Labill. Bark by High-Performance Liquid Chromatography-Mass Spectrometry. Agric. Food Chem. 2011, 59, 9386–9393. 58. Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.O.; Cheng, H.; El-Shazly, A.M.; Wink, M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. J. Ethnopharmacol. 2018, 213, 38–47. 59. Mekam, P.N.; Martini, S.; Nguefack, J.; Tagliazucchi, D.; Stefani, E. Phenolic compounds profile of water and ethanol extracts of Euphorbia hirta L. leaves showing antioxidant and antifungal properties. South Afr. J. Bot. 2019, 127, 319–332. 60. Pan, M.; Lei, Q.; Zang, N.; Zhang, H. A Strategy Based on GC-MS/MS, UPLC-MS/MS and Virtual Molecular Docking for Anal- ysis and Prediction of Bioactive Compounds in Eucalyptus Globulus Leaves. Int. J. Mol. Sci. 2019, 20, 3875. 61. Nowak, R.; Olech, M.; Pecio, L.; Oleszek, W.; Los, R.; Malm, A.; Rzymowska, J. Cytotoxic, antioxidant, antimicrobial properties and chemical composition of rose petals. J. Sci. Food Agric. 2014, 94, 560–567. 62. Da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. 63. Marcia Fuentes, J.A.; Lopez-Salas, L.; Borras-Linares, I.; Navarro-Alarcon, M.; Segura-Carretero, A.; Lozano-Sanchez, J. Devel- opment of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398. 64. Cendrowski, A.; Scibisz, I.; Kieliszek, M.; Kolniak-Ostek, J.; Mitek, M. UPLC-PDA-Q/TOF-MS Profile of Polyphenolic Com- pounds of Liqueurs from Rose Petals (Rosa rugosa). Molecules 2017, 22, 1832. 65. Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; Garcia-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and Comprehen- sive Evaluation of (Poly)phenolic Compounds in Pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. 66. Viera, M.N.; Winterhalter, P.; Jerz, G. Flavonoids from the flowers of Impatients glandulifera Royle isolated by high performance countercurrent chromatography. Phytochem. Anal. 2016, 27, 116–125. 67. Barros, L.; Duenas, M.; Carvalho, A.M.; Ferreira, I.C.F.R.; Santos-Buelga, C. Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food Chem. Toxicol. 2012, 50, 1576–1582. 68. Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Jhun, H.P. In Vitro Antioxidant and Anti-Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from San- guisorba officinalis L. Roots. Molecules 2018, 23, 3001. 69. Chen, Y.; Cai, X.; Li, G.; He, X.; Yu, X.; Yu, X.; Xiao, Q.; Xiang, Z.; Wang, C. Chemical constituents of radix Actinidia chinensis planch by UPLC–QTOF–MS. Biomedical Chromatography. Biomed. Chromatogr. 2021, 35, e5103. 70. Chen, X.; Zhang, S.; Xuan, Z.; Ge, D.; Chen, X.; Zhang, J.; Wang, Q.; Wu, Y.; Liu, B. The Phenolic Fraction of Mentha haplocalyx and Its Constituent Linarin Ameliorate Inflammatory Response through Inactivation of NF-kB and MAPKs in Lipopolysaccha- ride-Induced RAW264.7 Cells. Molecules 2017, 22, 811. 71. Yin, Y.; Zhang, K.; Wei, L.; Chen, D.; Chen, Q.; Jiao, M.; Li, X.; Huang, J.; Gong, Z.; Kang, N.; et al. The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. Front. Pharma. 2021, 12, 710976.. 72. Romo Vaquero, M.; Garcia Villalba, R.; Larrosa, M.; Yáñez-Gascón, M.J.; Fromentin, E.; Flanagan, J.; Roller, M.; Tomás-Barberán, F.A.; Espín, J.C.; García-Conesa, M.T. Bioavailability of the major bioactive diterpenoids in a rosemary extract: Metabolic profile in the intestine, liver, plasma, and brain of Zucker rats. Mol. Nutr. Food Res. 2013, 57, 1834–1846. 73. Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Asta, C.; Del Rio, D. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.) extract. Molecules 2016, 21, 1007. Appl. Sci. 2022, 12, x FOR PEER REVIEW 28 of 29 74. Jiang, R.-W.; Lau, K.-M.; Hon, P.-M.; Mak, T.C.W.; Woo, K.-S.; Fung, K.-P. Chemistry and Biological Activities of Caffeic Acid Derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246. 75. Simard, F.; Legault, J.; Lavoie, S.; Mshvildadze, V.; Pichette, A. Isolation and Identification of Cytotoxic Compounds from the Wood of Pinus resinosa. Phytother. Res. 2008, 22, 919–922. 76. Ekeberg, D.; Flate, P.-O.; Eikenes, M.; Fongen, M.; Naess-Andresen, C.F. Qualitative and quantitative determination of extrac- tives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J. Chromatogr. A 2006, 1109, 267–272. 77. Moss, R.; Mao, Q.; Taylor, D.; Saucier, C. Investigation of monomeric and oligomeric wine stilbenoids in red wines by ultra- high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 1815–1827. 78. Rezaire, A.; Robinson, J.C.; Bereau, D.; Verbaere, A.; Sommerer, N.; Khan, M.K.; Durand, P.; Prost, E.; Fils-Lycaon, B. Amazonian palm Oenocarpus bataua (‘‘patawa’’): Chemical and biological antioxidant activity—Phytochemical composition. Food Chem. 2014, 149, 62–70. 79. Hu, F.; An, J.; Li, W.; Zhang, Z.; Chen, W.; Wang, C.; Wang, Z. UPLC-MS/MS determination and gender-related pharmacokinetic study of five active ingredients in rat plasma after oral administration of Eucommia cortex extract. J. Ethnopharmacol. 2015, 169, 145–155. 80. Eklund, P.C.; Backman, M.J.; Kronberg, L.A.; Smeds, A.I.; Sjoholm, R.E. Identification of lignans by liquid chromatography- electrospray ionization ion-trap mass spectrometry. J. Mass Spectr. 2008, 43, 97–107. 81. Dinelli, G.; Marotti, I.; Bosi, S.; Benedettelli, S.; Ghiselli, L.; Cortacero-Ramirez, S.; Carrasco-Pancorbo, A.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Lignan profile in seeds of modern and old Italian soft wheat (Triticum aestivum L.) cultivars as revealed by CE-MS analyses. Electrophoresis 2007, 28, 4212–4219. 82. Michalak, B.; Filipek, A.; Chomicki, P.; Pyza, M.; Woźniak, M.; Żyżyńska-Granica, B.; Piwowarski, J.P.; Kicel, A.; Olszewska, M.A.; Kiss, A.K. Lignans From Forsythia x Intermedia Leaves and Flowers Attenuate the Pro-inflammatory Function of Leuko- cytes and Their Interaction With Endothelial Cells. Front. Pharmacol. 2018, 9, 401. 83. Oertel, A.; Matros, A.; Hartmann, A.; Arapitsas, P.; Dehmer, K.J.; Martens, S.; Mock, H.P. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta 2017, 246, 281–297. 84. Vera de Rosso, V.; Hillebrand, S.; Cuevas Montilla, E.; Bobbio, F.O.; Winterhalter, P.; Mercadante, A.Z. Determination of antho- cyanins from acerola (Malpighia emarginata DC.) and ac-ai (Euterpe oleracea Mart.) by HPLC–PDA–MS/MS. J. Food Composit. Analys. 2008, 21, 291–299. 85. Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. 86. Diretto, G.; Jin, X.; Capell, T.; Zhu, C.; Gomez-Gomez, L. Differential accumulation of pelargonidin glycosides in petals at three different developmental stages of the orange-flowered gential (Gentiana lutea L. var. aurantiaca). PLoS ONE 2019, 14, e0212062. 87. Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K.; et al. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016, 71, 138–144. 88. Nakamura, S.; Li, X.; Matsuda, H.; Yoshikawa, M. Bioactive constituents from Chinese natural medicines. XXVIII. Chemical structures of acyclic alcohol glycosides from the roots of Rhodiola crenulata. Chem. Pharm. Bull. 2008, 56, 536–540. 89. Fan, Z.; Wang, Y.; Yang, M.; Cao, J.; Khan, A.; Cheng, G. UHPLC-ESI-HRMS/MS analysis on phenolic compositions of different E Se tea extracts and their antioxidant and cytoprotective activities. Food Chem. 2020, 318, 126512,. 90. Suarez Montenegro, Z.J.; Alvarez-Rivera, G.; Mendiola, J.A.; Ibanez, E.; Cifuentes, A. Extraction and Mass Spectrometric Char- acterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO2 Process. Foods 2021, 10, 1301. 91. Zhang, J.; Gao, W.; Liu, Z.; Zhang, Z. Identification and Simultaneous Determination of Twelve Active Components in the Methanol Extract of Traditional Medicine Weichang’an Pill by HPLC-DAD-ESI-MS/MS. Iran. J. Pharmaceut. Res. 2013, 12, 15–24. 92. Guo, K.; Tong, C.; Fu, Q.; Xu, J.; Shi, S.; Xiao, Y. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by HPLC-DAD-QTOF-MS/MS. J. Pharmaceut. Biomed. Analys. 2019, 170, 153–160. 93. Van Diermen, D.; Marston, A.; Bravo, J.; Reist, M.; Carrupt, P.A.; Hostettmann, K. Monoamine oxidase inhibition by Rhodiola rosea L. roots. J. Ethnopharmacol. 2009, 122, 397–401. 94. Ohsugi, M.; Fan, W.; Hase, K.; Xiong, Q.; Tezuka, Y.; Komatsu, K.; Namba, T.; Saitoh, T.; Tazawa, K.; Kadota, S. Active-oxygen scavenging activity of traditional nourishing-tonic herbal medicines and active constituents of Rhodiola sacra. J. Ethnopharmacol. 1999, 67, 111–119. 95. Kim, K.H.; Park, Y.J.; Jang, H.J.; Lee, S.J.; Lee, S.; Yun, B.S.; Lee, S.W.; Rho, M.C. Rugosic acid A, derived from Rosa rugosa Thunb., is novel inhibitory agent for NF-κB and IL-6/STAT3 axis in acute lung injury model. Phytother. Res. 2020, 34, 3200–3210. 96. Patnala, S.; Kanfer, I. Medicinal use of Sceletium: Characterization of Phytochemical Components of Sceletium Plant Species using HPLC with UV and Electrospray Ionization—Tandem Mass Spectroscopy. J. Pharm. Pharm. Sci. 2015, 18, 414–423.. 97. Yang, S.T.; Wu, X.; Rui, W.; Guo, J.; Feng, Y.F. UPLC/Q-TOF-MS Analysis for Identification of Hydrophilic Phenolics and Lip- ophilic Diterpenoids from Radix Salviae Miltiorrhizae. Acta Chromatogr. 2015, 27, 711–728. 98. Xie, J.; Ding, C.; Ge, Q.; Zhou, Z.; Zhi, X. Simultaneous determination of ginkgolides A, B, C and bilobalide in plasma by LC– MS/MS and its application to the pharmacokinetic study of Ginkgo biloba extract in rats. J. Chromatogr. B 2008, 864, 87–94. 99. Xiao, J.; Wang, T.; Li, P.; Liu, R.; Li, Q.; Bi, K. Development of two step liquid–liquid extraction tandem UHPLC–MS/MS method for the simultaneous determination of Ginkgo flavonoids, terpene lactones and nimodipine in rat plasma: Application to the Appl. Sci. 2022, 12, x FOR PEER REVIEW 29 of 29 pharmacokinetic study of the combination of Ginkgo biloba dispersible tablets and Nimodipine tablets. J. Chromatogr. B. 2016, 1028, 33–41. 100. Llorent-Martinez, E.J.; Spinola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpe- noid saponins, and other minor compounds in Bituminaria bituminosa. Ind. Crops Prod. 2015, 69, 80–90. 101. Park, S.K.; Ha, J.S.; Kim, J.M.; Kang, J.Y.; Lee, D.S.; Guo, T.J.; Lee, U.; Kim, D.-O.; Heo, H.J. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (A)1-42-Induced Learning and Memory Impairment. J. Agric. Food. Chem. 2016, 64, 3353–3361. 102. Serrano, C.A.; Villena, G.K.; Rodriguez, E.F. Phytochemical profile and rosmarinic acid purification from two Peruvian Lep- echinia Willd. species (Salviinae, Mentheae, Lamiaceae). Sci. Rep. 2021, 11, 7260. 103. Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Chaves, D.S.A.; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawik- owska, A.; Kachlicki, P.; Mikolajczak, P.L.; et al. Acetylcholinesterase inhibitory activities and bioguided fractionation of the Ocotea percoriacea extracts: HPLC-DAD-MS/MS characterization and molecular modeling of their alkaloids in the active fraction. Comput. Biol. Chem. 2019, 83, 107129. 104. Yang, L.; Meng, X.; Yu, X.; Kuang, H. Simultaneous determination of anemoside B4, phellodendrine, berberine, palmatine, obakunone, esculin, esculetin in rat plasma by UPLC–ESI–MS/MS and its application to a comparative pharmacokinetic study in normal and ulcerative colitis rats. J. Pharm. Biomed. Analys. 2017, 134, 43–52. 105. Seekhaw, P.; Mahatheeranont, S.; Sookwong, P.; Luangkamin, S.; Na Lampang Neonplab, A.; Puangsombat, P. Phytochemical Constituents of Thai Dark Purple Glutinous Rice Bran Extract [Cultivar Luem Pua (Oryza sativa L.)]. Chiang Mai J. Sci. 2018, 45, 1383–1395. 106. Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114. 107. Sut, S.; Zengin, G.; Maggi, F.; Malagoli, M.; Dall’Acqua, S. Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and In Vitro Activities. Molecules 2019, 24, 1109. 108. D’Abrosca, B.; Fiorentino, A.; Monaco, P.; Oriano, P.; Pacifico, S. Annurcoic acid: A new antioxidant ursane triterpene from fruits of cv. Annurca apple. Food Chem. 2006, 98, 285–290. 109. Liu, H.; Lai, H.; Jia, X.; Liu, J.; Zhang, Z.; Oi, Y.; Zhang, J.; Song, J.; Wu, C.; Zhang, B.; et al. Comprehensive chemical analysis of Schisandra chinensis by HPLC-DAD-MS combined with chemometrics. Phytomedicine 2013, 20, 1135–1143. 110. Razgonova, M.; Zakharenko, A.; Pikula, K.; Kim, E.; Chernyshev, V.; Ercisli, S.; Cravotto, G.; Golokhvast, K. Rapid Mass Spec- trometric Study of a Supercritical CO2-extract from Woody Liana Schisandra chinensis by HPLC-SPD-ESI-MS/MS. Molecules 2020, 25, 2689. 111. Lara-Abia, S.; Lobo-Rodrigo, G.; Welti-Chanes, J.; Pilar Cano, M. Carotenoid and Carotenoid Ester Profile and Their Deposition in Plastids in Fruits of New Papaya (Carica papaya L.) Varieties from the Canary Islands. Foods 2021, 10, 434. 112. Etzbach, L.; Pfeiffer, A.; Weber, F.; Schieber, A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DADAPCI-MSn. Food Chem. 2018, 245, 508–517. 113. Al-Yafeai, A.; Malarski, A.; Bohm, V. Characterization of carotenoids and vitamin E in R. rugosa and R. canina: Comparative analysis. Food Chem. 2018, 242, 435–442. 114. Petry, F.C.; Mercadante, A.Z. Composition by LC-MS/MS of New Carotenoid Esters in Mango and Citrus. J. Agric. Food Chem. 2016, 64, 8207–8224. 115. van Breemen, R.B.; Canjura, F.L.; Schwartz, S.J. Identification of Chlorophyll Derivatives by Mass Spectrometry. J. Agric. Food Chem. 1991, 39, 1452–1456. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Sciences Multidisciplinary Digital Publishing Institute

Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. Originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Three Species of the Genus Rosa

Loading next page...
