Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Photonic Integrated Circuits for NGPON2 ONU Transceivers (Invited)

Photonic Integrated Circuits for NGPON2 ONU Transceivers (Invited) applied sciences Review Photonic Integrated Circuits for NGPON2 ONU Transceivers (Invited) 1 , 2 , 3 1 , 2 , 3 1 , 2 , 3 3 Cátia Pinho , Francisco Rodrigues , Ana Maia Tavares , Carla Rodrigues , 4 1 , 2 , Cláudio Emanuel Rodrigues and António Teixeira * Instituto de Telecomunicações (IT), University of Aveiro, 3810-193 Aveiro, Portugal; catiap@ua.pt (C.P.); francisco@picadvanced.com (F.R.); ana@picadvanced.com (A.M.T.) Department of Electronics, Telecommunications and Informatics (DETI), University of Aveiro, 3810-193 Aveiro, Portugal PICadvanced, PCI—Creative Science Park Via do Conhecimento, Edifício Central, 3830-352 Ílhavo, Portugal; carla.rodrigues@picadvanced.com Altice Labs, R. José Ferreira Pinto Basto, 3810-106 Aveiro, Portugal; claudio-e-rodrigues@alticelabs.com * Correspondence: teixeira@ua.pt Received: 31 March 2020; Accepted: 3 June 2020; Published: 10 June 2020 Abstract: The development of photonic integrated circuits (PIC) for access network applications, such as passive optical networks (PON), constitutes a very attractive ecosystem due to PON’s potential mass market. The implementation of PIC solutions in this context is expected to facilitate the possibility of increasing the complexity and functionalities of devices at a potentially lower cost. We present a review addressing the prominent access network market requirements and the main restrictions stemming from its specific field of application. Higher focus is given to PON devices for the optical network unit (ONU) and the implications of designing a device ready for market by discussing its various perspectives in terms of technology and cost. The discussed PIC solutions/approaches in this paper are mainly based on indium phosphide (InP) technology, due to its monolithic integration capabilities. A comprehensive set of guidelines considering the current technology limitations, benefits, and processes are presented. Additionally, key current approaches and e orts are analyzed for PON next generations, such as next-generation PON 2 (NGPON2) and high-speed PON (HSP). Keywords: photonic integrated circuits (PIC); access networks; passive optical network (PON); next-generation passive optical network 2 (NGPON2); high-speed PON (HSP); super-PON 1. Introduction Telecommunication network infrastructures can be described by three main network segments, i.e., core or backbone, metro/regional, and access networks, as depicted Figure 1. Long-distance communications with high aggregate trac are attained with core and metro networks, while access networks entail service provider to end-user fiber-optic telecommunications technology. These systems are subject to significant growth in capacity requirements with operators looking for feasible cost-e ective solutions. The potentiation of cost-e ective solutions can be reached with the improvement of current network technologies, as they become widely used, e.g., coherent systems in future optical access networks [1,2]. Appl. Sci. 2020, 10, 4024; doi:10.3390/app10114024 www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 2 of 19 Appl. Sci. 2020, 10, x 2 of 19 Figure Figure 1. 1. Diagram Diagram of a te of a telecommunications lecommunications netw network ork infrastructure, based infrastructure, basedin [3]. in [3]. Photonic integrated circuits (PIC) are considered an evolving technology o ering a sustainable Photonic integrated circuits (PIC) are considered an evolving technology offering a sustainable (ecient and cost-e ective) alternative to data transmission interfaces [4]. The implementation of (efficient and cost-effective) alternative to data transmission interfaces [4]. The implementation of integrated photonics can thus enable savings and new functionalities, increasing the transmission integrated photonics can thus enable savings and new functionalities, increasing the transmission capacity capacity [5 [5].]. In the a In the access ccess network context, network context, PIC can offer compelling per PIC can o er compelling performance formance improv improvements ements compared to traditional bulk technology [6], like bi-directional optical sub assembly (BOSA). Upgrades compared to traditional bulk technology [6], like bi-directional optical sub assembly (BOSA). in Upgra terms des of in weight terms o and f we volume, ight and r vol educed ume, re power duce consumption, d power consump high tion, h mechanical igh mechanic and thermal al and tstability hermal , and stabil assembly ity, andsimplification assembly simplif for high ication subsystem for high integration subsystem i aren expected tegration under are expected under PIC PIC solutions [6–9]. solutions [6–9]. By combining the need of providing enhanced passive optical network (PON) technologies and taking By combinin advantage g the need of of photonic providing en integrated hanced solutions passive optical net benefits, a compr work (PO ehensive N) t description echnologies ofand PIC taking advantage of photonic integrated solutions benefits, a comprehensive description of PIC design challenges for the optical network unit (ONU) side of next-generation PON is delivered design challenges for the optical network unit (ONU) side of next-generation PON is delivered in this in this study (see optical access network branch in Figure 1). The paper is organized into four study (see optical access network branch in Figure 1). The paper is organized into four additional additional sections. The historical PIC evolution addressing current developments and expectations sections. The historical PIC evolution addressing current developments and expectations are are described in Section 2. Section 3 addresses the PON standards and next-generation PON timeline. described in Section 2. Section 3 addresses the PON standards and next-generation PON timeline. The implementation of PIC solutions for PON is introduced in Section 4, discussing the technology The implementation of PIC solutions for PON is introduced in Section 4, discussing the technology impact on reach (Section 4.1), the adopted band and wavelength selection criteria (Section 4.2), photonic impact on reach (Section 4.1), the adopted band and wavelength selection criteria (Section 4.2), packaging (Section 4.3), and control complexity, power dissipation and form factor issues (Section 4.4). photonic packaging (Section 4.3), and control complexity, power dissipation and form factor issues The study is concluded in Section 5. (Section 4.4). The study is concluded in Section 5. 