 
/lp/multidisciplinary-digital-publishing-institute/rosa-davurica-pall-rosa-rugosa-thumb-and-rosa-acicularis-lindl-EMS70gMeYC
Publisher
Multidisciplinary Digital Publishing Institute
Copyright
© 1996-2022 MDPI (Basel, Switzerland) unless otherwise stated Disclaimer The statements, opinions and data contained in the journals are solely those of the individual authors and contributors and not of the publisher and the editor(s). MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Terms and Conditions Privacy Policy
ISSN
2076-3417
DOI
10.3390/app12199401
Publisher site
See Article on Publisher Site

Abstract

Article Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. Originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Three Species of the Genus Rosa 1,2, 3 4 3 Mayya P. Razgonova *, Bayana A. Bazhenova , Yulia Yu. Zabalueva , Anastasia G. Burkhanova , 5,6 7 1 8 Alexander M. Zakharenko , Andrey N. Kupriyanov , Andrey S. Sabitov , Sezai Ercisli 2,5,6 and Kirill S. Golokhvast N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia Department of Bioeconomy and Food Security, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia East Siberian State University of Technology and Management, Klyuchevskaya Str. 40V, 670013 Ulan-Ude, Russia K.G. Razumovsky Moscow State University of Technologies and Management, Zemlyanoy Val Str. 73, 109004 Moscow, Russia Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, Tomsk State University, Lenin Str. 36, 634050 Tomsk, Russia Citation: Razgonova, M.P.; Federal Research Center of Coal and Coal-Chemistry of SB RAS, 650000 Kemerovo, Russia Bazhenova, B.A.; Zabalueva, Y.Y.; Ataturk University, Kampusu Ataturk Universitesi, 25030 Yakutiye, Turkey Burkhanova, A.G.; * Correspondence: m.razgonova@vir.nw.ru Zakharenko, A.M.; Kupriyanov, A.N.; Sabitov, A.S.; Abstract: Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. contain a large number Ercisli, S.; Golokhvast, K.S. of target analytes which are bioactive compounds. High performance liquid chromatography Rosa davurica Pall., Rosa rugosa (HPLC), in combination with the ion trap (tandem mass spectrometry), was used to identify target Thunb., and Rosa acicularic Lindl. analytes in MeOH extracts of R. rugosa, R. davurica, and R. acicularis, originating from the Russian Originating from Far East of Russia: Far East, Trans-Baikal Region, and Western Siberia. The results of initial studies revealed the pres- Screening of 146 Chemical ence of 146 compounds, of which 115 were identified for the first time in the genus Rosa (family Constituents in Three Species of the Genus Rosa. Appl. Sci. 2022, 12, 9401. Rosaceae). The newly identified metabolites belonged to 18 classes, including 14 phenolic acids and https://doi.org/10.3390/app12199401 their conjugates, 18 flavones, 7 flavonols, 2 flavan-3-ols, 2 flavanones, 3 stilbenes, 2 coumarins, 2 lignans, 9 anthocyanins, 3 tannins, 8 terpenoids, 3 sceletium alkaloids, 4 fatty acids, 2 sterols, 2 ca- Academic Editor: Monica Gallo rotenoids, 3 oxylipins, 3 amino acids, 5 carboxylic acids, etc. The proven richness of the bioactive Received: 19 August 2022 components of targeted extracts of R. rugosa, R. davurica, and R. acicularis invites extensive biotech- Accepted: 12 September 2022 nological and pharmaceutical research, which can make a significant contribution both in the field Published: 20 September 2022 of functional and enriched nutrition, and in the field of cosmetology and pharmacy. Publisher’s Note: MDPI stays neu- tral with regard to jurisdictional Keywords: Rosa rugosa; Rosa davurica; Rosa acicularis; ion trap; tandem mass spectrometry; claims in published maps and institu- polyphenolic compounds tional affiliations. 1. Introduction Copyright: © 2022 by the authors. Li- Plants have been used as medicines since the existence of human civilization [1,2]. censee MDPI, Basel, Switzerland. More than 35 thousand varieties of plants from different parts of the world are actively This article is an open access article used for medical purposes, since they contain numerous phytocomponents that can po- distributed under the terms and con- tentially treat many diseases, including infectious ones [3]. Numerous medical systems of ditions of the Creative Commons At- treatment, such as Ayurveda, Unani, homeopathy, naturopathy, Siddha, and others, rely tribution (CC BY) license (https://cre- ativecommons.org/licenses/by/4.0/). on plants as effective remedies for various life-threatening diseases [4,5]. Due to the Appl. Sci. 2022, 12, 9401. https://doi.org/10.3390/app12199401 www.mdpi.com/journal/applsci Appl. Sci. 2022, 12, 9401 15 of 29 presence of secondary metabolites in plants, they have significant potential as antimicro- bial agents. The diversity of these natural products offers an endless number of possibili- ties for the discovery of new drugs for the treatment of various diseases [6–8]. In recent years, traditional medicine based on oral herbal preparations has attracted the attention of both consumers and healthcare professionals. However, the use of these medicinal products requires improved knowledge of their composition and stability over time in order to support or validate these therapies in humans. Liquid preparations from medicinal plants, such as tinctures and extracts from plant buds, are typical products that are widely used but still poorly understood. Plant bud extracts are defined as extracts obtained exclusively from fresh buds, shoots, young leaves, and/or roots, which are mac- erated and extracted with hydro–glycerol and water–alcohol mixtures [9]. Kidney extracts represent a new category of herbal products well known and widely used in gemmother- apy, as well as in homeopathy and herbal medicine [10]. The genus Rosa (family Rosaceae) is represented on the territory of the Trans-Baikal region, Far East (Russian Federation), and Western Siberia by 3 species—Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. (Figures 1 and 2). Fresh fruits and leaves contain up to 900 mg% ascorbic acid per dry pulp weight. Fresh petals contain 0.25– 0.38% essential oil. Its neutral volatile fraction contains 86.3% phenylethyl alcohol, some linalool, citronellol, geraniol, nerol, etc. Eugenol was found in the phenolic fraction, phe- nylacetic, benzoic, and other acids in the acid fraction. R. rugosa is a medicinal plant widely used in traditional and folk medicine. Extracts of R. rugosa have been valued for Asian culinary, cosmetic, and aromatherapy purposes, and used in herbal medicines for diabetes mellitus and osteoarthritis. [11]. The medicinal effects seem to be involved in the presence of many phytochemicals in R. rugosa extracts, for example flavonoids, phenylpropanoid, tannins, fatty acids, and terpenoids [12]. (A) (B) Figure 1. (A) Rosa rugosa (Far Eastern Russia); (B) Rosa davurica (Trans-Baikal region). Appl. Sci. 2022, 12, 9401 16 of 29 Figure 2. Rosa acicularis (Western Siberia). Several studies have reported that some compounds from rose hip extracts exhibit anti-inflammatory activity in vitro. The anti-inflammatory property of the crude hydroal- coholic extract of rose hip has been proven in vivo, suggesting its potential role as one of the main therapies for the treatment of diseases associated with inflammation [13]. In Turkish folk medicine, a decoction of fresh rose hips is prepared and used to treat various stomach disorders [14]. Trans-Tiliroside (Tribuloside) has been found to be one of the main active components of aqueous acetone extracts from fruits and seeds that inhibit weight gain and lower plasma triglyceride levels in mice [15]. Additionally, clinical stud- ies have demonstrated the positive effect of rose hip powder in the treatment of osteoar- thritis [16]. Rose hip powder enhances in vitro anti-inflammatory and chondroprotective properties in leukocytes and primary chondrocytes of human peripheral blood [17]. Un- fortunately, to date, there are few data providing information on the biological action of extracts of buds and leaves, and it should be noted that these preparations have never been used for preclinical and clinical trials. The present investigation was designed to carry out a phytochemical study involving detailed metabolomic and comparative analysis of fruits and flowers of Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. originating from the Trans-Baikal region, Western Siberia, and Russian Far East. 2. Results Approximately 300 mass spectra were assessed for each analytical replicate and MS operating condition in this comprehensive approach for a complete screening of phyto- chemicals (Figure 3). Intens. x10 25 22 54 13 15 21 257 239 248 265 9 3 35 6 41 23 235 322 34 80249 276 29 268 281 251 274 16 19 2 23 4 44 48 52 56 104 277284 7 614 17228 53 3 32 1 3 37 38 39 4 43 5 49 47 53 57 7 7 7 71 2 3 4 7 7 7 77 8 9 6 8 8 8 884 1 2 0 3 8 8 89 7 6 92 167 171 226 237 242 250 264 273 27 28 82 1 81 10 2 18 22 0 2 2 27 6 33 04 4 42 0 46 50 55 4 58 5 5 69 0 61 62 63 6 6 6 67 7 6 8 90 88 9 9 94 3 9 9 5 1 1 1 1 6 70 0 0 0 105 106 107 108 0 2 3 1 1 1 10 10 11 1 91 118 1 31 1 1 1 19 2 2 2 2 1 1 1 1 3 5 6 4 2 3 3 3 135 133 134 9 0 1 21 137 36 1 1 13 4 4 1 19 0 1 4 4 147 1 3 45 1 1 10 52 51 54 1 15 56 5 1 174 75 17 180 9185 200 208 21121 22 2 4 16 2 1 1 2 2 2 7 8 2 2 0 227 2 3 230 23 236 2 24425 256 3 2 262 63 266 267 280 3 24 6 65 4 75 85 9199 89 112 1 1 11 1 1 1 121 120 1 1 6 5 47 22 1 12 27 8 138 14 1 12 4 4 149 148 6 51531 15 5 161 160 159 7 8 1 1 1 11 6 6 6 6 1 1 1 6 2 5 4 3 7 6 6 6 173 172 173 0 9 81 177 76 17 182 183 181 81 18 86 1 14 8 8 1 1 191 192 7 8 1 90 89 1 1 1 93 1 9 95 96 1 1 9 4 9 9 2 78 9 01 202 2 2 20 0 0 2 23 4 5 0 0 2 26 7 09 10 212 21 215 322 19 2 2 22 2 1 228 4 5 2 22 2 231 9 9 234 2 2 24 4 45 6 7 255 2 2 25 5 68 9 0 27 2 2 2275 0 71 72 72 27 283 92 2 28 8 8 2 25 6 7 8 8 2 28 9 2 90 91 2 2 92 9 9 295 3 4 296 297 0 10 20 30 40 50 Time [min] Rosa Rugosa Primorye MeOH_-1_01_896.d: BPC +All MS Rosa Rugosa Primorye MeOH_-1_01_896.d: BPC -All MS Rosa Rugosa Primorye MeOH_-1_01_896.d: UV Chromatogram, 230 nm Rosa Rugosa Primorye MeOH_-1_01_896.d: UV Chromatogram, 330 nm Figure 3. Representative chemical profiles of the R. rugosa (Primorye, Russia) total ion chromato- gram from the MeOH extract. Appl. Sci. 2022, 12, 9401 17 of 29 This procedure allowed a detailed evaluation of the rose MeOH extract fraction and the tentative identification of up to 146 phytochemicals (Table A1 (Appendix A)). The most represented classes of polyphenolic compounds were flavonoids (flavonols, fla- vones, flavan-3-ols, flavanones) with a total of 68 polyphenols identified for the first time. Some polyphenols were identified for the first time in the genus Rosa (family Rosaceae). These are the flavones: Chrysoeriol, Hispidulin, 5,7-Dimethoxyluteolin, Cirsimaritin, Cirsiliol, Tricin, Jaceosidin, Nevadensin, Syringetin, Isovitexin, Genistein C-glucoside malonylated, Chrysin 6-C-glucoside-6″-O-deoxyhexoside; flavanols: Dihydrokaempferol, Rhamnetin II, Kaempferol-3-O-α-L-rhamnoside, Taxifolin-O-pentoside, Taxifolin-3-O- hexoside, Isorhamnetin triacetyl hexoside; flavan-3-ols: Epiafzelechin and Gallocatechin; flavanone: Naringenin, Fustin; phenolic acids: Caffeic acid, Citric acid, Hydroxy methoxy dimethylbenzoic acid, Hydroxyferulic acid, Ellagic acid, p-Coumaroylquinic acid, Gink- goic acid, Salvianolic acid D, Salvianolic acid B; stilbenes: Pinosylvin, Resveratrol, 3-Hy- droxyresveratrol; lignans: Pinoresinol, Arctigenin; coumarins: 3,4,5–Trimethoxycouma- rin, Fraxin; anthocyanins: Cyanidin 3-O-glucoside, Delphinidin O-pentoside, Pelargo- nidin 3-O-(6-O-malonyl-β-D-glucoside), Cyanidin 3-(6″-Succinyl-Glucoside), Delphinidin malonyl hexoside, Cyanidin 3-O-dioxayl-glucoside, Delphinidin 3,5-dihexoside, etc. 3. Discussion A total of 146 compounds were identified in extracts of Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. based on their accurate MS, fragment ions, and by searching online databases and the reported literature. A total of 115 compounds were identified for the first time in the genus Rosa (family Rosaceae). The newly identified me- tabolites belonged to 18 classes, including 14 phenolic acids and their conjugates, 18 fla- vones, 7 flavonols, 2 flavan-3-ols, 2 flavanones, 3 stilbenes, 2 coumarins, 2 lignans, 9 an- thocyanins, 3 tannins, 8 terpenoids, 3 sceletium alkaloids, 4 fatty acids, 2 sterols, 2 carote- noids, 3 oxylipins, 3 amino acids, 5 carboxylic acids, etc. Metabolomic screening of poly- phenols from extracts of R. rugosa, R. davurica, and R. acicularis included flavones, flavo- nols, flavan-3-oles, flavanones, anthocyanins, condensed tannins, phenolic acids, lignans, stilbenes, and coumarins. 3.1. Dimethoxyflavones The flavones 5,7-Dimethoxyluteolin (compound 5), Cirsimaritin (compound 6), Chrysoeriol methyl ether (compound 7), Cirsiliol (compound 8), Tricin (compound 9), Ja- ceosidin (compound 10), and Syringetin (compound 13) (Table A1 (Appendix A)) have been already characterized as components of Syzygium aromaticum [18], Ocimum [19], Ros- marinus officinalis [20], Bougainvillea [21], Triticum aestivum [22]; millet grains [23]; Sasa veitchii; Phyllostachys nigra [24], etc. Thus, the flavone Jaceosidin was found in extracts of R. davurica. The flavone 5,7-Dimethoxyluteolin was found in extracts of R. rugosa and R. davurica. The CID-spectrum (collision induced dissociation spectrum) in negative ion modes of Tricin from extracts of R. davurica is shown in Figure 4. Appl. Sci. 2022, 12, 9401 18 of 29 Intens. 230. Ros a da vurica _-1_01_1737.d: -MS, 50.3min #1926 1- x10 503.27 1- 1- 0.5 517.20 329.19 1- 1- 2- 475.06 257.14 413.13 641.21 671.17 0.0 1- x10 230. Ros a da vurica _-1_01_1737.d: -MS2(329.19), 50.3min #1929 313.89 229.09 259.06 x10 230. 1- Ros a davurica _-1_01_1737.d: -MS3(329.19->313.89), 50.4min #1933 298.91 0.5 1- 270.99 0.0 230. Ros a davurica _-1_01_1737.d: -MS4(329.19->313.89->298.91), 50.5min #1936 1- 270.94 3- 226.92 200 250 300 350 400 450 500 550 600 650 m/z Figure 4. CID-spectrum of Tricin from extracts of R. davurica, m/z 329.19. The [M – H] ion produced three fragment ions at m/z 313, m/z 259, and m/z 229 (Fig- ure 4). The fragment ion with m/z 313 produced two daughter ions at m/z 298 and m/z 271. The fragment ion with m/z 298 yielded two daughter ions at m/z 271 and m/z 227. It was identified in the bibliography in extracts of Triticum aestivum [22]; millet grains [23]; Sasa veitchii; Phyllostachys nigra [24]. 3.2. Trimethoxyflavones The flavones Nevadensin (compound 12) and Pentahydroxy trimethoxy flavone (compound 15) (Table A1 (Appendix A)) have been already characterized as components of Ocimum [19], F. glaucescens; C. edulis [25], Mentha [26], etc. Thus, the flavone Nevadensin was found in extracts of R. acicularis. The CID-spectrum in positive ion modes of Ne- vadensin from extracts of R. acicularis is shown in Figure 5. Intens. 206. 1+ Rosa Acicula ris Kemerovo MeOH_-1_01_9 01.d: +MS, 38.7min #1509 1+ x10 345.0 8 396.19 3+ 1+ 1+ 2+ 1+ 1+ 1+ 2+ 1+ 0.5 1+ 487.14 1+ 181.09 409 .24 22 5.21 292.10 524.13 326.21 363.23 599.37 657.33 158.22 0.0 x10 206. 1+ Ros a Acicula ris Kemerovo Me OH_-1_01_901.d: +MS2(345.08), 38.7min #1510 330.0 3 212.96 1+ x10 206. Rosa Acicula ris Kemerovo MeOH_-1_01_901.d: +MS3(3 45.08->330.03), 38.8min #1514 31 4.99 x10 206. Rosa Acicula ris Kemerovo MeOH_-1_01_9 01.d: +MS4(345 .08->3 30.03->314.99), 38.9min #1518 1+ 286.9 9 2 + 1+ 182.98 1 33.12 259.04 312 .96 200 300 400 500 600 m/z Figure 5. CID-spectrum of Nevadensin from extracts of R. acicularis, m/z 346.86. The [M + H] ion produced two fragment ions at m/z 330 and m/z 212 (Figure 5). The fragment ion with m/z 330 yielded one daughter ion at m/z 314. The fragment ion with m/z 314 yielded five daughter ions at m/z 312, m/z 286, m/z 259, m/z 182, and m/z 133. It was identified in the bibliography in extracts of Ocimum [19] and Mentha [26]. 3.3. Trihydroxyflavones The flavones Apigenin (compound 2), Chrysoeriol (compound 3), Isovitexin (com- pound 16), and flavonol Isokaempferide (compound 22) have been already characterized as components of Mentha [26], Hedyotis diffusa [27], Andean blueberry [28], Stevia rebaudiana [29], Rosa rugosa [30], Propolis [31], Rhus coriaria [32], Mexican lupine species [33], etc. Appl. Sci. 2022, 12, 9401 19 of 29 Thus, the flavonol Isokaempferide was found in extracts of R. davurica. The CID-spectrum in positive ion modes of Isokaempferide from extracts of R. davurica is shown in Figure 6. Intens. 73. Rosa da vurica _-1_01_1736.d: +MS, 9.4 min #376 1+ 1+ 1+ 2+ x10 2+ 1+ 280.90 231.95 261.00 301.96 1+ 1+ 2+ 0.5 366.9 1 394.9 1 209.00 342.95 454.95 184.04 0.0 x10 73. 1+ Ros a da vurica _-1_01_1736.d: +MS2(301.96), 9.5 min #380 300.9 4 274.92 3+ 1+ 2+ 212.32 256.94 324.68 184.9 1 381.01 348.77 436.8 0 470.90 x10 1+ 73. Ros a da vurica _-1_01_1736.d: +MS3(301.96->300.94), 9.6 min #384 285.83 241.96 306.20 200.93 73. Ros a da vurica _-1_01_1736.d: +MS4(301.96->300.94->285.83), 9.7 min #386 239.83 200 250 300 350 400 450 m/z Figure 6. CID-spectrum of Isokaempferide from extracts of R. davurica, m/z 301.96. The [M + H] ion produced five fragment ions at m/z 300, m/z 274, m/z 256, m/z 212, and m/z 184 (Figure 6). The fragment ion with m/z 300 yielded three daughter ions at m/z 285, m/z 241, and m/z 200. The fragment ion with m/z 285 yielded one daughter ion at m/z 239. It was identified in the bibliography in extracts of Rosa rugosa [30] and Propolis [31]. 3.4. Tetrahydroxyflavones The flavonols Kaempferol (compound 20), Dihydrokaempferol (compound 21), Kaempferol-3-O-α-L-rhamnoside (compound 30), Kaempferol diacetyl hexoside (com- pound 34), Kaempferol 3-O-rutinoside (compound 35), and Kaempferol 3-O-deoxyhexo- sylhexoside (compound 36) have been already characterized as components of F. glau- cescens [25], Andean blueberry [28], Rhus coriaria (Sumac) [32], Lonicera japonica [34], Potato leaves [35], Rapeseed petals [36], Echinops lanceolatus [37], Camellia kucha [38]. Thus, the fla- vonol Kaempferol was found in extracts of R. rugosa, R. davurica, and R. acicularis. The CID-spectrum in positive ion modes of luteolin from extracts of D. palmatum is shown in Figure 7. Intens. 45. Ros a Acicula ris Ke merovo Me OH_-1_01_899.d: +MS, 14.3mi n #554 1+ 1+ x10 229.04 287.12 1+ 1 1+ 2+ 1+ 317.11 3+ 1+ 205.04 367.14 143.02 434.83 477.00 x10 1+ 45. Ros a Aci cularis Ke merovo Me OH_-1_01_899.d: +MS2(287.12), 14.4mi n #556 175.09 1+ 1+ 157.04 269.08 1+ 1+ 139.07 242.10 213.96 1+ x10 45. Ros a Acicula ris Kemerovo Me OH_-1_01_899.d: +MS3(287.12->175.09), 14.4mi n #560 157.07 1.0 0.5 139.10 0.0 x10 45. Rosa Acicula ri s Keme rovo MeOH_-1_01_899.d: +MS4(287.12->175.09->157.07), 14.5mi n #564 5+ 139.05 150 200 250 300 350 400 450 m/z Figure 7. CID-spectrum of Kaempferol from extracts of R. acicularis, m/z 287. The [M + H] ion produced six fragment ions at m/z 269, m/z 242, m/z 213, m/z 175, m/z 157, and m/z 139 (Figure 7). The fragment ion with m/z 175 yielded two daughter ions at m/z 157 and m/z 139. It was identified in the bibliography in extracts of Andean blueberry [28], Rhus coriaria (Sumac) [32], Lonicera japonica [34], and Potato leaves [35]. Appl. Sci. 2022, 12, 9401 20 of 29 3.5. Pentahydroxyflavones The flavonols Quercetin (compound 23), Morin (compound 24), Rhamnetin I (com- pound 25), Rhamnetin II (compound 26), Isorhamnetin (compound 27), Avicularin (com- pound 31), Taxifolin-O-pentoside (compound 32), Taxifolin-3-O-hexoside (compound 33), and Isorhamnetin triacetyl hexoside (compound 37) have been already characterized as components of Bougainvillea [21], Rosa rugosa [30], Propolis [31], Rhus coriaria [32], and Po- tato leaves [35]. Thus, the flavonol Taxifolin-O-pentoside was found in extracts of R. davu- rica. The CID-spectrum in negative ion modes of Taxifolin-O-pentoside from extracts of R. davurica is shown in Figure 8. Intens. 112. Ros a da vurica _-1_01_1732.d: -MS, 32.3min #1237 1- x10 300.99 1- 1- 0.5 435.03 3- 248.08 602.61 0.0 x10 112. Ros a da vurica _-1_01_1732.d: -MS2(435.03), 32.3min #1240 302.91 1- 1- 300.94 387.03 177.02 x10 112. Ros a davurica _-1_01_1732.d: -MS3(435.03->300.94), 32.4min #1244 284.89 177.04 x10 112. Ros a da vurica_-1_01_1732.d: -MS4(435.03->300.94->284.89), 32.5min #1246 1- 1.0 240.97 0.5 175.00 0.0 0 200 400 600 800 1000 m/z Figure 8. CID-spectrum of Taxifolin-O-pentoside from extracts of R. davurica, m/z 285.03. The [M − H] ion produced three fragment ions at m/z 387, m/z 300, and m/z 177 (Fig- ure 8). The fragment ion with m/z 300 yielded two daughter ions at m/z 284 and m/z 177. The fragment ion with m/z 284 yielded two daughter ions at m/z 240 and m/z 175. It was identified in the bibliography in extracts of millet grains [23] and A. cordifolia [25]. 3.6. Flavan-3-ols The flavan-3-ols Epiafzelechin (compound 38), Catechin (compound 39), (epi)Cate- chin (compound 40), and Gallocatechin (compound 41) have been characterized as com- ponents of millet grains [23], G. linguiforme [25], Camellia kucha [38], strawberry, cherimoya [39], Rosa rugosa [40], Myrtle [41], Radix polygoni multiflori [42], Licania ridigna [43], and Rhodiola rosea [44]. The flavan-3-ol Gallocatechin (compound 41) was found in extract of R. rugosa and R. davurica. The CID-spectrum in negative ion modes of Gallocatechin from R. rugosa is shown in Figure 9. Intens. 124. 1- Ros a Rugos a Primorye MeOH_-1_01_897.d: -MS, 22.5min #876 x10 305.10 1- 1- 449.23 1- 1- 0.5 1- 1- 3- 1- 381.20 11 1.11 477.21 547.31 191.05 245.04 272.99 515.19 0.0 1- x10 124. Ros a Rugos a Primorye MeOH_-1_01_897.d: -MS2(305.10 ), 22.5min #877 273.04 x10 1- 124. Ros a Rugos a Primorye MeOH_-1_01_897.d: -MS3(305.10->273.04 ), 22.6min #881 245.04 0.5 1- 217.06 0.0 x10 124. Ros a Rugos a Primorye MeOH_-1_01_897.d: -MS4(305.10->273.04->245.0 4), 22.7min #885 1- 1.0 217.02 0.5 173.04 145.20 243.11 0.0 50 100 150 200 250 300 350 400 450 500 550 m/z Figure 9. CID-spectrum of Gallocatechin from R. rugosa, m/z 305.10. Appl. Sci. 2022, 12, 9401 21 of 29 The [M − H] ion produced one fragment ion at m/z 273 (Figure 9). The fragment ion with m/z 273 yielded two daughter ions at m/z 269 and m/z 217. The fragment ion with m/z 245 yielded four daughter ions at m/z 243, m/z 217, m/z 173, and m/z 145. It was identified in the bibliography in extracts from G. linguiforme [25], Licania ridigna [43], and Rhodiola rosea [44]. 3.7. Condensed Tannin Prodelphinidin A-type (compound 83) and (S)-Flavogallonic acid (compound 84) have been already characterized as components of Vitis vinifera [45], Terminalia arjuna [46], and R. rugosa [47]. CID-spectrum in positive ion modes of (S)-Flavogallonic acid from R. davurica is shown in Figure 10. The [M + H] ion produced four fragment ions at m/z 453, m/z 407, m/z 321, m/z 247, and m/z 205 (Figure 10). The fragment ion with m/z 407 yielded three daughter ions at m/z 389, m/z 307, and m/z 205. This compound was identified in the bibliography in extracts from Terminalia arjuna [46] and R. rugosa [47]. Intens. 