2. PIC Evolution 2. PIC Evolution Photonic integrated solutions are a promising technology for the 21st-century optical systems, Photonic integrated solutions are a promising technology for the 21st-century optical systems, under the current demand for flexibility/reconfigurability in optical communication networks [5,10]. under the current demand for flexibility/reconfigurability in optical communication networks [5] Di erentiated examples of PIC solutions include the implementation of photonic integrated optical [10]. Differentiated examples of PIC solutions include the implementation of photonic integrated transforms for data compression applications in di erent integrated platforms, e.g., indium phosphide optical transforms for data compression applications in different integrated platforms, e.g., indium (InP) [11,12], silicon nitride (SiN) [13], and new organic-inorganic hybrid materials [14]; SiN-integrated phosphide (InP) [11,12], silicon nitride (SiN) [13], and new organic-inorganic hybrid materials [14]; photonic dispersion compensator enabling extended reach pulse-amplitude modulation with four SiN-integrated photonic dispersion compensator enabling extended reach pulse-amplitude amplitude levels (PAM-4) transmission as a low-cost interface for data center interconnects (DCI) [15]; modulation with four amplitude levels (PAM-4) transmission as a low-cost interface for data center development of state-of-the-art sub-hertz fundamental linewidth (<1 Hz) photonic integrated Brillouin interconnects (DCI) [15]; development of state-of-the-art sub-hertz fundamental linewidth (< 1 Hz) laser, narrow enough to move demanding scientific applications to the chip-scale [16–18]; and a new photonic integrated Brillouin laser, narrow enough to move demanding scientific applications to the soft-packaging flexible platform approach for photonic integrated processors, based on the spatial chip-scale [16–18]; and a new soft-packaging flexible platform approach for photonic integrated light modulation operation principle [19,20]. Moreover, new concepts of PIC-to-PIC interconnects processors, based on the spatial light modulation operation principle [19,20]. Moreover, new concepts with integrated fan-in/fan-out multicore fiber applications for optical dense networks have been of PIC-to-PIC interconnects with integrated fan-in/fan-out multicore fiber applications for optical Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 3 of 19 reported [21]. Photonic integration appears as a dominant technology in high bandwidth optical communication systems [9], o ering increased valuable solutions in several innovative fields, such as bio-photonics [22], sensing [23], and space technology [24]. Nevertheless, PIC technology is still more expensive than standard microelectronics, which can restrict its application into some niche markets [5]. PICs are the equivalent of electronic integrated circuits (EIC) in the optical domain. As an alternative to transistors and other electronic components, PICs contain optical elements, such as modulators, detectors, attenuators, multiplexers, optical amplifiers, and lasers embedded in a single chip using a waveguide (WG) architecture [19]. The photonic integration technology is going through a similar evolution path as microelectronic integration, however, with a time delay of about 20 to 30 years [25]. Historically, the invention of the transistor in 1948 [26,27] launched microelectronic integration developments; analogously, the invention of the semiconductor laser in 1969 [28] was the breakthrough of photonic integration technology. Transistor and laser technologies were primarily implemented as discrete components. Microelectronics integration technology started with Kilby in 1959 [29] and maturated with the complementary metal-oxide-semiconductor (CMOS) [30] in the 1970s. A first PIC comprising a laser integrated with a modulator was reported in 1987 [31], marking the start of PIC exponential development, typically associated with Moore’s law [25]. Moore’s law forecasted a double in the number of components per integrated circuit about every two years, with a new technology generation introduced approximately every three years and an expected compound annual growth rate (CAGR) under the dozens [32]. Optical communications evolution has brought the advent of improved PIC, presenting an economic and sustainable alternative to data transmission [4]. PIC technology o ers compelling performance advances in terms of small weight and volume, low power consumption, high mechanical and thermal stability, and the ease for assembling a substantial number of complex systems [9]. Consequently, the current PIC-related contexts are evolving at a good rate with an overall worldwide concertation set of e orts aiming to reach a sustainable PIC ecosystem model [33,34]. From the 2000s when the first consortia started to consolidate the concepts around photonics multi-project wafer (MPW), the way for groundbreaking photonic integration developments was paved. State-of-the-art PIC-based consortia, such as JePPIX [35], TriPleX [36], and ePIX [37], pioneered the e ort in Europe and globally, followed by private and public-private arrangements, like AIM photonics [38], Compoundtek silicon photonics, and others [39]. They are working to replicate in optics what happened in the 80s–90s with electronics, e.g., the Marconi GaAs MPW runs and others [40]. The traction gathered by these consortia allowed a fast development of integrated optics simulators and of the process design software (PDS) market, supported by software suites running process design kits (PDK) from almost all available fabs. The development of a generic common language for the photonic design was an important breakthrough that allowed integrated photonics to be regarded as a promising sort-term technology. During these developments, many integrated and hybrid solutions emerged [41–43]; nonetheless, the majority were bulky, expensive, and typically non-replicable, making these approaches unfeasible to be integrated into further complex systems and subsystems. For instance, devices such as optical amplifiers [44], lasers [16,45], and modulators [46], are not supplied by the di erent integrated platforms due to limitations of semiconductor integration technology. Thus, it restricted the investment of the di erent labs and research institutes in the development of their concepts/testing to validate their contributions/solutions while waiting for the necessary developments of the technology. In the 90s, few basic building blocks (BB) were made available in a packaged version, e.g., the semiconductor optical amplifier (SOA) based Mach-Zehnder interferometer (MZI) [47], though with an expensive associated cost of several tens of thousands of euros. Di erent materials are suitable to produce PICs, nonetheless, only a few have been selected by actors in the ecosystem and, therefore, have gained traction into foundries, software suppliers, design houses, and fabless companies [48]. Current main photonic integration platform technologies Appl. Appl.  