249. Rosa da vurica _-1_01_1732.d: +MS, 55.1min #2152 1+ 1+ x10 1+ 471.11 782.26 1 282.97 3+ 999.22 1121.55 x10 249. Ros a da vurica _-1_01_1732.d: +MS2(471.11), 55.1min #2154 407.06 205.06 453.05 247.04 321.10 x10 249. Ros a da vurica _-1_01_1732.d: +MS3(471.11->407.06), 55.2min #2158 205.07 307.16 389.04 249. Rosa da vurica _-1_01_1732.d: +MS4(471.11->407.06->205.07), 55.3min #2161 177.12 131.17 0 200 400 600 800 1000 m/z Figure 10. CID-spectrum of (S)-Flavogallonic acid from extracts of R. davurica, m/z 471.11. The polyphenol composition distribution table of varieties Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. is shown below [Table 1]. The comparison table shows the presence of some polyphenols in three types of the genus Rosa (kaempferol, ellagic acid). Some polyphenols are present in only one variety of the genus Rosa. Table 1. The flavonoid composition distribution of varieties R. rugosa Thumb., R. davurica Pall., and R. acicularis Lindl. Blue square—presence in extracts of R. rugosa; red square—in extracts of R. davu- rica; green square—in extracts of R. acicularis. Class of R. R. R. No. Identified Compounds Compounds rugosa davurica acicularis 1 Flavone Hydroxy-methoxy (iso) flavone * 2 Flavone Apigenin 3 Flavone Chrysoeriol [Chryseriol] * 4 Flavone Hispidulin * 5 Flavone 5,7-Dimethoxyluteolin * 6 Flavone Cirsimaritin * 7 Flavone Chrysoeriol methyl ether * 8 Flavone Cirsiliol * 9 Flavone Tricin * 10 Flavone Jaceosidin * 11 Flavone 5,6,4′-Trihydroxy-7,8-dimetoxyflavone * 12 Flavone Nevadensin * Appl. Sci. 2022, 12, 9401 22 of 29 13 Flavone Syringetin * 14 Flavone Dihydroxy-tetramethoxy(iso)flavone * 15 Flavone Pentahydroxy trimethoxy flavone * 16 Flavone Isovitexin * 17 Flavone Genistein C-glucoside malonylated * 18 Flavone Chrysin 6-C-glucoside-6″-O-deoxyhexoside * 19 Flavone Diosmin * 20 Flavonol Kaempferol 21 Flavonol Dihydrokaempferol * 22 Flavonol Isokaempferide [3-O-Methylkaempferol] 23 Flavonol Quercetin 24 Flavonol Morin 25 Flavonol Rhamnetin I 26 Flavonol Rhamnetin II * 27 Flavonol Isorhamnetin 28 Flavonol Myricetin 29 Flavonol Mearnsetin * 30 Flavonol Kaempferol-3-O-α-L-rhamnoside * 31 Flavonol Avicularin 32 Flavonol Taxifolin-O-pentoside * 33 Flavonol Taxifolin-3-O-hexoside * 34 Flavonol Kaempferol diacetyl hexoside 35 Flavonol Kaempferol 3-O-rutinoside 36 Flavonol Kaempferol 3-O-deoxyhexosylhexoside 37 Flavonol Isorhamnetin triacetyl hexoside * 38 Flavan-3-ol Epiafzelechin [(epi)Afzelechin] * 39 Flavan-3-ol Catechin [D-Catechol] 40 Flavan-3-ol (+)-Epicatechin * 41 Flavan-3-ol Gallocatechin [+(-)Gallocatechin] * 42 Flavanone Naringenin [Naringetol; Naringenine] 43 Flavanone Fustin [2,3-Dihydrofistein] * 44 Flavanone Eriodictyol [3′,4′,5,7-tetrahydroxy-flavanone] 45 Flavanone Eriodictyol-7-O-glucoside * Hydroxycinnami 46 Caffeic acid * c acid 47 Phenolic acid Quinic acid 48 Phenolic acid Citric acid [Anhydrous; Citrate] * 49 Phenolic acid trans-Ferulic acid 50 Phenolic acid Hydroxy methoxy dimethylbenzoic acid * 51 Phenolic acid Syringic acid 52 Phenolic acid 3,3,4,4-Tetrahydroxy-5-oxo-cyclohexanecarboxylic acid * 53 Phenolic acid Hydroxyferulic acid * Hydroxycinnami 54 Sinapic acid [trans-Sinapic acid] c acid 55 Phenolic acid 2,4,6-Trihydroxy-3,5-dimethoxybenzoic acid * Hydroxybenzoic 56 Ellagic acid * acid 58 Phenolic acid p-Coumaroylquinic acid * 58 Phenolic acid Ginkgoic acid * Appl. Sci. 2022, 12, 9401 23 of 29 1-[(Acetyl-L-cysteinyl)oxy]-2,3,4,5-tetrahydroxycyclohexane-1- 59 Phenolic acid carboxylic acid * 60 Phenolic acid Chlorogenic acid [3-O-Caffeoylquinic acid] * 61 Phenolic acid Neochlorogenic acid [5-O-Caffeoylquinic acid] 62 Phenolic acid Rosmarinic acid 63 Phenolic acid 5-Hydroxy feruloyl hexose * 64 Phenolic acid Salvianolic acid D * 65 Phenolic acid Salvianolic acid B [Danfensuan B] * 66 Stilbene Pinosylvin * 67 Stilbene Resveratrol * 68 Stilbene 3-Hydroxyresveratrol * 69 Lignan Pinoresinol * 70 Lignan Arctigenin * 71 Coumarin 3,4,5-Trimethoxycoumarin * 72 Coumarin Fraxin (Fraxetin-8-O-glucoside) * 73 Anthocyanidin Anthocyanidin [cyanidin chloride; Cyanidin] * 74 Anthocyanidin Petunidin * Cyanidin-3-O-glucoside [Cyanidin 3-O-beta-D-Glucoside; 75 Anthocyanidin Kuromarin] * 76 Anthocyanidin Delphinidin O-pentoside * 77 Anthocyanidin Pelargonidin 3-O-(6-O-malonyl-beta-D-glucoside) * 78 Anthocyanidin Cyanidin 3-(6″-Succinyl-Glucoside) * 79 Anthocyanidin Delphinidin malonyl hexoside * 80 Anthocyanidin Cyanidin-3-O-dioxayl-glucoside * 81 Anthocyanidin Delphinidin 3,5-dihexoside * 82 Tannin Prodelphinidin A-type * Hydrolysable 83 (S)-Flavogallonic acid tannin 84 Ellagitannin Punicalin alpha * 85 Phenylpropanoid Coniferin * 86 Gallate ester Ethyl gallate * 87 Gallate ester Beta-Glucogallin * 88 Dihydrochalcone Phloretin [Dihydronaringenin; Phloretol] * 89 Flavonoid Diphylloside B * Demethylanhydroicaritin-7-O-glucopyranosyl-3-O-acetylated 90 Flavonoid rhamnopyranosyl-xylopyranoside * * Polyphenols identified for the first time in genus Rosa. The following polyphenols are present in only R. rugosa: Hydroxy-methoxy (iso)fla- vone, Chrysoeriol, Hispidulin, Cirsiliol, 5,6,4′-Trihydroxy-7,8-dimetoxyflavone, Dihy- droxy-tetramethoxy (iso)flavone, Pentahydroxy trimethoxy flavone, Isovitexin, Chrysin 6-C-glucoside-6″-O-deoxyhexoside, Kaempferol-3-O-α-L-rhamnoside, Naringenin, Eri- odictyol-7-O-glucoside, trans-Ferulic acid, 3,3,4,4-Tetrahydroxy-5-oxo-cyclohexanecar- boxylic acid, Ginkgoic acid, 1-[(Acetyl-L-cysteinyl)oxy]-2,3,4,5-tetrahydroxycyclohexane- 1-carboxylic acid, Neochlorogenic acid, Rosmarinic acid, Salvianolic acid D, Pinosylvin, Pinoresinol, 3,4,5-rimethoxy coumarin, Fraxin, Anthocyanidin [cyanidin chloride; Cya- nidin], Cyanidin-3-O-dioxayl-glucoside. The following polyphenols are present in only R. davurica—Chrysoeriol methyl ether, Tricin, Jaceosidin, Syringetin, Genistein C-glucoside malonylated, Diosmin, Dihy- drokaempferol, Isokaempferide, Isorhamnetin, Myricetin, Mearnsetin, Taxifolin-O-pento- side, Kaempferol diacetyl hexoside, Kaempferol 3-O-rutinoside, Epiafzelechin, Appl. Sci. 2022, 12, 9401 24 of 29 (epi)Catechin, Fustin, Hydroxy methoxy dimethylbenzoic acid, Hydroxyferulic acid, Sin- apic acid, p-Coumaroylquinic acid, Salvianolic acid B, Cyanidin-3-O-glucoside, Del- phinidin-O-pentoside, Pelargonidin-3-O-(6-O-malonyl-beta-D-glucoside), Delphinidin malonyl hexoside, Delphinidin 3,5-dihexoside, (S)-Flavogallonic acid, Punicalin alpha, Coniferin. The following polyphenols are present in only R. acicularis—Cirsimaritin, Ne- vadensin, Morin, Rhamnetin I, Rhamnetin II, Nevadensin, Taxifolin-3-O-hexoside, Kaempferol 3-O-deoxyhexosylhexoside, Isorhamnetin triacetyl hexoside, Eriodictyol, 2,4,6-Trihydroxy-3,5-dimethoxybenzoic acid, Arctigenin, Prodelphinidin A-type, Ethyl gallate, Diphylloside B. Thus, 146 metabolome compounds were identified in the extracts of R. rugosa, R. da- vurica, and R. acicularis, many of which are characteristic of the genus Rosa (family Rosaceae). Of these, 115 components were identified for the first time in the genus Rosa. These are flavones: Chrysoeriol, Hispidulin, 5,7-Dimethoxyluteolin, Cirsimaritin, Cirsiliol, Tricin, Jaceosidin, Nevadensin, Syringetin, Isovitexin, Genistein C-glucoside malonylated, Chrysin 6-C-glucoside-6″-O-deoxyhexoside; flavanols: Dihydrokaempferol, Rhamnetin II, Kaempferol-3-O-α-L-rhamnoside, Taxifolin-O-pentoside, Taxifolin-3-O- hexoside, Isorhamnetin triacetyl hexoside; flavan-3-ols: Epiafzelechin and Gallocatechin; flavanones: Naringenin, Fustin; phenolic acids: Caffeic acid, Citric acid, Hydroxy methoxy dimethylbenzoic acid, Hydroxyferulic acid, Ellagic acid, p-Coumaroylquinic acid, Gink- goic acid, Salvianolic acid D, Salvianolic acid B; stilbenes: Pinosylvin, Resveratrol, 3-Hy- droxyresveratrol; lignans: Pinoresinol, Arctigenin; coumarins: 3,4,5–Trimethoxycouma- rin, Fraxin; anthocyanins Cyanidin 3-O-glucoside, Delphinidin O-pentoside, Pelargonidin 3-O-(6-O-malonyl-β-D-glucoside), Cyanidin 3-(6″-Succinyl-Glucoside), Delphinidin malo- nyl hexoside, Cyanidin 3-O-dioxayl-glucoside, Delphinidin 3,5-dihexoside, etc. 4. Materials and Methods 4.1. Materials Aboveground phyto Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. collected during expedition work on the territory of the Russian Far East, Trans-Baikal Region, and Western Siberia during the period of ripening (July–September, 2020). Phyto mass of R. davurica was collected on the territory of Buryatia (N 52°21′97″ E 108°59′84″), in September 2020. Phyto mass of R. rugosa was collected on the territory of Primorsky Krai, Russia (N 42°36′10″ E 131°10′55″), during the period from 10 to 20 August, 2020. Phyto mass of R. acicularis was collected on the territory of Kemerovo, Western Siberia (N 55°21′15′’ E 86°05′23″), in August 2020. All samples were morphologically authenticated according to the current standard of Pharmacopoeia of the Eurasian Economic Union [48]. The results were obtained using the equipment of the Center for Collective Use of Scientific Equipment of TSU named after G.R. Derzhavin. 4.2. Chemicals and Reagents HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), MS-grade formic acid was from Sigma-Aldrich (Steinheim, Germany). Ultra-pure water was prepared from a SIEMENS ULTRA clear (SIEMENS water technologies, Germany), and all other chemicals were analytical grade. 4.3. Fractional Maceration To obtain highly concentrated extracts, fractional maceration was applied. In this case, the total amount of the extractant (methyl alcohol of reagent grade) is divided into 3 parts and is consistently infused on potato with the first part, then with the second and third. The infusion time of each part of the extractant was 7 days. Appl. Sci. 2022, 12, 9401 25 of 29 4.4. Liquid Chromatography HPLC was performed using Shimadzu LC-20 Prominence HPLC (Shimadzu, Japan), equipped with an UV-sensor and a Shodex ODP-40 4E reverse phase column to perform the separation of multicomponent mixtures. The gradient elution program was as follows: 0.01–5 min, 100% CH3CN; 5–45 min, 100–25% CH3CN; 45–55 min, 25–0% CH3CN; control washing: 55–60 min, 0% CH3CN. The entire HPLC analysis was conducted with an ESI detector at wavelengths of 230 ηm and 330 ηm; the temperature corresponded to 17 °C. The injection volume was 1 mL. 4.5. Mass Spectrometry MS analysis was performed on an ion trap amaZon SL (BRUKER DALTONIKS, Ger- many) equipped with an ESI source in negative and positive ion modes. The optimized parameters were obtained as follows: ionization source temperature: 70 °C, gas flow: 4 l/min, nebulizer gas (atomizer): 7.3 psi, capillary voltage: 4500 V, end plate bend voltage: 1500 V, fragmentary: 280 V, collision energy: 60 eV. A four-stage ion separation mode (MS/MS mode) was implemented. 5. Conclusions The extracts of Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. con- tain a large number of polyphenolic complexes which are biologically active compounds. For the most complete and safe extraction, the method of maceration with MeOH was used. To identify target analytes in extracts, HPLC was used in combination with the ion trap. The results of a preliminary study showed the presence of 146 bioactive compounds, of which 115 were identified for the first time in the genus Rosa (family Rosaceae). Of these 115 chemical compounds identified for the first time in the genus Rosa, 70 compounds belonged to the polyphenolic group: 18 flavones, 7 flavonols, 3 flavan-3-ols, 2 flavanones, 14 phenolic acids, 3 stilbenes, 2 lignans, 2 coumarins, 9 anthocyanidins, 3 tannins, etc. The proven richness of the bioactive components of targeted extracts of R. rugosa, R. davurica, and R. acicularis invites extensive biotechnological and pharmaceutical research, which can make a significant contribution both in the field of functional and enriched nutrition, and in the field of cosmetology and pharmacy. It should also be noted that the variability of the genus Rosa (family Rosaceae) contributes to the selection of the most drought-re- sistant species and samples for household, decorative, and forest reclamation needs in the arid climatic zones of Eurasia. It is important to note that the useful properties of the genus Rosa (family Rosaceae) are: food (R. rugosa, R. acicularis), perfumery (R. acicularis, R. ecae), nectariferous (R. canina, R. cinnamomea), decorative (R. acicularis, R. rugosa), and soil-strengthening (R. acicularis, R. rugosa, R. spinosissima). A wide variety of biologically active polyphenolic compounds opens up rich opportunities for the creation of new drugs, as well as bioactive additives based on extracts from the genus Rosa. Author Contributions: Conceptualization, B.A.B., A.N.K. and M.P.R.; methodology, Y.Y.Z., A.G.B. and M.P.R.; software, M.P.R.; validation, A.N.K., M.P.R. and K.S.G.; formal analysis, M.P.R. and A.M.Z.; investigation, A.S.S. and S.E.; resources, K.S.G., B.A.B., and Y.Y.Z.; data curation, B.A.B.; writing—original draft preparation—M.P.R. and A.M.Z.; writing—review and editing A.M.Z. and K.S.G.; visualization, M.P.R. and A.M.Z.; supervision, K.S.G.; project administration, B.A.B., K.S.G. and S.E. All authors have read and agreed to the published version of the manuscript. Funding: The work was carried out with the support of the grant Young Scientists ESSTUM 2022 and according to No. 0662-2019-0003, “Genetic resources of vegetable and melons of the world col- lection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources: effective ways of expanding diversity, disclosing the patterns of hereditary variability, use of adaptive potential”. Institutional Review Board Statement: No applicable. Informed Consent Statement: No applicable. Appl. Sci. 2022, 12, 9401 26 of 29 Data Availability Statement: No applicable. Acknowledgments: Research work according to No. 0662-2019-0003 “Genetic resources of vegeta- ble and melons of the world collection of N.I. Vavilov All-Russian Institute of Plant Genetic Re- sources: effective ways of expanding diversity, disclosing the patterns of hereditary variability, use of adaptive potential”. Conflicts of Interest: The authors declare no conflict of interest. Appl. Sci. 2022, 12, 9401 27 of 29 Appendix A Table A1. Compounds identified from the extracts of Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. in positive and negative ionization modes by HPLC–ion trap–MS/MS. Molecular Molecular 2 3 4 No. Class of Compounds Identified Compounds Formula Mass Ion [M − Ion [M + Fragmentation Fragmentation Fragmentation References − + H] H] MS/MS MS/MS MS/MS POLYPHENOLS 1 Flavone Hydroxy-methoxy (iso) flavone * C16H12O4 268.2641 269 252 221 190 Propolis [31] Hedyotis diffusa [27]; Andean Apigenin [5,7-Dixydroxy-2- blueberry [28]; Stevia 2 Flavone (40Hydroxyphenyl)-4H-Chromen-4- C15H10O5 270.2369 271 253 224 rebaudiana [29]; Rosa rugosa One] [30]; Propolis [31] Mentha [25]; Propolis [31]; 3 Flavone Chrysoeriol [Chryseriol] * C16H12O6 300.2629 301 269; 195 241 Rhus coriaria [32]; Mexican lupine species [33] Mentha [25]; Cirsium 4 Flavone Hispidulin * C16H12O6 300.2629 301 269; 241; 197 224; 180; 153 japonicum [49] 212; 285; 184; 5 Flavone 5,7-Dimethoxyluteolin * C17H14O6 314.2895 313 113; 145; 185 Syzygium aromaticum [18] Cirsimaritin [Scrophulein; 4′,5- 300; 240; 213; 272; 227; 185; Ocimum [19]; Rosmarinus 6 Flavone Dihydroxy-6,7-Dimethoxyflavone; 7- C17H14O6 314.2895 315 185 185 168; 135 officinalis [20] Methylcapillarisin] * 7 Flavone Chrysoeriol methyl ether * C17H14O6 314.2895 315 287; 241; 187 187 169 Bougainvillea [21] 8 Flavone Cirsiliol * C17H14O7 330.2889 329 229 211; 127 209; 125 Ocimum [19] Triticum aestivum [22]; millet Tricin [5,7,4′-trihydroxy-3′,5′- 9 Flavone C17H14O7 330.2889 329 314; 259; 229 299; 271 271; 227 grains [23]; Sasa veitchii; dimetoxyflavone] * Phyllostachys nigra [24] Jaceosidin [5,7,4′-trihydroxy-6′,5′- 10 Flavone C17H14O7 330.2889 331 303; 185 Mentha [26,50] dimetoxyflavone] * 5,6,4′-Trihydroxy-7,8-dimetoxyflavone F. glaucescens; F. herrerae [25]; 11 Flavone C17H14O7 330.2889 331 299; 179 211 * Mentha [26] 286; 259; 183; 12 Flavone Nevadensin * C18H16O7 344.3154 345 330 315 Ocimum [19]; Mentha [26] 133 Appl. Sci. 2022, 12, 9401 28 of 29 13 Flavone Syringetin * C17H14O8 346.2883 347 317; 218 289; 218 261; 191 C. edulis [25] 14 Flavone Dihydroxy-tetramethoxy(iso)flavone * C19H18O8 374.3414 375 343 315 225 Propolis [31] 377; 375; 275; 15 Flavone Pentahydroxy trimethoxy flavone * C18H16O10 392.3136 393 357 329; 286 F. glaucescens; C. edulis [25] millet grains [23]; Isovitexin [Saponaretin; Homovitexin; 415; 335; 243; 261; 243; 191; 16 Flavone C21H20O10 432.3775 433 135 Phyllostachys nigra [24]; Rhus Apigenin-6-C-Glucoside] * 175 155 coriaria [32] 17 Flavone Genistein C-glucoside malonylated * C24H22O13 518.4237 517 473; 455 455; 413; 339 425 Mexican lupine species [33] Chrysin 6-C-glucoside-6″-O- 400; 363; 305; 130; 162; 191; 18 Flavone C27H30O13 562.5193 563 Passiflora incarnata [51] deoxyhexoside * 239 214 F. glaucescens [25]; Mentha Diosmin [Diosmetin-7-O-rutinoside; 591; 429; 355; 19 Flavone C28H32O15 608.5447 609 285 269 [26]; Lemon [39]; Grataegi Barosmin; Diosimin] * 269 Fructus [52] Andean blueberry [28]; Rhus Kaempferol [3,5,7-Trihydroxy-2-(4- coriaria (Sumac) [32]; Lonicera 20 Flavonol C15H10O6 286.2363 287 187; 227 189; 125 hydro- xyphenyl)-4H-chromen-4-one] japonica [34]; Potato leaves [35]; Rapeseed petals [36] F. glaucescens [25]; Andean Dihydrokaempferol [Aromadendrin; blueberry [28]; Echinops 21 Flavonol C15H12O6 288.2522 287 259; 185; 117 215 197 Katuranin] * lanceolatus [37]; Camellia kucha [38] Isokaempferide [3-O- 300; 274; 257; 22 Flavonol C16H12O6 300.2629 301 286; 242; 201 240 Rosa rugosa [30]; Propolis [31] Methylkaempferol] 212; 184 Bougainvillea [21]; Propolis 23 Flavonol Quercetin C15H10O7 302.2357 303 285 257 201;117 [31]; Rosa rugosa [30]; Rhus coriaria [32]; Potato leaves [35] Morin [Aurantica; Calico Yellow; Rosa rugosa [30]; Red wines 24 Flavonol Toxylon Pomiferum; 2′,3,4′,5,7- C15H10O7 302.2357 301 283; 265; 221 221 203; 151; 127 [53] Pentahydroxyflavone] Rhamnetin I [beta-Rhamnocitrin; 299; 269; 233; Rosa rugosa [30]; Rhus coriaria 25 Flavonol C16H12O7 316.2623 317 147; 123 Quercetin 7-Methyl ether] 185; 165 L. (Sumac) [32] Syzygium aromaticum [18]; 165;185; 155; Propolis [31]; Rhus coriaria L. 26 Flavonol Rhamnetin II * C16H12O7 316.2623 317 147; 123 119 123 (Sumac) [32]; Spondias purpurea [54] Appl. Sci. 2022, 12, 9401 29 of 29 Rosmarinus officinalis [20]; Andean blueberry [28]; Rosa Isorhamnetin [Isorhamnetol; Quercetin 285; 234; 190; 27 Flavonol C16H12O7 316.2623 317 256; 214 229; 201 rugosa [30]; Propolis [31]; 3′-Methyl ether; 3-Methylquercetin] 156 Vaccinium macrocarpon [55]; Embelia [56] millet grains [23]; F. glaucescens [25]; Andean 28 Flavonol Myricetin C15H10O8 318.2351 319 289; 217; 185 261; 191 blueberry [28]; Rosa rugosa [30]; Propolis [31]; Vaccinium macrocarpon [55] 29 Flavonol Mearnsetin * C16H12O8 332.2617 331 287 259 215; 187; 159 Eucalyptus [57] C.edulis; F. glaucescens [25]; 415; 313; 241; Rhus coriaria [32]; Cassia 30 Flavonol Kaempferol-3-O-α-L-rhamnoside * C21H20O10 432.3775 433 123; 257; 239 195 abbreviata [58]; Euphorbia hirta [59] Avicularin (Quercetin 3-Alpha-L- 273; 229; 192; Propolis [31]; Eucalyptus 31 Flavonol C20H18O11 434.3503 433 301 169; 151 Arabinofuranoside; Avicularoside) 179; 151 Globulus [60]; Rosa rugosa [61] Taxifolin-O-pentoside millet grains [23]; A. cordifolia 32 Flavonol C20H20O11 436.371 435 301; 177 285; 177 241; 175 [Dihydroquercetin pentoside] * [25] millet grains [23]; Andean Taxifolin-3-O-hexoside 287; 305; 334; 268; 256; 227; 33 Flavonol C21H22O12 466.3922 467 blueberry [28]; Euphorbia hirta [Dihydroquercetin-3-O-hexoside] * 449 202 [59]; Rubus ulmifolius [62] 34 Flavonol Kaempferol diacetyl hexoside C25H24O13 532.4503 533 432; 531; 289 415; 295 385 A. cordifolia [25] Rhus coriaria [32]; Lonicera 35 Flavonol Kaempferol 3-O-rutinoside C27H30O15 594.5181 595 285; 165 165 japonica [34]; Camellia kucha [38]; Strawberry [39] Stevia rebaudiana [29]; Rosa Kaempferol 3-O- 36 Flavonol C27H30O15 594.5181 595 287; 263; 165 213; 197; 165 157; 145 rugosa [40]; Spondias purpurea deoxyhexosylhexoside [54] 443; 417; 317; 329; 311; 255; 37 Flavonol Isorhamnetin triacetyl hexoside * C28H28O15 604.5129 605 A. cordifolia [25] 279 211 A. cordifolia; F. glaucescens; F. 38 Flavan-3-ol Epiafzelechin [(epi)Afzelechin] * C15H14O5 274.2687 275 244; 157 157; 215 127 herrerae [25]; Cassia abbreviata [58]; Cassia granidis [63] Appl. Sci. 2022, 12, 9401 30 of 29 millet grains [23]; C. edulis [25]; Camellia kucha [38]; strawberry, cherimoya [39]; 39 Flavan-3-ol Catechin [D-Catechol] C15H14O6 290.2681 291 272; 174 245 198 Rosa rugosa [40]; Myrtle [41]; Radix polygoni multiflori [42]; Rosa rugosa [64] Andean blueberry [28]; C. edulis [25]; Camellia kucha 40 Flavan-3-ol (epi)Catechin * C15H14O6 290.2681 291 273; 117 255; 145 [38]; Radix polygoni multiflori [42] G. linguiforme [25]; Licania 41 Flavan-3-ol Gallocatechin [+(-)Gallocatechin] * C15H14O7 306.2675 307 291 263; 189 206 ridigna [43]; Rhodiola rosea [44] G. linguiforme [25]; Andean blueberry [28]; Stevia rebaudiana [29]; Rosa rugosa 42 Flavanone Naringenin [Naringetol; Naringenine] C15H12O5 272.5228 273 153; 256 125 [30]; Mexican lupine species [33]; Rapeseed petals [36]; Punica granatum [65] 43 Flavanone Fustin [2,3-Dihydrofistein] * C15H12O6 288.2522 289 269; 140 179 F. glaucescens; F. pottsii [25] Rosmarinus officinalis [20]; Eriodictyol [3′,4′,5,7-tetrahydroxy- 269; 241; 155; 267; 251; 223; Andean blueberry [28]; Rosa 44 Flavanone C15H12O6 288.2522 287 249; 199; 155 flavanone] 127 183; 155 rugosa [30]; Propolis [31]; Embelia [56] Eriodictyol-7-O-glucoside Impatients glandulifera Royle 45 Flavanone C21H22O11 450.3928 449 269; 151 225 [Pyracanthoside; Miscanthoside] * [66] Triticum [22]; millet grains [23]; Lonicera japonica [24]; 46 Hydroxycinnamic acid Caffeic acid * C9H8O4 180.1574 181 135 119 Radix polygoni multiflori [42]; Mentha [50]; Malva sylvestris [67] Andean blueberry [28]; Stevia rebaudiana [29]; Rhus coriaria 47 Phenolic acid Quinic acid C7H12O6 192.1666 193 191; 147 173; 136 131 [32]; Lonicera japonicum [34]; Camellia kucha [38]; Rosa rugosa [40] Appl. Sci. 2022, 12, 9401 31 of 29 Stevia rebaudiana [29]; Potato leaves [35]; Strawberry, 48 Phenolic acid Citric acid [Anhydrous; Citrate] * C6H8O7 192.1235 191 111; 173 111 Lemon, Cherimoya, Papaya, Passion fruit [39]; Mentha [50]; Punica granatum [65] millet grains [23]; Rosa rugosa 49 Phenolic acid trans-Ferulic acid C10H10O4 194.184 195 153 125 [30]; Sanguisorba officinalis [68] Hydroxy methoxy dimethylbenzoic 50 Phenolic acid C10H12O4 196.1999 195 129; 177 F. herrerae; F. glaucescens [25] acid * Bougainvillea [21]; millet grains [29]; A. cordifolia; G. 51 Phenolic acid Syringic acid C9H10O5 198.1727 199 157; 183; 119 142 linguiforme; F. glaucescens [25]; Rosa rugosa [30]; Actinidia [69] 3,3,4,4-Tetrahydroxy-5-oxo- 52 Phenolic acid C7H10O7 206.1501 207 161; 189 143 119 Actinidia [69] cyclohexanecarboxylic acid * 53 Phenolic acid Hydroxyferulic acid * C10H10O5 210.1834 211 193 175 133 Andean blueberry [28] millet grains [23]; Andean blueberry [28]; Rosa rugosa 54 Hydroxycinnamic acid Sinapic acid [trans-Sinapic acid] C11H12O5 224.2100 225 209 139; 192 [30]; Rapeseed petals [36]; Cherimoya [39] 2,4,6-Trihydroxy-3,5-dimethoxybenzoic 229; 211; 185; 55 Phenolic acid C9H10O7 230.1715 231 168; 143 127 Actinidia [69] acid * 155 Ellagic acid [Benzoaric acid; Rhus coriaria [32]; Eucalyptus 56 Hydroxybenzoic acid C14H6O8 302.1926 301 256 185 Elagostasine; Lagistase; Eleagic acid] * [57]; Eucalyptus Globulus [60] Andean blueberry [28]; F. 57 Phenolic acid p-Coumaroylquinic acid * C16H18O8 338.3093 339 191; 320; 252 149 glaucescens [25]; Eucalyptus Globulus [60]; Actinidia [69] Ginkgoic acid [Ginkgolic acid; 58 Phenolic acid C22H34O3 346.5036 347 301; 130 130 Propolis [31] Romanicardic acid] * 1-[(Acetyl-L-cysteinyl)oxy]-2,3,4,5- 59 Phenolic acid tetrahydroxycyclohexane-1-carboxylic C12H19O9NS 353.3456 354 335 192; 286 132; 176 Actinidia [69] acid * Appl. Sci. 2022, 12, 9401 32 of 29 Bougainvillea [21]; Andean blueberry [28]; Rhus coriaria Chlorogenic acid [3-O-Caffeoylquinic [32]; Lonicera japonicum [34]; 60 Phenolic acid C16H18O9 354.3087 353 191 173 acid] * Potato leaves [35]; Rapeseed petals [28]; Vaccinium macrocarpon [55] Andean blueberry [28]; Stevia rebaudiana [29]; Rosa rugosa Neochlorogenic acid [5-O- [30]; Lonicera japonicum [34]; 61 Phenolic acid C16H18O9 354.3087 353 173; 111 Caffeoylquinic acid] Euphorbia hirta [59]; Crataegus monogyna, Sambucus nigra [67] Rosmarinus officinalis [20]; 343; 327; 301; Mentha [26]; Rosa rugosa [30]; 62 Phenolic acid Rosmarinic acid C18H16O8 360.3148 361 253; 121 225; 210; 179 253; 19; 161 Mentha [70]; Huolisu Oral Liquid [71]; Rosemary [72] 63 Phenolic acid 5-Hydroxy feruloyl hexose * C16H20O10 372.3240 373 211; 277; 354 175 millet grains [23] Mentha [70,73]; Salvia 64 Phenolic acid Salvianolic acid D * C20H18O10 418.3509 417 373 347; 303 multiorrizae [74] Bougainvillea [21]; Mentha [50]; Huolisu Oral Liquid 65 Phenolic acid Salvianolic acid B [Danfensuan B] * C36H30O16 718.6138 719 521; 199 475 [71]; Mentha [73]; Salvia miltiorrhiza [74] Pinosylvin [3,5-Stilbenediol; Trans-3,5- Pinus resinosa [75]; Pinus 66 Stilbene C14H12O2 212.2439 213 195; 171 143 127 Dihydroxystilbene] * sylvestris [76] A. cordifolia; F. glaucescens; F. Resveratrol [trans-Resveratrol; 3,4′,5- 169; 210; 141; herrerae [25]; Radix polygoni 67 Stilbene C14H12O3 228.2433 229 141 113 Trihydroxystilbene; Stilbentriol] * 115 multiflori [42]; Embelia [56]; Vine stilbenoids [77] G. linguiforme [25]; Vine 68 Stilbene 3-Hydroxyresveratrol [Piceatannol] * C14H12O4 