Sci.  Sci. 2020 2020 , 10,,  x10  , x  Appl. Sci. 2020, 10, x  4  of4  19 of   19  4  of  19  inteinte gragra tedt ed ph otonic photonic  pla pla tform tinte form  to gra  realize toted realize  ph PICs otonic  PICs  is  pla dr isiven  tdr form iven  by to  by the  realize  the  functiona  fu PICs nctiona l  isre ldr quire  reiven quire m by ents m the ents  of fu  the ofnctiona  the  devices  devices l re quire   ments of the devices  to be to  deve be deve loplop ed eand d and  the the  unto derly un be derly  deve ingi ng av lop a av ieladabi and llaeb compone l ethe  compone  underly ntsn (ac itsng t(ac iv av e/p tiv aie/p laassive balessive  compone ) fo)r  fo thre th differen nets differen  (activ t e/p plat t plat aforms ssive forms )  for  the different platforms  Appl. Sci. 2020, 10, x  Appl. Sci. 2020, 10, x  4  of  19  4  of  19  [33[,55 33,5 ,556],5. 6] An . An  overview  overview  of  the [of 33 the , 55 ke,5 y ke 6] chy. ar An chac ar overview teri acteri stics st ics be of tw  be the een tw ke een  the y  the ch diar ffe di acrffe eteri ntre st av ntics ai avlab  be ailab tw le int een le eint grat the egrat  ed diffe ed plat r eplat nt form  av form ai  lab  le integrated platform  Appl. Sci. 2020, 10, x  4  of  19  technolo technolo giesgies  is provided  is provided  intechnolo   Table in Table  1 gies [33  1 [33 ,56 is ,5 ,provided 567],5. 7] BB.  BB com   in com p Table onents, ponents,  1 [33  su,ch  56 su ,5 as ch7]  la as . sers, BB  lasers,  com  optical  poptical onents,  am apl m su ifpl iers, chif iers, as and  la and sers,     optical amplifiers, and  integrated photonic platform integra  to trealize ed photonic  PICs  ispla drtform iven  by to  realize the functiona  PICs isl  re drquire iven m byents  the  of fu nctiona the devices l require   ments of the devices  Appl. Sci. 2020, 10, 4024 4 of 19 detec detec tors, tors,   pose   pose   de sign design   ch allenge detec challenge tors, s  for s  pose  for their   their de  im sign  pim lem  p chlem eallenge nta ention tation s  in for   in a  their   SiaN  Si ‐based im N‐p based lem  monoli e nmonoli tation thic thic in  in  a te in Si gra te Ngra t‐ed based t ed   monolithic  integrated  to be developed and the un toderly  be deve inglop  avaeidla and ble  compone the underly ntsi ng (ac tav ivae/p ilaabssive le compone ) for then ts differen  (active/p t plat assive forms ) fo  r the different platforms  integrated photonic platform to realize PICs is driven by the functional requirements of the devices  platplat form form ; thi; sthi constrain s constrain  can plat can  be form  be overcom  overcom ; thise constrain  with e with  hy br hy can id br and  ibe d and  overcom /or /heterogeneous or heterogeneous e with hybr pro id pro  cand esses cesses /or, as heterogeneous ,  pre as pre sente sente d  d  processes, as presented  [33,55,56]. An overview of[3 the 3,55 ke ,5y6] ch . An arac overview teristics  be of tw theeen  ke ythe ch di arffe acteri rentst av icsai be lab twleeen  int ethe grat died ffe plat rentform  avai lable integrated platform  to be developed and the underlying available components (active/passive) for the different platforms  in Table in Table  1. Si 1.mil  Simil arly, arl hybr y, hybr id/he in id/he Table terogen t erogen 1. Siemil ous eoa rl us processes y, processes  hybrid/he  are are  templo erogen  emplo yeeodyus efor d processes   for lasers  lasers  and  are and  optic  emplo  optic al am ayle am plif d for plif ier lasier sers s   and optical amplifiers  technologies is provided technolo in Table gies 1 [33 is ,56 provided ,57]. BB com  in Table ponents,  1 [33 su ,56 ch,5 as 7].  la BB sers,  com optical ponents,  am su plifchiers,  as  la and sers,   optical amplifiers, and  Appl. Appl.  Sci.  Sci. 2020 2020 , 10,,  x10  , x  4  of4  19 of   19  [33,55,56]. An overview of the key characteristics between the different available integrated platform  o ering access BBs to BBs  ingeneric   Si in‐ ba Si‐sba eds e pr techno d ocesses techno logy. logy. BBs   and   in Si manufacturing ‐based technology. thr   ough multi-project wafer (MPW) runs are detectors,  pose  design  chdetec allenge tors, s  for pose   their   de sign imp lch emallenge entation s  for   in  their a  SiN  im‐based plem emonoli ntationthic   in   in a te Sigra N‐based ted    monolithic  integrated  technologies is provided in Table 1 [33,56,57]. BB components, such as lasers, optical amplifiers, and  Appl. Sci. 2020, 10, x  Appl. Sci. 2020, 10, x  4  of  19  4  of  19  inteinte gragra tsilicon edt ed ph otonic photonic (Si) pla [ 49 pla tform plat ,50 tform form ], toindium   realize to;  thi realize s  constrain PICs phosphide  PICs  is dr is can iven  dr plat iven  be form by (InP) overcom   by the ;  thi the  fus[nctiona   fu 51 constrain e nctiona with –53l ], hy rel and quire  can br reiquire d be and m silicon  ents overcom m/or ents   of heterogeneous   nitride the ofe  the  with devices  devices  hy (SiN) br   ipro d  and c [esses 48/or ,54 ,heterogeneous  as ]. pre The sente selection d   processes, as presented  detectors,  pose  design  challenges  for  their  implementation  in  a  SiN‐based  monolithic  integrated  Table Table   1.  Key 1. Key  fea tfe ure ature s from s from  thre Table  thre e availab  e1. availab  Keyle  fephotonic laet ure photonic s from  integ   integ thre ration er ation availab  platfor  platfor lem photonic s,m i.s,e. ,i. indiu e. ,integ  indiu mr ation phosphide m phosphide  platfor  m s, i.e., indium phosphide  to be to  deve be deve loplop ed eand d and  the Appl.  the  un in  derly un  Sci. Table derly  2020 ing 1. , 10 i  ng av Si , xmil a  av ilaaabirl Appl. llaey,b compone Appl.  lhybr  eSci. compone   Sci. 2020 inid/he   Table 2020 , n 10ts t,,erogen   n x 10 (ac   ts 1. , x  t(ac Si ivmil e/p etiv ous ae/p arlssive  processes y, assive  hybr ) fo)rid/he   fo th rare e th differen terogen  eemplo  differen ety oplat eus dt  plat for  forms processes  la forms sers     and  are  optic emplo aly am ed 4  plif of for  19 ier la  sers s   and optic 4 aofl 4 am  19 of  plif 19  iers  of the integrated photonic platform platto form realize ; this constrain PICs is can driven  be overcom by the e with fu nctional hybrid andr/equir or heterogeneous ements of pro the cesses, as presented  integrated photonic pla inte tform grated to  ph realize otonic PICs  pla tis form  driven  to realize  by the  PICs functiona  is driven l require  by the ments  functiona  of the ldevices  require ments of the devices  (InP), (InP),  sili con silicon  (Si), (S and i), and  sili con silicon  ni (InP), t rni idter si i(SiN) dliecon  (SiN)   monolithic (Si), monolithic  and sili technologies. con technologies.  nitride (SiN)      monolithic technologies.  BBs in Si‐based technology. BBs   in Si‐based technology.  [33[,55 33,5 ,556],5. 