244.2427 245 199; 112 112 stilbenoids [77]; Oenocarpus bataua [78] Passiflora incarnata [51]; 69 Lignan Pinoresinol * C20H22O6 358.3851 359 340; 208 322; 196 274; 214 Punica granatum [65]; Appl. Sci. 2022, 12, 9401 33 of 29 Eucommia cortex [79]; Lignans [80] 354; 336; 283; 336; 318; 288; Lignans [80]; Triticum 70 Lignan Arctigenin * C21H24O6 372.4117 373 288; 236; 197 252; 211 252; 218 aestivum [81]; Forsythia [82] 71 Coumarin 3,4,5-Trimethoxycoumarin * C12H12O5 236.2207 237 192; 206; 178 132 130; 117 Propolis [31] Vitis vinifera [45]; Actinidia 72 Coumarin Fraxin (Fraxetin-8-O-glucoside) * C16H18O10 370.3081 371 191 127 [69]; Solanum tuberosum [83] F. herrerae [25]; Andean Anthocyanidin [cyanidin chloride; 73 Anthocyanidin C15H11O6+ 287.2442 287 213; 195; 167 196; 163; 125 blueberry [28]; Malpighia Cyanidin] * emarginata [84] 74 Anthocyanidin Petunidin * C16H13O7+ 317.2702 318 256; 300 228; 212; 184 212 A. cordifolia; C. edulis [25] Cyanidin-3-O-glucoside [Cyanidin 3- Triticum aestivum [22]; 75 Anthocyanidin C21H21O11+ 449.3848 447 285; 195 255 O-beta-D-Glucoside; Kuromarin] * Malpighia emarginata [84] Andean blueberry [28]; Myrtle [41]; Gaultheria 76 Anthocyanidin Delphinidin O-pentoside * C20H19O11 435.3583 435 303; 245 245; 149 mucronata; Gaultheria antarctica [85] Pelargonidin 3-O-(6-O-malonyl-beta-D- Gentiana lutea [86]; Wheat 77 Anthocyanidin C24H23O13 519.4388 519 271 253 glucoside) * [87] Cyanidin 3-(6″-Succinyl-Glucoside) 78 Anthocyanidin [Cyanidin 3-(6″-O-succinoyl-Beta-D- C25H25O14 549.4576 549 286 268 240 Wheat [87] Glucopyranoside)] * 465; 425; 287; 79 Anthocyanidin Delphinidin malonyl hexoside * C24H23O15 551.4304 551 271; 157 F. glaucescens [25] 80 Anthocyanidin Cyanidin-3-O-dioxayl-glucoside * C31H28O12 592.5468 593 287; 165 213; 153 Rubus ulmifolius [62] F. herrerae [25]; Andean 81 Anthocyanidin Delphinidin 3,5-dihexoside * C27H31O17 627.5248 627 413; 227 227; 351 blueberry [28]; Berberis microphylla [85] 241; 213; 165; 82 Tannin Prodelphinidin A-type * C30H26O13 594.5286 595 406; 287; 245 213 Vitis vinifera [45] 407; 321; 247; Terminalia arjuna [46]; Rosa 83 Hydrolysable tannin (S)-Flavogallonic acid C21H10O13 470.2963 471 205; 307; 389 177; 131 205 rugosa [47] 721; 449; 599; Myrtle [41]; Terminalia arjuna 84 Ellagitannin Punicalin alpha * C34H22O22 782.5253 783 596 535 [46]; Punica granatum [65] Appl. Sci. 2022, 12, 9401 34 of 29 Phenylpropanoid Coniferin [Coniferyl Alcohol Beta-D- Hedyotis diffusa [27]; Rhodiola 85 (cinnamic alcohol C16H22O8 342.3411 343 240 183 127 Glucoside] * crenulata [88] glycoside) Bougainvillea [21]; Terminalia 86 Gallate ester Ethyl gallate * C9H10O5 198.1727 197 169; 125 124 arjuna [46]; Euphorbia hirta [59] Syzygium aromaticum [18]; Beta-Glucogallin [1-O-Galloyl-Beta-D- Terminalia arjuna [46]; 87 Gallate ester Glucose; Galloyl glucose; Monogalloyl C13H16O10 332.2601 333 273; 227; 169 169; 191; 209 Euphorbia hirta [59]; Cassia glucose] * granidis [63] G. linguiforme [25]; Punica Phloretin [Dihydronaringenin; 255; 239; 229; 88 Dihydrochalcone C15H14O5 274.2687 275 257; 229; 215 granatum [65]; Malus Phloretol] * 210 toringoides [89] 647; 592; 531; 533; 484; 419; 89 Flavonoid Diphylloside B * C38H48O19 808.7763 809 483; 431; 369; 419 Huolisu Oral Liquid [71] 369; 269 Demethylanhydroicaritin-7-O- 675; 603; 541; 90 Flavonoid glucopyranosyl-3-O-acetylated C39H48O20 836.7854 837 441; 341 341; 241 Huolisu Oral Liquid [71] 503; 403 rhamnopyranosyl-xylopyranoside * OTHERS Cyclohexenecarboxylic A. cordifolia [25]; Camellia 91 Shikimic acid [L-Schikimic acid] * C7H10O5 174.1513 173 111 acid kucha [38]; Euphorbia hirta [59] Potato leaves [35]; Strawberry, 92 Vitamin L-Ascorbic acid [Vitamin C] C6H8O6 176.1241 175 127 Lemon, Papaya [39] 93 Monoterpenoid Methyl eugenol * C11H14O2 178.2277 179 161 133 Ocimum [19]; Olive leaves [90] Omega-hydroxy amino 94 Hydroxy decenoic acid * C10H18O3 186.2481 187 169; 142 141 F. glaucescens [25] acid Rapeseed petals [36]; Camellia L-Tryptophan [Tryptophan; (S)- kucha [38]; Passiflora incarnata 95 Essential amino acid C11H12N2O2 204.2252 205 186; 158 146; 169 144; 118 Tryptophan] * [51]; Euphorbia hirta [59]; Huolisu Oral Liquid [71] Caryophyllene oxide [Caryophyllene- 96 Sesquiterpenoid C15H24O 220.3505 221 161 147 Olive leaves [90] alpha-oxide] * 127; 145; 169; 97 3,4,5-Trimethoxyphenylacetic acid C11H14O5 226.2259 227 145; 117 127 Rosa rugosa [30] 199 Appl. Sci. 2022, 12, 9401 35 of 29 Myristoleic acid [Cis-9-Tetradecanoic 98 Omega-5 fatty acid C14H26O2 226.3550 227 209; 127 139 F. glaucescens [25] acid] * Quaianolide 99 Dehydrocostus Lactone * C15H18O2 230.3022 231 214 168 Weichang’an Pill [91] sesquiterpene lactone 100 Germacranolide Costunolide * C15H20O2 232.3181 233 186 168; 131 155 Weichang’an Pill [91] 101 Biphenyl derivative Randaiol * C15H14O3 242.2699 243 225; 211; 182 182; 167; 132 166 Magnolia officinalis [92] 102 Peptide 5-Oxo-L-propyl-L-isoleucine * C11H18N2O4 242.2716 243 197 165 137 Potato leaves [35] Hydroxy myristic acid [2S- Hydroxy 229; 222; 211; 103 Hydroxytetradecanoic acid; Alpha- C14H28O3 244.3703 245 227; 211; 201 F. pottsii [25] monocarboxylic acid 201 Hydroxy Myristic acid] * Medium-chain fatty 229; 202; 174; 104 Hydroxy dodecanoic acid * C12H22O5 246.3001 247 183; 156; 144 156 F. glaucescens [25] acid 156 Acyclic alcohol nitrile Rhodiola rosea [93]; Rhodiola 105 Rhodiocyanoside A * C11H17NO6 259.2558 260 186; 232 168 141 glycoside sacra [94] 106 Naphthoquinone Spinochrome A * C12H8O7 264.1877 265 247 219 Rhus coriaria [32] 107 Aporphine alkaloid Anonaine * C17H15NO2 265.3065 266 247; 190; 166 166 Magnolia officinalis [92] Ribonucleoside Lonicera japonica [34]; Huolisu 108 composite of adenine Adenosine * C10H13N5O4 267.2413 268 136 Oral Liquid [71] (purine) 3,4,8,9,10-Penthahydroxydibenzo 109 C13H8O7 276.1984 277 175; 231; 259 131; 177 Terminalia arjuna [46] [b,d]pyran-6-one * 244; 196; 164; 110 Linoleic acid amide * C18H33NO 279.4607 280 262 226; 196; 164 Propolis [31]; Rhus coriaria [32] 111 Oleamide * C18H35NO 281.4766 282 247 173; 201; 145 145 Propolis [31] 112 Terpenoid Rugosic acid A C15H22O5 282.3322 283 239; 265; 167 211 193; 170 Rosa rugosa [95] 113 Alkaloid Mesembrenol * C17H23NO3 289.3694 290 272; 146 224; 182 164 Sceletium [96] A. cordifolia [25]; Sceletium 114 Alkaloid Mesembranol * C17H25NO3 291.3853 292 274; 226; 111 121 [96] 219; 203; 191; 115 Brevifolincarboxylic acid * C13H8O8 292.4131 291 247 191 Euphorbia hirta [59] 175; 147 3′-Methoxy-4′-O-methyl 116 Alkaloid C18H25NO3 303.3960 304 257; 195; 153 231; 149 213 A. cordifolia [25] joubertimine * Tanshinone IIB [(S)-6- 293; 265; 253; Huolisu Oral Liquid [72]; 117 Diterpenoid C19H18O4 310.3438 311 264; 192; 159 (Hydroxymethyl)-1,6-Dimethyl-6,7,8,9- 228; 181 Salviae Miltiorrhizae [97] Appl. Sci. 2022, 12, 9401 36 of 29 Tetrahydrophenanthro [1,2-B]Furan- 10,11-Dione] * 11-Hydroperoxy-octadecatrienoic acid 291; 247; 198; 118 Oxylipins C18H30O4 310.4284 309 181 Potato leaves [35] * 183 119 Tyramines N-Feruloyl tyramine * C18H19NO4 313.3478 314 296; 236; 175 222; 206; 178 222; 194; 180 Bougainvillea [21] Malus toringoides [89]; Ginkgo 120 Terpenoid trilactone Bilobalide [(-)-Bilobalide] * C15H18O8 326.2986 325 183 119; 199 biloba [98, 99] 9,10-Dihydroxy-8-oxooctadec-12-enoic Phyllostachys nigra [24]; 121 Oxylipins acid [oxo-DHODE; oxo-Dihydroxy- C18H32O5 328.4437 327 229; 291 211; 125 183 Bituminaria bituminosa [100] octadecenoic acid] * Sasa veitchii [24]; Bituminaria 13- Trihydroxy-Octadecenoic acid 291; 309; 239; 122 Oxylipins C18H34O5 330.4596 329 273; 217; 179 255; 228 bituminosa [100]; Broccoli [THODE] * 211; 197; 171 [101] 123 Sceletium alkaloid O-acetyl mesembrenol * C19H25NO4 331.4061 330 270; 226; 198 226; 209; 166 166 A. cordifolia [25] Rosmarinus officinalis [20]; 124 Diterpenoid Carnosic acid C20H28O4 332.4339 331 287; 243; 187 259 215 Rosemary [72]; Lepechinia [102] G. linguiforme; A. cordifolia; C. 125 Dihydroxy eicosatrienoic acid * C20H34O4 338.4816 339 321; 177 303; 274; 233 178; 148 edulis [25] 335; 308; 270; 317; 243; 215; 126 Berberine alkaloid Palmatine [Berbericinine; Burasaine] * C21H22NO4 352.4037 353 Ocotea [103]; Palmatine [104] 235; 195 160 127 Unsaturated fatty acid Dihydroxy docosanoic acid * C22H44O4 372.5824 373 341 327 A. cordifolia; F. pottsii [25] 363; 334; 290; 128 Unsaturated fatty acid Pentacosenoic acid * C25H48O2 380.6474 381 342; 303; 276 F. glaucescens [25] 261; 231 383; 369; 337; 350; 321; 285; A. cordifolia; C. edulis [25]; 129 Sterol Campesterol [Dihydrobrassicasterol] * C28H48O 400.6801 401 262 310; 279 249 Oryza sativa [105] 130 Alkaloid Erysothiopine * C19H21NO7S 407.4375 408 389 345; 183 299; 161 Camellia kucha [38] A. cordifolia; F. pottsii [25]; Stigmasterol [Stigmasterin; Beta- 131 Sterol C29H48O 412.6908 413 301 188 Hedyotis diffusa [27]; Olive Stigmasterol] * leaves [90] 132 Iridoid monoterpenoid Dihydroisovaltrate * C22H32O8 424.4847 425 365; 281 309; 235 Rhus coriaria [32] Anabolic steroid; Rhus coriaria [32]; Hylocereus 133 Androgen; Androgen Vebonol * C30H44O3 452.6686 453 435; 336; 226 336 209 polyrhizus [106] ester Appl. Sci. 2022, 12, 9401 37 of 29 Betulonic acid [Betunolic acid; 176; 395; 336; 134 Triterpenoid C30H46O3 454.6844 455 437; 357; 245 Rhus coriaria [32] Liquidambaric acid] * 261; 213 Sanguisorba officinalis [68]; 135 Triterpenoid Pomolic acid * C30H48O4 472.6997 473 413; 214 395; 255 241 Malus domestica [107] Thromboxane receptor 337; 263; 218; Rhus coriaria [32]; Hylocereus 136 Vapiprost * C30H39NO4 477.6350 478 181; 128 antagonist 173 polyrhizus [106] 137 Ursane triterpene Annurcoic acid * C30H46O5 486.6922 485 467; 423 424; 393; 335 413 Annurca apple [108] 138 Pentacyclic triterpenoid Methyl arjunolate * C31H50O5 502.7257 503 485; 205 397; 197 G. linguiforme; C. edulis [25] Indole sesquiterpene Rhus coriaria [32]; Hylocereus 139 Sespendole * C33H45NO4 519.7147 520 185; 502 125 alkaloid polyrhizus [106] 504; 448; 399; 486; 447; 424; 424; 350; 290; 140 Schisandrin Benzoylgomisin H * C30H34O8 522.5862 523 Schisandra chinensis [109, 110] 369 405; 362 252 Carica papaya [111]; Physalis 517; 499; 443; 499; 457; 363; 141 Carotenoid (all-E)-alpha-Cryptoxanthin C40H56O 552.872 553 535 peruviana [112]; Rosa rugosa 395 307 [113] 565; 467; 438; 204; 292; 218; 142 N’,N’,N’’’- Tri-p-coumaroyl spermidine C34H37N3O6 583.6741 584 147 Rosa rugosa [11]; Propolis [31] 387; 335 147 N’,N’,N’’’- Di-p-coumaroyl caffeoyl 582; 497; 438; 419; 328; 292; 143 C34H37N3O7 599.6735 600 147 Rosa rugosa [11] spermidine 420 274 144 Cycloartanol [Steroids] Cyclopassifloic acid glucoside * C37H62O12 698.8810 699 537; 421; 365 520 Passiflora incarnata [51] 719; 645; 566; 145 Carotenoid (all-E)-violaxanthin caproate * 755 755 657; 620 Carotenoids [114] Derivative of 146 Pheophytin b * C55H72N4O6 885.1834 886 607 547 475; 419 Physalis peruviana [112,115] Chlorophylle * Compounds identified for the first time in genus Rosa. Appl. Sci. 2022, 12, 9401 25 of 29 References 1. Thomas, E.; Vandebroek, I.; Sanca, S.; van Damme, P. Cultural Significance of Medicinal Plant Families and Species among Quechua Farmers in Apillapampa, Bolivia. J. Ethnopharmacol. 2009, 122, 60–67. 2. Sultana, A.; Hossain, M.J.; Kuddus, M.R.; Rashid, M.A.; Zahan, M.S.; Mitra, S.; Roy, A.; Alam, S.; Sarker, M.M.R.; Naina Mo- hamed, I. Ethnobotanical Uses, Phytochemistry, Toxicology, and Pharmacological Properties of Euphorbia neriifolia Linn. against Infectious Diseases: A Comprehensive Review. Molecules 2022, 27, 4374. 3. Abidullah, S.; Rauf, A.; Khan, S.W.; Ayaz, A.; Liaquat, F.; Saqib, S. A Comprehensive Review on Distribution, Paharmacological Uses and Biological Activities of Argyrolobium Roseum (Cambess.) Jaub. Spach. Acta Ecol. Sin. 2021, 42, 198–205. 4. Das, R.; Mitra, S.; Tareq, A.M.; Emran, T.B.; Hossain, M.J.; Alqahtani, A.M.; Alghazwani, Y.; Dhama, K.; Simal-Gandara, J. Me- dicinal plants used against hepatic disorders in Bangladesh: A comprehensive review. J. Ethnopharmacol. 2022, 282, 114588. 5. Mitra, S.; Lami, M.S.; Uddin, T.M.; Das, R.; Islam, F.; Anjum, J.; Hossain, M.J.; Emran, T.B. Prospective multifunctional roles and pharmacological potential of dietary flavonoid narirutin. Biomed. Pharmacother. 