6] An . An  overview  overview  of  the of the  key ke chyar chac arteri acteri stics st ics betw  beeen tween  the the  diffe  dirffe entre av nt ai avlab ailab le int le eint grat egrat ed ed plat plat form form     to be developed and the to be un deve derlylop inge dav and aila the ble  un compone derly in Table ing nts  av 1. (ac aSiitlmil iv abe/p lea rlcompone ay, ssive  hybr ) fo id/he nr ts th (ac et erogen differen tive/peaotssive  us plat processes )forms  for th e differen  are emplo t plat yeforms d for la  sers and optical amplifiers  devices to be developed and the underlying available components (active/passive) for the di erent integrated photonic inte plainte tgra form gra ted to t ed ph realize  otonic photonic   PICs pla pla tform  ist form dr iven to  realize to by  realize  the PICs  fu PICs nctiona  is dr isiven  dr l re iven  quire by  by them the  fu ents nctiona  fu of nctiona  thel  re devices lquire  require m  ents ments  of  the of the  devices  devices     technolo technolo giesgies  is provided  is provided  in  Table in Table  1 [33  1 [33 ,56,5 ,567],5. 7] BB.  BB com com ponents, ponents,  such  su as ch  la assers,  lasers,  optical  optical  am aplmifpl iers, ifiers,  and and     [33,55,56]. An overview [33 of ,55 the ,56] ke . An y ch overview aracterist ofics the  BBs be ke tw in yeen   ch Si ‐ar the baac s edi teri dffe techno strics ent be av logy. tw ailab een  l ethe  int di egrat ffered ent plat  avaiform lable  integrated platform  Build Build inging  blo blo ck c(BB) k (BB)     InP Build InP   ing    blocSi k  (BB) Si    SiN InP SiN      Si  SiN  platforms [33,55,56]. An overview of the key characteristics between the di erent available integrated to be developed andto the be to un   deve bederly  deve loping lop ed  av eand da and i lthe ab lthe  eun compone  derly underly ingni ng av ts (ac a av ilataiv billaee/p b compone lea ssive compone ) fo nts r n th (ac tse  t(ac differen ive/p tive/p assive ta plat ssive ) fo forms )r  fo thre  th differen e differen t plat t plat forms forms     Table  1. Key features from Table three  availab 1. Key lfe e aphotonic tures from  integ  thre ration e availab  platfor le photonic ms, i.e.,  indiu integm ration  phosphide  platfor ms, i.e., indium phosphide  detec detec tors, tors,   pose   pose   de sign design   ch allenge challenge s  for s  for their   their   im pim lem plem enta ention tation   in   in a  SiaN  Si‐based N‐based   monoli   monoli thicthic   in teingra tegra tedt ed  technologies is provided technolo  in Table gies  1is [33  provided ,56,57].  BB in Table  comp 1onents,  [33,56 ,5 su7]ch . BB  as  com lasers, ponents,  optical su am chpl asif iers, lasers,  and optical    amplifiers, and  PasPas sivesive  components  components     ✓✓ Pas ✓✓ s ive  components ✓✓ ✓✓      ✓✓✓ ✓✓ ✓✓✓      ✓✓  ✓✓✓  [33,55,5(InP), 6]. An si overview licon (S[3i),3 [,and 55 3 of 3,5 , 55  the s6] ili,5.con   ke 6] An .(InP), y  An ni  overview ch tr iar overview d sieac li (SiN) con teri  of (S st monolithic  i), ics  the of and   be the  ketw  sy ke ili een ch con  y technologies. ar ch  the ni ac ar tteri r ac di idteri effe st (SiN) ics rst ent ics be monolithic  av tw  beai een tw lab een  the le   int technologies. the  dieffe  grat dirffe ent ed re  av nt plat   ai avlab form ailab le  int le eint grat egrat ed ed plat plat form form     platplat form form platform ; thi; sthi constrain s constrain technologies  can can  be  be overcom  overcom is provided e with e with  hyin br hyiT d br able  and id and /1 or[ /heterogeneous 33 or ,heterogeneous 56,57]. BB pro components,  pro cesses cesses , as,  pre as pre ssuch ente sente d asd lasers, optical amplifiers, Table  1. Key features from three available photonic integration platforms, i.e., indium phosphide  detectors,  pose  design detec   challenge tors,  pose s  for  de  their sign  im challenge plemensta  for tion  their   in  a  im Sip Nl‐em based enta  tion monoli   in thic a  Si  N in‐tebased grated  monoli   thic  integrated  technologies is provided technolo technolo  in Table gies Lase gies Lase  is rs 1   provided  [33 is rs  provided ,56,57] .in BB ✓✓✓   Table in ✓✓✓ com  Table   1p onents, Lase [33   1 [33 ,56 rs ⚪ ,5 , 56 ⚪ su  7] H,5.ch   7] BB H .as   BB com  la com sers, ⚪ ✓✓✓ ponents, ⚪  H p optical onents,   H    su ach  su m ⚪ as ch pl  H if la as iers,  sers,  lasers,  and  optical ⚪   optical  H  am aplmifpl iers, ifiers,  and and     in Table in Table  1. Si 1.mil  Simil arly, arl hybr y, hybr id/he id/he terogen terogen eous eo us processes  processes  are are  emplo  emplo yedy efor d  for lasers  lasers  and and  optic  optic al am al am plifplif iersier  s  (InP), silicon (Si), and silicon nitride (SiN) monolithic technologies.  platform and ; thi det s constrain ectors, plat can pose form  be;  design thi overcom s constrain e challenges  with can  hy be bri d overcom  for and/their or eheterogeneous  with implement  hybrid and  pro ation /or cesses  heterogeneous in , as a pre SiN-based sente pro d  cesses monolithic , as presente integrated d  Building block (BB)  Build InP  ing blockSi (BB)     InP SiN   Si  SiN  detectors,  pose  design detec detec   chtors, allenge tors,   pose   spose   for de  sign de their sign   ch  im allenge ch plallenge emesn ta for stion   for their   in their    im a  Si pim N lem p‐based lem enta ention  ta monoli tion   in   in athic   SiaN  Si in‐based N te‐gra based t ed monoli   monoli thicthic   in teingra tegra tedt ed  BBsBBs  in  Si in‐ ba Si‐sba eds etechno d techno logy. logy.     Modulators Modulators     ✓✓✓ ✓✓✓ Modulators     ✓✓ ✓✓      ✓✓✓ ✓ ✓   ✓✓  ✓  in Table 1. Similarly, in hybr  Table id/he 1.t erogen Similarleoy,us hybr  processes id/heterogen  are emplo eousy processes ed for lasers  are and  emplo  optic yeadl  for am la plif sers ier sand    optical amplifiers  platform; this constrain can be overcome with hybrid and/or heterogeneous processes, as presented in platform; this constrain platplat  form canform  be ; thi overcom ; sthi constrain s constrain e with  can  hy can  be Build br  be overcom id  ing overcom and blo /ore  cwith heterogeneous ke  (BB) with  hy  br hyid br and iInP d  pro and / orc /esses heterogeneous or heterogeneous , as Si pre   sente  pro d pro SiN  cesses c esses , as,  pre as pre sente sente d  d  Passive components  Pas ✓✓ sive    components ✓✓    ✓✓✓ ✓✓    ✓✓  ✓✓✓  BBs in Si‐based techno BBs logy.  in  Si‐based technology. SwiSwi tches tches     ✓✓ ✓✓   Swi   tches ✓✓ ✓✓     ✓✓ ✓ ✓   ✓✓  ✓  Table 1. Similarly in Table , hybrid  1. Simil/aheter rly,in hybr  Table in ogeneous  Table id/he  1. Si t1. erogen mil  Sipr mil arlocesses y, eaorl us hybr y,  processes hybr id/he ar id/he eterogen employed  tare erogen  emplo eous eo us processes ye for  dprocesses  for lasers  la sers are are   and emplo and emplo  optic optical yedya efor ld am   for la amplifiers plif sers  lasers ier and s  and  optic  optic BBs al am al am plifplif iersier  s  Table Table   1.  Key 1. Key  fea tfe ure ature s from s from  thre thre e availab e availab le photonic le photonic  integ  integ ration ration  platfor  platfor ms,m i.s,e. ,i. indiu e., indiu m phosphide m phosphide     Lasers  ✓✓✓ Lasers⚪    H  ✓✓✓ ⚪ H   ⚪ H  ⚪ H  Passive components  ✓✓  ✓✓  ✓✓✓  Optical Optical  am aplif mplif iersie  rs  ✓✓✓ ✓✓✓ Optical     am ⚪ plif ⚪  H ie rs H   ⚪ ✓✓✓ ⚪  H  H    ⚪ H  ⚪ H  (InP), (InP),  sili con silicon  (Si), (S and i),BBs  and  sili  in con sili Si con  ni‐ba t rni isdeterd i(SiN) d techno e (SiN)  BBs monolithic  logy. BBs monolithic  in  Si in ‐ ba Si technologies. ‐sba etechnologies. ds etechno d techno  logy.  logy.     in Si-based technology. Table  1. Key features from Table thre   1. eKey  availab  feature le photonic s from thre  integ e availab ration leplatfor  photonic ms,  i.integ e., indiu ration m  platfor phosphide ms,  i.e., indium phosphide  Modulators  ✓✓✓ Modulators   ✓✓    ✓✓✓ ✓    ✓✓  ✓  Lasers  ✓✓✓  ⚪ H  ⚪ H  Detec Detec torstors     ✓✓✓ ✓✓✓  Detec   tors ✓✓ ✓✓     ⚪ ✓✓✓ ⚪  H  H    ✓✓  ⚪ H  (InP), silicon (Si), and sili (InP), con  ni sitlircon ide  (SiN) (Si), and  monolithic  silicon ni technologies. tride (SiN) monolithic    technologies.  Switches  ✓✓ Switches✓✓     ✓✓ ✓   ✓✓  ✓  Build Build ing Table ing  blo  blo c1.k  Key c(BB) k (BB)  fe  ature   sInP Table  from InP Table      thre 1.  Key 1.e  Key availab  fe Sia  tfe Si ure al teure s  photonic from s from SiN  thre SiN Modulators   thre  integ e availab  e ravailab ation le   platfor photonic le photonic ms, ✓✓✓ integ  i.e integ ., rindiu ation   ration m platfor  phosphide  ✓✓ platfor m s,m i.s, e. ,i. indiu e., ✓ indiu m   phosphide m phosphide     Footprin Footprin t  t  ✓✓ ✓✓   Footprin   ✓✓✓ ✓✓✓ t      ✓✓ ✓ ✓   ✓✓✓  ✓  Table 1. Key features from three available photonic integration platforms, i.e., indium phosphide (InP), (InP), silicon (Si), and s(InP), ilicon (InP),  si ni li tcon si rilidcon  e(S (SiN) i), (S and i), monolithic  and  sili con silicon  ni ttechnologies.  rni idter i(SiN) de (SiN)  monolithic   monolithic  technologies.  technologies.     Optical amplifiers  ✓✓✓ Optical   amplif ⚪i eH rs   ✓✓✓ ⚪ H   ⚪ H  ⚪ H  Building block (BB) BuildInP ing  block (BB) Si   InP SiNSwi   tches Si   SiN ✓✓     ✓✓  ✓  ✓✓ ✓✓     ✓✓ ✓✓     ✓✓✓ ✓✓✓     PasPas sivesive  components  components     Chip Chip  cost cost     ✓ ✓Chip    cost ✓✓ ✓✓     ✓✓ ✓ ✓✓      ✓✓  ✓✓  silicon (Si), and silicon nitride (SiN) monolithic technologies. Detectors  ✓✓✓Detec   tors ✓✓     ✓✓✓ ✓✓✓ ⚪ H    ✓✓  ⚪ H  Optical amplifiers  ⚪ H  ⚪ H  Lase Lase rs  rs  ✓✓✓ ✓✓✓     Passive components Pas CMOS sCMOS ive ✓✓  components compa    compa t⚪ ib✓✓ ilt⚪  iitH b yil   it Hy   ✓✓ CMOS ⚪ ✓✓✓   ⚪  H   compa H   ✓✓ ✓✓ ti✓✓ b  il  ity   ✓✓✓ ✓ ✓    ✓✓  ✓  ⚪⚪ ⚪⚪     ⚪⚪  Building block (BB)Build   Build ing InP ing  blo    blo ck c(BB) k (BB) Si      InPInP   SiN     Si Si  SiNSiN     Footprint  ✓✓ Detec Footprin tors ✓✓✓ 1t   1   ✓✓✓ ✓✓ ✓    ✓✓✓ ✓✓ 1    ✓  Building Block (BB) InP Si SiN ⚪ H  Modulators Modulators     ✓✓✓ ✓✓✓     ✓✓ ✓✓     ✓ ✓  ⚪ ⚪ /✓✓ /✓✓ ⚪ /✓✓ Lasers  ✓✓✓ Lase  rs  ⚪ H  ✓✓✓ ⚪   H  ⚪ H  ⚪ H  Passive componentsPas   Pas sive ✓✓ sive  components   components ✓✓      ✓✓ ✓✓  ✓✓✓ ✓✓   ✓✓    ✓✓   ✓✓     ✓✓✓ ✓✓✓   ✓✓     Low Low ‐cost‐cost  pa ck paack gianggi ng  ⚪ Low ⚪   ‐cost    packaging  ⚪  2 2 2 Chip cost  ✓  Chip cost ✓✓       ✓✓ ✓    ✓✓    ✓✓  Footprint  ✓✓  ✓✓✓  ✓  SwiSwi tches tches     ✓✓ ✓✓     ✓✓ ✓✓     ✓ ✓  Modulators  ✓✓✓ Modulators     ✓✓  ✓✓✓ ✓  ✓✓  ✓  Passive components 33 33 333 Lasers  ✓✓✓ Lase Lase rs    rs  ⚪ H ✓✓✓ ✓✓✓ ⚪     H  ⚪⚪  H  H  ⚪⚪  H  H  CMOS compatibility  ⚪⚪ CMOS  compa✓✓ tibilit  y  ⚪⚪ ✓    ✓✓  ✓  Chip cost  ✓  ✓✓  ✓✓  Optical Optical Perform  am Perform  aplif mplif aience: rsaie nce:  rs ✓✓✓    ✓✓✓ ✓✓✓  ✓✓✓ very   very   good;  Perform  good;  ⚪ ✓✓  ⚪  ✓✓ H a nce:  good  H   good ✓✓✓ ;  ✓ ⚪ ;   ✓ mod  ⚪  H very   mod   eH s tgood;  ;e ⚪ st; ⚪   chal ✓✓  chal leng   good leng ing;ing ;  ⚪⚪ ✓;  ⚪⚪ mod very es very t;  challeng ⚪ challeng  challeng ing.ing  ing. ; ⚪⚪ very challenging.  Swi Lasers tches  ✓✓ Swi tches 333 ✓✓  ✓✓  ✓  ✓✓  ✓  H H Modulators  Modulators ✓✓✓ Modulators     ✓✓     ✓✓✓ ✓✓✓   ✓   ✓✓ ✓✓     ✓ ✓  1 1 ⚪ /✓✓ ⚪ /✓✓ H: hybrid/hete H: hybrid/hete rogeneous rogeneous  processe  processe H: hybrid/hete s tos over  to over corme ogeneous co me the  the desig   processe desig n chnalleng  chs alleng to es over  asso esco asso me ciated  cthe iated  with  desig  with  the n c  the monolithic halleng  monolithic es asso    ciated with the monolithic  CMOS compatibility  ⚪⚪  ✓✓  ✓  Modulators Detec Detec torstors     ✓✓✓ ✓✓✓     333 ✓✓ ✓✓     ⚪⚪  H  H  33 3 Optical amplifiers  Optical ✓✓✓ am  plifie⚪ rs  H  ✓✓✓ ⚪   H  ⚪ H  ⚪ H  Low‐cost packaging  Low‐cost packaging  ✓✓  ✓✓  ⚪  ⚪  Switches  Swi ✓✓ Swi tches   tches     ✓✓  ✓✓ ✓✓   ✓    ✓✓ ✓✓     ✓ ✓  1 1 1 2 2 2 2 2 integ integ rated rated  tec htec nol honol gy.ogy.  End End ‐fire integ ‐fire  cou r ated cou pling p tec ling  (lo hnol w (lo reflect owgy.  reflect  iEnd on); ion); ‐ fire  vertical   cou  vertical  pling  cou cou  p(lo ling w pl  ireflect (medium ng (medium ion); reflection).    vertical  reflection).    cou   p  ling (medium reflection).  ⚪ /✓✓ Switches 33 33 3 Footprin Footprin t  t  ✓✓ ✓✓     ✓✓✓ ✓✓✓     ✓ ✓  Detectors  ✓✓✓ Detec tors  ✓✓  ✓✓✓ ⚪   H  ✓✓  ⚪ H  Low‐cost packaging  ⚪  ✓✓  Optical amplifiers  Optical Optical ✓✓✓  am  aplif mplif iers ⚪ ie  rs H   ✓✓✓ ✓✓✓ ⚪     H  ⚪⚪  H  H  ⚪⚪  H  H  Performance:  ✓✓✓  very good; Perform   ✓✓ ance:   good   ✓✓✓ ;  ✓   mod verye good; st; ⚪  ✓✓ chal leng good ing ; ;✓ ⚪⚪   mod every st; ⚪  challeng  challeng inging .  ; ⚪⚪ very challenging.  Optical amplifiers 333 H H Chip Chip  cost cost     ✓ ✓  ✓✓ ✓✓     ✓✓ ✓✓     Footprint  ✓✓ Footprin   t  ✓✓✓  ✓✓  ✓  ✓✓✓  ✓  Sever Sever al adv al adv anta anta gesg and es and /orSever  /limi or limi tat al ions tadv ations  aca nta n ca gbe n es  be high  and  high lighted /or lighted limi tfrom at ions from  the ca the  n referre  be referre  high d tech lighted d tech nologies. nologies.  from  Hi the gh Hi referre  gh  d technologies. High  Detectors  ✓✓✓ Detec Detec t orstors     ✓✓  ✓✓✓ ✓✓✓ ⚪     H  ✓✓ ✓✓     ⚪⚪  H  H  H: hybrid/heterogeneous processe H: hybrid/hete s to overco rogeneous me the desig  processe n challeng s to over es asso come ci ated the desig  withn the  ch alleng monolithic es asso  ciated with the monolithic  Performance:  ✓✓✓  very good;  ✓✓  good;  ✓  modest; ⚪ challenging; ⚪⚪ very challenging.  Detectors 333 33 CMOS CMOS gain gain  compa , spee  compa , spee d,ti band d, iltiit band y illow  ity low   loss lo ar ssgain e ar three e,  three spee  of✓✓  d, the of✓✓  and  the   ma   low ma in at in lo tr at ss ✓ ibtr u ar ✓ ib tes eu  three  tof es  phot of  of phot  onic theonic  ma  devices’ in devices’  attr ib improved u improved tes of phot  performa H performa onic devices’ nce.nce.     improved performance.  