2022, 150, 112932. 6. Demain, A.L.; Fang, A. The Natural Functions of Secondary Metabolites. In History of Modern Biotechnology, I; Springer: Ber- lin/Heidelberg, Germany, 2000; pp. 1–39. 7. Wink, M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines 2015, 2, 251–286. 8. Anjum, J.; Mitra, S.; Das, R.; Alam, R.; Mojumder, A.; Emran, T.B.; Islam, F.; Rauf, A.; Hossain, M.J.; Aljohani, A.S.; et al. A renewed concept on the MAPK signaling pathway in cancers: Polyphenols as a choice of therapeutics. Pharmacol. Res. 2022, 184, 9. Campanini, E. Dizionario di Fitoterapia e Piante Medicinali, 2nd ed.; Tecniche Nuove: Milano, Italy, 2006; pp. 566–571. 10. Ieri, F.; Innocenti, M.; Possieri, L.; Gallori, S. Phenolic composition of “bud extracts” of Ribes nigrum L., Rosa canina L. and Tilia tomentosa M. J. Pharmaceut. Biomed. Analys. 2015, 115, 1–9. 11. Yang, Y.; Zhang, J.-J.; Zhou, Q.; Wang, L.; Huang, W.; Wang, R. Effect of ultrasonic and ball-milling treatment on cell wall, nutrients, and antioxidant capacity of rose (Rosa rugosa) bee pollen, and identification of bioactive components. J. Sci. Food Agric. 2019, 99, 5350–5357. https://doi.org/10.1002/jsfa.9774. 12. Hashidoko, Y. The phytochemistry of Rosa rugosa. Phytochemistry 1996, 43, 535–549. 13. Lattanzio, F.; Greco, E.; Carretta, D.; Cervellati, R.; Govoni, P.; Speroni, E. In vivo anti-inflammatory effect of Rosa canina L. extract. J. Ethnopharmacol. 2011, 137, 880–885. 14. Gurbuz, I.; Ustun, O.; Yesilada, E.; Sezik, E.; Kutsal, O. Anti-ulcerogenic activity of some plants used as folk remedy in Turkey. Ethnopharmacology 2003, 88, 93–97. 15. Ninomiya, K.; Matsuda, H.; Kubo, M.; Morikawa, T.; Nishida, N.; Yoshikawa, M. Potent anti-obese principle from Rosa canina: Structural requirements and mode of action of trans-tiliroside. Bioorganic Med. Chem. Lett. 2007, 17, 3059–3064. 16. Chrubasik, C.; Roufogalis, B.D.; Muller-Lander, U.; Chrubasik, S. A Systematic Review on the Rosa canina Effect and Efficacy Profiles. Phytother. Res. 2008, 22, 725–733. 17. Schwager, J.; Richard, N.; Schoop, R.; Wolfram, S. A Novel Rose Hip Preparation with Enhanced Anti-Inflammatory and Chon- droprotective Effects. Mediat. Inflamm. 2014, 105710. 18. Fathoni, A.; Saepudin, E.; Cahyana, A.H.; Rahayu, D.U.C.; Haib, J. Dentification of nonvolatile compounds in clove (Syzygium aromaticum) from Manado. AIP Conf. Proc. 1862, 2017, 030079. 19. Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J. Liq. Chromatogr. Relat. Tech. 2016, 39, 225–238. 20. Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules 2016, 21, 1576. 21. El-Sayed, M.A.; Abbas, F.A.; Refaat, S.; El-Shafae, A.M.; Fikry, E. UPLC-ESI-MS/MS Profile of The Ethyl Acetate Fraction of Aerial Parts of Bougainvillea ‘Scarlett O’Hara’ Cultivated in Egypt. Egypt. J. Chem. 2021, 64, 22. 22. Sharma, M.; Sandhir, R.; Singh, A.; Kumar, P.; Mishra, A.; Jachak, S.; Singh, S.P.; Singh, J.; Roy, J. Comparison analysis of phe- nolic compound characterization and their biosynthesis genes between two diverse bread wheat (Triticum aestivum) varieties differing for chapatti (unleavened flat bread) quality. Front. Plant. Sci. 2016, 7, 1870. 23. Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and char- acterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods 2011, 3, 144–158. 24. Van Hoyweghen, L.; De Bosscher, K.; Haegeman, G.; Deforce, D.; Heyerick, A. In Vitro Inhibition of the Transcription Factor NF-kB and Cyclooxygenase by Bamboo Extracts. Phytother. Res. 2014, 28, 224–230. 25. Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Com- ponents from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS –Bioassay Guided Approach. J. Chrom. Sci. 2021, 59, 618–626. 26. Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography—High resolution mass spectrometry. Molecules 2017, 22, Appl. Sci. 2022, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci Appl. Sci. 2022, 12, x FOR PEER REVIEW 26 of 29 27. Chen, X.; Zhu, P.; Liu, B.; Wei, L.; Xu, Y. Simultaneous determination of fourteen compounds of Hedyotis diffusa Willd extract in rats by UHPLC-MS/MS method: Application to pharmacokinetics and tissue distribution study. J. Pharmaceut. Biomed. Analys. 2018, 159, 490–512. 28. Aita, S.E.; Capriotti, A.L.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.M.; Piovesana, S.; Lagana, A. Andean Blueberry of the Genus Disterigma: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Separations 2021, 8, 58. 29. Lee, S.Y.; Shaari, K. LC–MS metabolomics analysis of Stevia rebaudiana Bertoni leaves cultivated in Malaysia in relation to dif- ferent developmental stages. Phytochem. Analys. 2021, 33, 249–261. 30. Olech, M.; Pietrzak, W.; Nowak, R. Characterization of Free and Bound Phenolic Acids and Flavonoid Aglycones in Rosa rugosa Thunb. Leaves and Achenes Using LC–ESI–MS/MS–MRM Methods. Molecules 2020, 25, 1804. 31. Belmehdi, O.; Bouyahya, A.; József, J.E.K.Ő.; Cziáky, Z.; Zengin, G.; Sotkó, G.; Elbaaboua, A.; Senhaji, N.S.; Abrini, J. Synergistic interaction between propolis extract, essential oils, and antibiotics against Staphylococcus epidermidis and methicillin resistant Staphylococcus aureus. Int. J. Second Metab. 2021, 8, 195–213. 32. Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arraes-Roman, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. 33. Wojakowska, A.; Piasecka, A.; Garcia-Lopez, P.M.; Zamora-Natera, F.; Krajewski, P.; Marczak, L.; Kachlicki, P.; Stobiecki, M. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC–MS techniques. Phyto- chemistry 2013, 92, 71–86. 34. Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. 35. Rodriguez-Perez, C.; Gomez-Caravaca, A.M.; Guerra-Hernandez, E.; Cerretani, L.; Garcia-Villanova, B.; Verardo, V. Compre- hensive metabolite profiling of Solanum tuberosum L. (potato) leaves T by HPLC-ESI-QTOF-MS. Molecules 2018, 112, 390–399. 36. Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC−HESI-MS/MS. Agric. Food Chem. 2019, 67, 11053–11065.. 37. Seukep, A.J.; Zhang, Y.-L.; Xu, Y.-B.; Guo, M.-Q. In Vitro Antibacterial and Antiproliferative Potential of Echinops lanceolatus Mattf. (Asteraceae) and Identification of Potential Bioactive Compounds. Pharmaceuticals 2020, 13, 59. 38. Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non- targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Camellia kucha (Chang et Wang) Chang]. Food Res. Int. 2020, 138, 109789. 39. Spinola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. 40. Nijat, D.; Lu, C.-F.; Lu, J.-J.; Abdulla, R.; Hasan, A.; Aidarhan, N.; Aisa, H.A. Spectrum-effect relationship between UPLC fin- gerprints and antidiabetic and antioxidant activities of Rosa rugosa. J. Chromatogr. B 2021, 1179, 496–507. 41. D’Urso, G.; Sarais, G.; Lai, C.; Pizza, C.; Montoro, P. LC-MS based metabolomics study of different parts of myrtle berry from Sardinia (Italy). J. Berry Res. 2017, 7, 217–229. 42. Zhu, Z.-W.; Li, J.; Gao, X.-M.; Amponsem, E.; Kang, L.-Y.; Hu, L.-M.; Zhang, B.-L.; Chang, Y.-X. Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in Radix polygoni multiflori by LC–MS/MS. J. Pharmaceut. Biomed. Analys. 2012, 62, 162–166. 43. De Freitas, M.A.; Silva Alves, A.I.; Andrade, J.C.; Leite-Andrade, M.C.; Lucas dos Santos, A.T.; de Oliveira, T.F.; dos Santos, F.; Silva Buonafina, M.D. Evaluation of the Antifungal Activity of the Licania Rigida Leaf Ethanolic Extract against Biofilms Formed by Candida Sp. Isolates in Acrylic Resin Discs. Antibiotics 2019, 8, 250. 44. Zakharenko, A.M.; Razgonova, M.P.; Pikula, K.S.; Golokhvast, K.S. Simultaneous determination of 78 compounds of Rhodiola rosea extract using supercritical CO2-extraction and HPLC-ESI-MS/MS spectrometry. HINDAWY. Biochem. Res. Int. 2021, 2021, 45. Goufo, P.; Singh, R.K.; Cortez, I. Phytochemical A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. Antioxidants. 2020, 9, 398. 46. Singh, J.; Kumar, S.; Rathi, B.; Bhrara, K.; Chhikara, B.S. Therapeutic analysis of Terminalia arjuna plant extracts in combinations with different metal nanoparticles. J. Mater. NanoSci. 2015, 2, 1–7. 47. Gu, D.; Yang, Y.; Bakri, M.; Chen, Q.; Xin, X.; Aisa, H.A. A LC/QTOF–MS/MS Application to Investigate Chemical Compositions in a Fraction with Protein Tyrosine Phosphatase 1B Inhibitory Activity from Rosa Rugosa Flowers. Phytochem. Anal. 2013, 24, 661–670. 48. Pharmacopoeia of the Eurasian Economic Union, Approved by Decision of the Board of Eurasian Economic Commission No. 100 Dated August 11, 2020. Available online: http://www.eurasiancommission.org/ru/act/texnreg/deptexreg/LSMI/Docu- ments/Фармакопея%20Союза%2011%2008.pdf (accessed on 1 January 2020). 49. Zhang, Z.; Jia, P.; Zhang, X.; Zhang, Q.; Yang, H.; Shi, H.; Zhang, L. LC-MS/MS determination and pharmacokinetic study of seven flavonoids in rat plasma after oral administration of Cirsium japonicum DC. extract. J. Ethnopharmacol. 2014, 158, 66–75. Appl. Sci. 2022, 12, x FOR PEER REVIEW 27 of 29 50. Marzouk, M.M.; Hussein, S.R.; Elkhateeb, A.; El-shabrawy, M.; Abdel-Hameed, E.-S.S.; Kawashty, S.A. Comparative study of Mentha species growing wild in Egypt: LC-ESI-MS analysis and chemosystematic significance. J. Appl. Pharm. Sci. 2018, 8, 116– 51. Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Chaves, D.S.A; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawik- owska, A.; Kachlicki, P.; Mikolajczak, P.L.; et al. Comparison of bioactive compounds content in leaf extracts of Passiflora incar- nata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Braz. J. Pharmacol. 2018, 28, 179–191. 52. Huang, Y.; Yao, P.; Leung, K.W.; Wang, H.; Kong, X.P.; Wang, L.; Dong, T.T.X.; Chen, Y.; Tsim, K.W.K. The Yin-Yang Property of Chinese Medicinal Herbs Relates to Chemical Composition but Not Anti-Oxidative Activity: An Illustration Using Spleen- Meridian Herbs. Front. Pharmacol. 2018, 9, 1304. 53. Sun, J.; Liang, F.; Bin, Y.; Li, P.; Duan, C. Screening Non-colored Phenolics in Red Wines using Liquid Chromatography/Ultra- violet and Mass Spectrometry/Mass Spectrometry Libraries. Molecules 2007, 12, 679–693. 54. Engels, C.; Gräter, D.; Esquivel, P.; Jiménez, V.M.; Gänzle, M.G.; Schieber, A. Characterization of phenolic compounds in jocote (Spondias purpurea L.) peels by ultra-high-performance liquid chromatography/electrospray ionization mass spectrometry. Food Res. Int. 2012, 46, 557–562. 55. Rafsanjany, N.; Senker, J.; Brandt, S.; Dobrindt, U.; Hensel, A. In Vivo Consumption of Cranberry Exerts ex Vivo Antiadhesive Activity against FimH-Dominated Uropathogenic Escherichia coli: A Combined in Vivo, ex Vivo, and in Vitro Study of an Extract from Vaccinium macrocarpon. J. Agric. Food Chem. 2015, 63, 8804–8818. 56. Vijayan, K.P.R.; Raghu, A.V. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett. 2019, 52, 653–670. 57. Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Neto, C.P. Characterization of Phenolic Components in Polar Extracts of Eucalyptus globulus Labill. Bark by High-Performance Liquid Chromatography-Mass Spectrometry. Agric. Food Chem. 2011, 59, 9386–9393. 58. Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.O.; Cheng, H.; El-Shazly, A.M.; Wink, M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. J. Ethnopharmacol. 2018, 213, 38–47. 59. Mekam, P.N.; Martini, S.; Nguefack, J.; Tagliazucchi, D.; Stefani, E. Phenolic compounds profile of water and ethanol extracts of Euphorbia hirta L. leaves showing antioxidant and antifungal properties. South Afr. J. Bot. 2019, 127, 319–332. 60. Pan, M.; Lei, Q.; Zang, N.; Zhang, H. A Strategy Based on GC-MS/MS, UPLC-MS/MS and Virtual Molecular Docking for Anal- ysis and Prediction of Bioactive Compounds in Eucalyptus Globulus Leaves. Int. J. Mol. Sci. 2019, 20, 3875. 61. Nowak, R.; Olech, M.; Pecio, L.; Oleszek, W.; Los, R.; Malm, A.; Rzymowska, J. Cytotoxic, antioxidant, antimicrobial properties and chemical composition of rose petals. J. Sci. Food Agric. 2014, 94, 560–567. 62. Da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. 63. Marcia Fuentes, J.A.; Lopez-Salas, L.; Borras-Linares, I.; Navarro-Alarcon, M.; Segura-Carretero, A.; Lozano-Sanchez, J. Devel- opment of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398. 