Chip cost  ⚪⚪ ⚪⚪ Chip ✓    cost     ✓✓  ✓  ✓✓  ✓✓  ✓✓  1 1 2 2 integrated technology. Footprin  End‐integ fire t  cou rated pling  tec h(lo nol Footprin ✓✓ woFootprin  reflect gy.   End ti on);‐tfire ✓✓✓     vertical  coup  ling ✓✓  cou ✓✓  (lo pw li✓ ng reflect   (medium ✓✓✓ i✓✓✓ on);   reflection).  vertical    ✓ cou  ✓ pl ing (medium reflection).  H: hybrid/heterogeneous processes to overcome the design challenges associated with the monolithic  1 1 As As InP InP  is  ais direct  a direct  ba nba dga ndpga As  mat p  InP mat erial,  is erial,   ait direct  presen  it presen  batsn the dtsga the  best p mat  best  ave rial, ai avlab ai it lab le  presen ga le iga n perform in ts  perform the best ance, a av nce,  however, ailab  however, le ga iwith n  perform with     ance, however, with  ⚪ ⚪ /✓✓ /✓✓ CMOS compatibility CMOS ⚪⚪  compa   tibil✓✓ ity    ⚪⚪ ✓  ✓✓  ✓  Footprint 33 1 333 2 3 Low Low ‐cost‐cost  pa ck paack gianggi ng  ⚪ Chip ⚪     cost integ  rated technol Chip ✓ oChip ✓✓ gy.   cost ✓✓   End  cost    ‐fire   ✓✓  cou  pling ✓  (lo ✓✓✓ w   reflect   ✓✓ ion); ✓✓     vertical   ✓✓  cou ✓✓  pling   (medium reflection).  higher higher  assoc  assoc iateiate d loss d loss es du eshigher  edu toe  el to eassoc  celtreic 2ctariate li2 cdoping ad l doping  loss es from  du  from  ecurren  to curren  eletc tinj ritc einj action l doping ection  which  which  from  require   curren require s the t sinj the  incl ection  incl usiu owhich n si on   requires the inclusion      1 1 Several advantages and/or Sever  limiatlat adv ions anta  cang es be and  high /or lighted  limitat from ions  the can  referre be high dlighted  technologies.  from the  Hi gh referre   d technologies. High  ⚪ /✓✓ ⚪ /✓✓ Chip cost 3 33 33 Low‐cost packaging  Low CMOS‐cost ⚪ compa   packtaibgilinitgyCMOS    CMOS ⚪⚪ ⚪  compa   compa ✓✓   ti biltiitb✓✓ yil ity   ⚪⚪ ⚪⚪  ✓✓ ✓    ✓✓ ✓✓     ✓ ✓  of optic of optic al am al am plifplif iersier [5s5] [5. 5] of Reg .  optic Reg ardaing ard l ing am  sy plif stems systems ier‐son [5‐‐on 5] ch.‐ip ch Reg  (SOC) ipa (SOC) rding  com   sy com pstems lexity, plexity, ‐on InP ‐ch InP  ip plat  (SOC) plat form form   ha com  sha aps lexity, good  a good   InP   platform has a good  2 2 gain, speed, and low loss ar gain e three , spee of d, the  and ma low in  at lotr ssib aruet es three  of phot  of the onic ma devices’ in attrib improved utes of phot performa onic devices’ nce.  improved performance.      Perform Perform ance: ance:   ✓✓✓   ✓✓✓   very   very  good;  good;   ✓✓   ✓✓   good   good ;  ✓;   ✓ mod   mod esSever t;e ⚪ st; ⚪ a chal l adv  chal leng aleng nta ingg;ing  es ⚪⚪  ; and ⚪⚪  /very or  very limi  challeng t challeng ations ing ca .ing   n .be    highlighted from the referred technologies. High  CMOS compatibility 33 3 1 1 1 mama turit turit y wi y twi h chips th chips  comprising  comprising maturit  upy  up to wi  hundreds to th  hundreds chips comprising  of  components. of components. ⚪  up/✓✓  to S hundreds ili  Scon ilicon ‐ba‐s ba of e⚪ ds  components. ep⚪ dh /otonic p✓✓ h/otonic ✓✓  proce  proce  Silisses con sses  are ‐ba are  sed  photonic processes are  As InP is a direct bandgaAs p mat  InPe rial, is a  direct it presen  bantsd the gap  best mat eav rial, ailab  it lpresen e gain ts perform  the best ance,  avai however, lable gain with  perform   ance, however, with  Low‐cost packagingLow   Low ‐cost ⚪ ‐cost   pa ck paack gianggi ng  ⚪⚪   ✓✓     ✓✓ ✓✓     H: hybrid/hete H: hybrid/hete rogeneous rogeneous  processe  processe s tos over  to over come co me thegain   the desig  desig , spee n chnalleng d, ch and alleng es low  asso es  asso lo ciss ated c ar iated  ewith  three  with  the  of the monolithic  the  monolithic  main  at tributes of photonic devices’ improved performance.  1 2 Performance:  ✓✓✓  very Perform  good; ance:   ✓✓  ✓✓✓   good ; very ✓  mod  good; es t;✓✓  ⚪  chal good leng ;  ✓ ing  mod ; ⚪⚪ est; ⚪  very chal 2 challeng lenginging ; ⚪⚪ .   very 2  2challenging.  Low-cost packaging 33 complementary complementary  metal  metal ‐ox‐ide ox complementary ide ‐sem‐sem iconduc iconduc tor metal  tor (CMOS  (CMOS ‐oxide )‐co‐)sem ‐mpat compat iconduc  /ible, 33 ible,  altor lowi  al lowi (CMOS ng ng its  it)in‐sc t oeinmpat gra  tegra tion ible, tion  to  al be tolowi   be run ng run    it s integration to be run  1higher 1  associated losses du higher e to el 2assoc ec2triicate al doping d losses from  due  to curren  electtr iinj cael ction doping  which  from require  currenst  the inje incl ction us which ion   requires the inclusion  integ integ rated rated  tec htec nol honol gy.ogy.  End End ‐fire‐fire  cou cou pling pling  (low (lo reflect w reflect ion); ion);    vertical    vertical  cou cou pling pl i(medium ng (medium  reflection).  reflection).     As InP is a direct bandgap material, it presents the best available gain performance, however, with  H: hybrid/heterogeneous H: processe  hybrid/hete s to over rogeneous come the  processe  designs  to ch alleng overcoes me asso  thec idesig ated nwith  challeng  the monolithic es associated    with the monolithic  in ain CMO  a CMO S fou S fou ndry ndry  wh wh ichinic provides  ha  provides CMOS  we fou  we lln‐controlled dry ll‐controlled  which  and provides  and  more  more   we rapi lrapi l‐dcontrolled  sc dal scab aliab lit yiand l ito ty   the to more  the  fa brica  rapi fabrica dti osc ntial onab  ility to the fabrication  of optical amplifiers [55]of . Reg  optic ardaing l am sy plif stems iers ‐[5 on5]‐ch . Reg ip (SOC) arding com  systems plexity, ‐on ‐InP chip plat  (SOC) form com  hasp lexity, a good InP    platform has a good  Performance:  ✓✓✓ Perform very Perform  good; ance: a✓✓ nce:   ✓✓✓    ✓✓✓ good  very ;  ✓ very   good; mod  good; e s✓✓ t;  ⚪ ✓✓   good  chal   good leng ;  ✓;  ing ✓ mod  ; mod ⚪⚪ est;e ⚪ st ;very  ⚪  chal  chal challeng lengleng ing;ing ing  ⚪⚪ ;.  ⚪⚪  very very  challeng  challeng ing.ing   .  Performance: 1 333 very good; 1 higher 33  assoc good; 2 iate3 d loss modest; es due to 2  elecchallenging; trical doping from curren very t injchallenging. ection which requires the inclusion  integrated technology.  integ End‐rfire ated cou  tecphling nol o(lo gy. w  reflect End‐fire ion);  cou   p vertical ling (lo cou w reflect pling i(medium on);   vertical  reflection).  coupling    (medium reflection).  environment environment  [42] [4. 