64. Cendrowski, A.; Scibisz, I.; Kieliszek, M.; Kolniak-Ostek, J.; Mitek, M. UPLC-PDA-Q/TOF-MS Profile of Polyphenolic Com- pounds of Liqueurs from Rose Petals (Rosa rugosa). Molecules 2017, 22, 1832. 65. Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; Garcia-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and Comprehen- sive Evaluation of (Poly)phenolic Compounds in Pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. 66. Viera, M.N.; Winterhalter, P.; Jerz, G. Flavonoids from the flowers of Impatients glandulifera Royle isolated by high performance countercurrent chromatography. Phytochem. Anal. 2016, 27, 116–125. 67. Barros, L.; Duenas, M.; Carvalho, A.M.; Ferreira, I.C.F.R.; Santos-Buelga, C. Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food Chem. Toxicol. 2012, 50, 1576–1582. 68. Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Jhun, H.P. In Vitro Antioxidant and Anti-Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from San- guisorba officinalis L. Roots. Molecules 2018, 23, 3001. 69. Chen, Y.; Cai, X.; Li, G.; He, X.; Yu, X.; Yu, X.; Xiao, Q.; Xiang, Z.; Wang, C. Chemical constituents of radix Actinidia chinensis planch by UPLC–QTOF–MS. Biomedical Chromatography. Biomed. Chromatogr. 2021, 35, e5103. 70. Chen, X.; Zhang, S.; Xuan, Z.; Ge, D.; Chen, X.; Zhang, J.; Wang, Q.; Wu, Y.; Liu, B. The Phenolic Fraction of Mentha haplocalyx and Its Constituent Linarin Ameliorate Inflammatory Response through Inactivation of NF-kB and MAPKs in Lipopolysaccha- ride-Induced RAW264.7 Cells. Molecules 2017, 22, 811. 71. Yin, Y.; Zhang, K.; Wei, L.; Chen, D.; Chen, Q.; Jiao, M.; Li, X.; Huang, J.; Gong, Z.; Kang, N.; et al. The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. Front. Pharma. 2021, 12, 710976.. 72. Romo Vaquero, M.; Garcia Villalba, R.; Larrosa, M.; Yáñez-Gascón, M.J.; Fromentin, E.; Flanagan, J.; Roller, M.; Tomás-Barberán, F.A.; Espín, J.C.; García-Conesa, M.T. Bioavailability of the major bioactive diterpenoids in a rosemary extract: Metabolic profile in the intestine, liver, plasma, and brain of Zucker rats. Mol. Nutr. Food Res. 2013, 57, 1834–1846. 73. Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Asta, C.; Del Rio, D. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.) extract. Molecules 2016, 21, 1007. Appl. Sci. 2022, 12, x FOR PEER REVIEW 28 of 29 74. Jiang, R.-W.; Lau, K.-M.; Hon, P.-M.; Mak, T.C.W.; Woo, K.-S.; Fung, K.-P. Chemistry and Biological Activities of Caffeic Acid Derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246. 75. Simard, F.; Legault, J.; Lavoie, S.; Mshvildadze, V.; Pichette, A. Isolation and Identification of Cytotoxic Compounds from the Wood of Pinus resinosa. Phytother. Res. 2008, 22, 919–922. 76. Ekeberg, D.; Flate, P.-O.; Eikenes, M.; Fongen, M.; Naess-Andresen, C.F. Qualitative and quantitative determination of extrac- tives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J. Chromatogr. A 2006, 1109, 267–272. 77. Moss, R.; Mao, Q.; Taylor, D.; Saucier, C. Investigation of monomeric and oligomeric wine stilbenoids in red wines by ultra- high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 1815–1827. 78. Rezaire, A.; Robinson, J.C.; Bereau, D.; Verbaere, A.; Sommerer, N.; Khan, M.K.; Durand, P.; Prost, E.; Fils-Lycaon, B. Amazonian palm Oenocarpus bataua (‘‘patawa’’): Chemical and biological antioxidant activity—Phytochemical composition. Food Chem. 2014, 149, 62–70. 79. Hu, F.; An, J.; Li, W.; Zhang, Z.; Chen, W.; Wang, C.; Wang, Z. UPLC-MS/MS determination and gender-related pharmacokinetic study of five active ingredients in rat plasma after oral administration of Eucommia cortex extract. J. Ethnopharmacol. 2015, 169, 145–155. 80. Eklund, P.C.; Backman, M.J.; Kronberg, L.A.; Smeds, A.I.; Sjoholm, R.E. Identification of lignans by liquid chromatography- electrospray ionization ion-trap mass spectrometry. J. Mass Spectr. 2008, 43, 97–107. 81. Dinelli, G.; Marotti, I.; Bosi, S.; Benedettelli, S.; Ghiselli, L.; Cortacero-Ramirez, S.; Carrasco-Pancorbo, A.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Lignan profile in seeds of modern and old Italian soft wheat (Triticum aestivum L.) cultivars as revealed by CE-MS analyses. Electrophoresis 2007, 28, 4212–4219. 82. Michalak, B.; Filipek, A.; Chomicki, P.; Pyza, M.; Woźniak, M.; Żyżyńska-Granica, B.; Piwowarski, J.P.; Kicel, A.; Olszewska, M.A.; Kiss, A.K. Lignans From Forsythia x Intermedia Leaves and Flowers Attenuate the Pro-inflammatory Function of Leuko- cytes and Their Interaction With Endothelial Cells. Front. Pharmacol. 2018, 9, 401. 83. Oertel, A.; Matros, A.; Hartmann, A.; Arapitsas, P.; Dehmer, K.J.; Martens, S.; Mock, H.P. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta 2017, 246, 281–297. 84. Vera de Rosso, V.; Hillebrand, S.; Cuevas Montilla, E.; Bobbio, F.O.; Winterhalter, P.; Mercadante, A.Z. Determination of antho- cyanins from acerola (Malpighia emarginata DC.) and ac-ai (Euterpe oleracea Mart.) by HPLC–PDA–MS/MS. J. Food Composit. Analys. 2008, 21, 291–299. 85. Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. 86. Diretto, G.; Jin, X.; Capell, T.; Zhu, C.; Gomez-Gomez, L. Differential accumulation of pelargonidin glycosides in petals at three different developmental stages of the orange-flowered gential (Gentiana lutea L. var. aurantiaca). PLoS ONE 2019, 14, e0212062. 87. Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K.; et al. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016, 71, 138–144. 88. Nakamura, S.; Li, X.; Matsuda, H.; Yoshikawa, M. Bioactive constituents from Chinese natural medicines. XXVIII. Chemical structures of acyclic alcohol glycosides from the roots of Rhodiola crenulata. Chem. Pharm. Bull. 2008, 56, 536–540. 89. Fan, Z.; Wang, Y.; Yang, M.; Cao, J.; Khan, A.; Cheng, G. UHPLC-ESI-HRMS/MS analysis on phenolic compositions of different E Se tea extracts and their antioxidant and cytoprotective activities. Food Chem. 2020, 318, 126512,. 90. Suarez Montenegro, Z.J.; Alvarez-Rivera, G.; Mendiola, J.A.; Ibanez, E.; Cifuentes, A. Extraction and Mass Spectrometric Char- acterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO2 Process. Foods 2021, 10, 1301. 91. Zhang, J.; Gao, W.; Liu, Z.; Zhang, Z. Identification and Simultaneous Determination of Twelve Active Components in the Methanol Extract of Traditional Medicine Weichang’an Pill by HPLC-DAD-ESI-MS/MS. Iran. J. Pharmaceut. Res. 2013, 12, 15–24. 92. Guo, K.; Tong, C.; Fu, Q.; Xu, J.; Shi, S.; Xiao, Y. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by HPLC-DAD-QTOF-MS/MS. J. Pharmaceut. Biomed. Analys. 2019, 170, 153–160. 93. Van Diermen, D.; Marston, A.; Bravo, J.; Reist, M.; Carrupt, P.A.; Hostettmann, K. Monoamine oxidase inhibition by Rhodiola rosea L. roots. J. Ethnopharmacol. 2009, 122, 397–401. 94. Ohsugi, M.; Fan, W.; Hase, K.; Xiong, Q.; Tezuka, Y.; Komatsu, K.; Namba, T.; Saitoh, T.; Tazawa, K.; Kadota, S. Active-oxygen scavenging activity of traditional nourishing-tonic herbal medicines and active constituents of Rhodiola sacra. J. Ethnopharmacol. 1999, 67, 111–119. 95. Kim, K.H.; Park, Y.J.; Jang, H.J.; Lee, S.J.; Lee, S.; Yun, B.S.; Lee, S.W.; Rho, M.C. Rugosic acid A, derived from Rosa rugosa Thunb., is novel inhibitory agent for NF-κB and IL-6/STAT3 axis in acute lung injury model. Phytother. Res. 2020, 34, 3200–3210. 96. Patnala, S.; Kanfer, I. Medicinal use of Sceletium: Characterization of Phytochemical Components of Sceletium Plant Species using HPLC with UV and Electrospray Ionization—Tandem Mass Spectroscopy. J. Pharm. Pharm. Sci. 2015, 18, 414–423.. 97. Yang, S.T.; Wu, X.; Rui, W.; Guo, J.; Feng, Y.F. UPLC/Q-TOF-MS Analysis for Identification of Hydrophilic Phenolics and Lip- ophilic Diterpenoids from Radix Salviae Miltiorrhizae. Acta Chromatogr. 2015, 27, 711–728. 98. Xie, J.; Ding, C.; Ge, Q.; Zhou, Z.; Zhi, X. Simultaneous determination of ginkgolides A, B, C and bilobalide in plasma by LC– MS/MS and its application to the pharmacokinetic study of Ginkgo biloba extract in rats. J. Chromatogr. B 2008, 864, 87–94. 99. Xiao, J.; Wang, T.; Li, P.; Liu, R.; Li, Q.; Bi, K. Development of two step liquid–liquid extraction tandem UHPLC–MS/MS method for the simultaneous determination of Ginkgo flavonoids, terpene lactones and nimodipine in rat plasma: Application to the Appl. Sci. 2022, 12, x FOR PEER REVIEW 29 of 29 pharmacokinetic study of the combination of Ginkgo biloba dispersible tablets and Nimodipine tablets. J. Chromatogr. B. 2016, 1028, 33–41. 100. Llorent-Martinez, E.J.; Spinola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpe- noid saponins, and other minor compounds in Bituminaria bituminosa. Ind. Crops Prod. 2015, 69, 80–90. 101. Park, S.K.; Ha, J.S.; Kim, J.M.; Kang, J.Y.; Lee, D.S.; Guo, T.J.; Lee, U.; Kim, D.-O.; Heo, H.J. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (A)1-42-Induced Learning and Memory Impairment. J. Agric. Food. Chem. 2016, 64, 3353–3361. 102. Serrano, C.A.; Villena, G.K.; Rodriguez, E.F. Phytochemical profile and rosmarinic acid purification from two Peruvian Lep- echinia Willd. species (Salviinae, Mentheae, Lamiaceae). Sci. Rep. 2021, 11, 7260. 103. Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Chaves, D.S.A.; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawik- owska, A.; Kachlicki, P.; Mikolajczak, P.L.; et al. Acetylcholinesterase inhibitory activities and bioguided fractionation of the Ocotea percoriacea extracts: HPLC-DAD-MS/MS characterization and molecular modeling of their alkaloids in the active fraction. Comput. Biol. Chem. 2019, 83, 107129. 104. Yang, L.; Meng, X.; Yu, X.; Kuang, H. Simultaneous determination of anemoside B4, phellodendrine, berberine, palmatine, obakunone, esculin, esculetin in rat plasma by UPLC–ESI–MS/MS and its application to a comparative pharmacokinetic study in normal and ulcerative colitis rats. J. Pharm. Biomed. Analys. 2017, 134, 43–52. 105. Seekhaw, P.; Mahatheeranont, S.; Sookwong, P.; Luangkamin, S.; Na Lampang Neonplab, A.; Puangsombat, P. Phytochemical Constituents of Thai Dark Purple Glutinous Rice Bran Extract [Cultivar Luem Pua (Oryza sativa L.)]. Chiang Mai J. Sci. 2018, 45, 1383–1395. 106. Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114. 107. Sut, S.; Zengin, G.; Maggi, F.; Malagoli, M.; Dall’Acqua, S. Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and In Vitro Activities. Molecules 2019, 24, 1109. 108. D’Abrosca, B.; Fiorentino, A.; Monaco, P.; Oriano, P.; Pacifico, S. Annurcoic acid: A new antioxidant ursane triterpene from fruits of cv. Annurca apple. Food Chem. 2006, 98, 285–290. 109. Liu, H.; Lai, H.; Jia, X.; Liu, J.; Zhang, Z.; Oi, Y.; Zhang, J.; Song, J.; Wu, C.; Zhang, B.; et al. Comprehensive chemical analysis of Schisandra chinensis by HPLC-DAD-MS combined with chemometrics. Phytomedicine 2013, 20, 1135–1143. 110. Razgonova, M.; Zakharenko, A.; Pikula, K.; Kim, E.; Chernyshev, V.; Ercisli, S.; Cravotto, G.; Golokhvast, K. Rapid Mass Spec- trometric Study of a Supercritical CO2-extract from Woody Liana Schisandra chinensis by HPLC-SPD-ESI-MS/MS. Molecules 2020, 25, 2689. 111. Lara-Abia, S.; Lobo-Rodrigo, G.; Welti-Chanes, J.; Pilar Cano, M. Carotenoid and Carotenoid Ester Profile and Their Deposition in Plastids in Fruits of New Papaya (Carica papaya L.) Varieties from the Canary Islands. Foods 2021, 10, 434. 112. Etzbach, L.; Pfeiffer, A.; Weber, F.; Schieber, A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DADAPCI-MSn. Food Chem. 2018, 245, 508–517. 113. Al-Yafeai, A.; Malarski, A.; Bohm, V. Characterization of carotenoids and vitamin E in R. rugosa and R. canina: Comparative analysis. Food Chem. 2018, 242, 435–442. 114. Petry, F.C.; Mercadante, A.Z. Composition by LC-MS/MS of New Carotenoid Esters in Mango and Citrus. J. Agric. Food Chem. 2016, 64, 8207–8224. 115. van Breemen, R.B.; Canjura, F.L.; Schwartz, S.J. Identification of Chlorophyll Derivatives by Mass Spectrometry. J. Agric. Food Chem. 1991, 39, 1452–1456.

Journal

Applied SciencesMultidisciplinary Digital Publishing Institute

Published: Sep 20, 2022

Keywords: Rosa rugosa; Rosa davurica; Rosa acicularis; ion trap; tandem mass spectrometry; polyphenolic compounds

There are no references for this article.