2] Never . Never thenvironment etles hesles , as s,  com as com p [4 onents 2] ponents . Never  in  siin thli esi con les licon  ssubs , as subs  com trate trpate sonents  ussua  usllua yin llha si y vliha econ  v higher e  subs higher  dimensions trate  dimensions s usuall y ha  ve higher dimensions  Sever Sever al adv al adv anta anta gesg and es ma H: and turit /or hybrid/hete  /limi or y  wi limi tat thions t chips atrogeneous ions  ca comprising n ca H: be n   hybrid/hete  H: ma processe be high   hybrid/hete turit high lighted  up ylighted s  to wi to rogeneous  over t  h hundreds from r ogeneous chips  co from  me the  processe comprising   the the  referre   of processe  desig   referre components. s d nto  cstech  over h  dup to alleng  tech  over  nologies. to co me hundreds nologies. es co Sili  me asso the con   the  desig cHi i‐ated ba   desig gh Hi  of sne    gh with ccomponents. dhn p alleng   chh the otonic alleng  es monolithic  asso es proce  asso  Scili iated con csses  iated  with ‐ba  are  with s the e d   the p monolithic hotonic  monolithic  proce     sses are  H: hybrid/heterogeneous processes to overcome the design challenges associated with the monolithic integrated of optical amplifiers [55]. Regarding systems‐on‐chip (SOC) complexity, InP platform has a good  than than  in  InP in InP  an dan sinc d sinc e sieli si con lithan con  photonic  photonic  in InPs  an lasck d la sinc  lickght lieght   si soliurce  con source  sphotonic  and s and  am apl sm la ifpl ck iers, if liiers, ght  InP  InP so‐based urce ‐based s platforms  and platforms  ampl if priers, o pr viod InP vei d‐ebased    platforms provide  1 2 1 1 1 2 2 2 gain gain , spee , spee d, and d, technology  and  low low  loss lo . ar complementary sse End-fir  integ ar three e three rated  of e coupling   the  of tec the  hma  nol metal  ma in ogy. (low  at in‐integ tr ox  at End ibinteg complementary ide rtr eflection); urib‐tated fire es‐u sem r tated of es  cou tec i phot of conduc  htec p nol phot ling honic vertical onol gy. (lo onic  tor ometal  w devices’ gy.  End   reflect (CMOS  devices’ coupling  End ‐‐fire ox‐iide  fire on);  improved cou )‐‐ c improved sem  cou o p (medium  mpat ling vertical piling conduc  (lo ible, performa w  (lo cou   performa reflect rw eflection). al tor p reflect llowi ing (CMOS ion); nce.  (medium ng ion); nce.     it vertical s )  ‐ vertical in co reflection). tmpat e gra cou tcou ible, pion ling p  l to ial (medium ng lowi be (medium  run ng   reflection). its  reflection). integra  tion    to be run  maturity with chips comprising up to hundreds of components. Silicon‐based photonic processes are  Several advantages and Sever /ora limi l adv tataions ntag es ca nand  be/ or high  limi lighted tations from  can  the be  high referre lighted d tech from nologies.  the referre  High d technologies. High  a hiag hi hegrh pot er pot enteiantl ia for l  for volume  volume a hi gschaling  esc r aling pot and ent and ia inl tegr  for integr  avolume tioantio [2n 5] sc [2. aling 5] Despite . Despite  and the  in the  tegr high  high a tpr ion ocessin pr [2ocessin 5]. Despite g tech g tech nology  the nology  high     processing technology  As As InP InP  is  ais direct  a direct  ba nba dga ndin pga  mat ap  CMO mat erial, erial, S  itfou  presen  itn presen dryts wh  the tsicin the  hbest   aprovides   best CMO  av ai av Slab ai fou we lab le nga llldry e‐controlled  iga n  perform iwh n perform ich  provides and ance, a nce, more  however,   however, we rapi ll‐controlled d with  sc with al abi l iand ty to more  the fa rapi brica d tsc ioal n ability to the fabrication  gain, speed, and low lo gain ss ar , spee e three d, and  of the  low ma loin ss  at artrecomplementary  ib three utes of of the  phot ma onic in metal  at devices’ trib‐ox utide es improved  of‐sem  phot iconduc onic performa  devices’ tor (CMOS nce.  improved   )‐compat  performa ible, allowi nce. ng its integration to be run  mama turit turit y ofy  si oflicon  silicon  photon  photon ics, maics,  turit as  an asy  an  ind of  ind si irlicon ect ir eba ct photon  ndga bandga p ics, ma p  ma tas eria an telria  na ind l tiv na ireetiv ct ga eba iga nndga  is in difficult  isp difficult  mate to ria  realize to l na realize tiv eun ga der un inder   is difficult    to realize under  Several advantages Sever andSever /or al  limi adv al adv taat nta ions anta ges ca g and esn  and be /or high  /limi or limi lighted tations tations   from can ca be n the  be high  referre  high lighted lighted d tech  from  nologies. from  the the  referre   Hi referre ghd  tech d tech nologies. nologies.  Hi gh Hi gh  environment [42]. Nevertenvironment heless, as com [4p2] onents . Never  int si heliles con s,  subs as com trate ponents s usua lliny  siha liv con e higher  substr dimensions ates usually  have higher dimensions  higher higher  assoc  assoc iateiate d loss d loss es du es edu toe  el toe celtreicctarli cdoping al doping  from  from  curren  curren t injt einj ction ection  which  which  require  require s the s the  incl incl usiu on si on  As InP is a direct banAs dga InP p mat  is ae rial, direct it  presen bandgatsp  the mat in  abest e rial, CMO  av itai S presen  lab foulen dry ga ts ithe n wh  perform  best ich  provides avaai nce, lab lhowever, e  we gailnl‐ controlled perform  with ance,  and however,  more rapi with d sc  alability to the fabrication  Several advantages and/or limitations can be highlighted from the referred technologies. High thisthi pla s pla tform. tform.  The The  pla pla tform tform thi fe s at pla feures attform. ures  are  are  The in‐ between in pla ‐between tform InP  fe InP  at and ures  and  ul are tra  ul‐tra  low in‐‐low between  los slos SisN  Si InP  techno N  and techno  logies, ultra logies, ‐low  with   with los  s  SiN technologies, with  gain, speed, and lowgain  logain ss,  ar spee ,e spee  three d, and d, of and   low the low   ma loss in lo ar ss ate tr ar three ib e u three tes of of  the of phot  the  ma onic ma in at in tr devices’  at ibtruib tes u tof es improved   phot of phot onic onic  performa  devices’  devices’  nce. improved  improved    performa  performa nce.nce.     of optic of optic al am al am plifplif iersier [5s5] [5than . 5] Reg . Reg  in ard InP aing rd an ing  sy d stems  sinc systems e ‐si on li‐‐con on ch than ‐ip ch photonic   (SOC) ip in  InP (SOC)   an com s la d com ck sinc p lexity, lipght elexity,  si liso con InP urce  InP   photonic plat s  and plat form  aform m s  pl ha lack if sha iers,  alis ght good  a InP  good  so ‐urce based   s and  platforms  amplif iers, prov InP ide ‐based platforms provide  higher associated losshigher es due assoc  to eleiate ctridc aloss l doping es du efrom environment  to el curren ectricalt   doping inj [42] ection . Never  from  which th curren eles require s, as t inj  com se ction the ponents  incl  which us iin on  si require   licon subs s thetr incl atesu sus ioua n lly have higher dimensions  some some  activ  acetiv dee tde ecttieoctni oelnem  elem some entsents  but  ac but tiv  noe  no li de ght liteght  ct soiource  so n urce el em solutions,  so ents lutions,  but and  no and   li me ght me di so adl urce ioptic al optic  so al lutions, losses al losses  (am  and  (am id me  InP idd InP  iand al  optic and     al losses (amid InP and  gain, speed, and low loss are three of the main attributes of photonic devices’ improved performance. As InP is a direct baAs nd As ga InP pInP   is mat   ais edirect  rial, a direct  it ba presen  nba dga ndpts ga mat  the p mat e best rial, erial,   av it presen ai itlab  presen lets ga the ts in  the  perform best best  av ai av alab nce, ailab le however,  ga le iga n perform in perform  witha nce, ance,  however,  however,  with  with     mama turit turit y wi y twi h chips th chips  comprising  comprising a high eup r pot   up to  ehundreds to nt hundreds ial for  volume of  acomponents. of hi components. g hsceraling  pote  and Sntiliia Scon  lili in for con tegr ‐ba volume ‐sba aetdio s epndh  [2 otonic  psc h5]otonic aling . Despite  proce  and  proce sses   in the sses tegr   are high  aare  tio pr n ocessin [25]. Despite g tech nology the high   processing technology  of optical amplifiers of [5 5] optic . Reg ala am rding plif sy ierstems s [55]‐.on  Reg than ‐chaip rd in ing (SOC)  InP sy an stems com d sinc p‐lexity, on e si‐ch licon ip InP  (SOC)  photonic  plat form com s la p ha lexity, cks li aght  good  InP  source   platsform  and  aha mspl aif iers, good InP   ‐based platforms provide  SiN) Si N) [55] [5. Re 5]. gRe ard gaing rding  wa wa velevSin eN) le gtnh [5 g properties, t5] h .properties,  Regarding  Si/S  Si wa iO /Sv‐ iO an ele‐ dn an g InP d th InP  ‐properties, ba‐sba eds pl eda pl tf Si oart/S m foisrOm are ‐ san are  main d  InP main ly‐ba use lys euse dd  in pld anear  in tf onear r‐ms‐ are mainly used in near‐ higher associated loss higher eshigher  du assoc e to assoc  eliate ecitate dri closs adl  loss doping es du es edu  to from e  el toe  cel curren treicctarli cdoping ta inj l doping ection  from   which from  curren  curren  require t injt einj sction  the ection   incl which  which usio require n  require s the s the  incl incl usiu on si on  complementary complementary As InP metal is metal a dir ‐ox‐ma ide ect oxide turit ‐sem bandgap ‐sem yiconduc  ofi conduc silicon tor material,   tor photon (CMOS  (CMOS ma ics, )‐turit c it oas )‐mpat pr c oan ympat  esents of ind ible,  silicon iible, r eal ctthe lowi    ba al photon lowi ndga ng best  ng itp ics, s   available ma itin sas t tein e gra an ria te gra ind tl ion natiion tiv r gain to ect e  be  to ga ba  be irun ndga performance, n  isrun   difficult p  materia tol  realize nahowever tive  ga unider n is , difficult with  to realize under  a higher potential for volume scaling and integration [25]. Despite the high processing technology  maturity with chips comprising maturity wi up th  to chips  hundreds  comprising  of components.  up to hundreds  Silicon of‐ ba components. sed photonic Sili proce con‐ba sses se dare ph  otonic processes are  infrinfr ared ared  (NIR)  (NIR) , wh , wh ile ile sili si con liinfr con  nitride ared  nitride  (NIR)  can ca operate ,n wh  operate ile  from sili from con visib  nitride  visib le to le ca  NIR ton  NIR operate  [48] [4. 8] .from    visible to NIR [48].  of optical amplifiersof [5 optic of 5] .optic  Reg al am aard l am plif ingplif ier  sysier stems  [5s5] [5. ‐5] Reg on . ‐Reg ch ard ipaing  rd (SOC) ing  sy stems sy com stems ‐pon lexity, ‐‐on ch‐ip ch  InP (SOC) ip (SOC)  plat com form  com plexity,  ha plexity, s a  InP good  InP  plat   plat form form  ha sha as good  a good     this platform. The platform this fe pla atures tform. are The  in‐ between platform  InP feat ures and  ul are tra in‐low ‐between  loss Si InP N techno  and ul logies, tra‐low with  los s SiN technologies, with  in ain CMO  a CMO S fou S fou ndry ndry  wh wh ichic provides h provides   we  we ll‐controlled ll‐controlled  and and  more  more  rapi rapi d sc dal scab aliab lityil ito ty  the to the  fabrica  fabrica tionti on  complementary higher associated  metalcomplementary ‐oxide‐losses semiconduc  due metal tor to‐ox  (CMOS electrical idema ‐sem turit )‐cioconduc mpat ydoping  of siible, tor licon  (CMOS al fr photon lowi omng )‐curr c ics, it ompat s  as in ent t an eible, gra injection ind t ion al irlowi e ct to  ba be ngndga which   run its in p tma egra requir teria tion l na  es totiv be the e  run gainclusion in  is difficult to realize under  Ultra Ultra ‐low‐low  los slo Si ssN Si pNlan plar an liar Ultra ght  light w‐low aw vea  vcirc loes scirc uits  SiN uits  (P pLC) l an (PLC) ar wit  li ght wit h pw hrop  apvrag op e circ at agioat uits nio los n (P slos LC) below s below  wit 0. h1  p 0.dB r1op /dB m ag /hav at mio hav en  los e  s below 0.1 dB/m have  maturity with chips ma comprising ma turit turit y wi y  tup wi h chips t to h chips  hundreds  comprising  comprising  of components.  up  up to  hundreds to hundreds  Silicon  of  components. ‐of ba components. sed photonic  Sili  Scon proce ilicon ‐basses ‐sba eds  are epdh  otonic photonic  proce  proce ssessses  are are     some active detection elem some ents  ac but tiv no e de light tect so ionurce  elem soents lutions,  but  no and li ght med so iaurce l optic soalutions, l losses  and (am ime d InP dia and l optic   al losses (amid InP and  environment environment  [42] [4. 2] Never . Never thetles hesles , as s,  com as com ponents ponents  in  siinli si con licon  subs subs trate trate s ussua  usllua y llha y vha e v higher e higher  dimensions  dimensions     in a CMOS foundry in wh aic CMO h provides S foun dry wel l‐wh controlled ich thi provides s pla  and tform.   more wel lThe ‐ controlled rapi pla d tsc form al ab and  ife li at tmore yures  to the   rapi are fa d inbrica  ‐sc between altab ioinli ty InP  to  the and fa ulbrica tra‐low tion  loss SiN technologies, with  of optical amplifiers [55]. Regarding systems-on-chip (SOC) complexity, InP platform © © has a good © been been   demonstrated   demonstrated   by  by Un been Un ivers ivers  idemonstrated ty iof ty  Ca of liCa folirnia fo  by rnia ,  Sa Un , nt Sa ivers ant  Ba a irBa ty ba rrof baa  (UCS rCa a li(UCS foB) rnia  B) and ,  and Sa  Li nt oaLi n iBa oXnri X brease r arear se (UCS ch ar ch [5B) 8]  [5 ,and  8],   LioniX   research  [58],  complementary metal complementary ‐complementary oxide‐semiconduc  metal  metal tor‐ox (CMOS ‐ide oxide ‐sem‐sem )‐iconduc coimpat conduc tor ible, tor (CMOS  al (CMOS lowi)ng‐co) it‐mpat cso mpat intible, egra ible,  talion lowi  al to lowi ng be ng it run s  itins t eingra tegra tiontion  to  be to  be run run     than than  in  InP in InP  an dan sinc d sinc e sieli si con Si licon N) photonic  [5 photonic 5]. Resg la asrd ck laing  lickght  li wa ght  so veurce Si so leN) nurce gs [5 tand h5] s properties,  and .  Re amg apl am rd ifpl iers, ing if Si iers,  wa  /S InP iO vInP ‐e‐ based le an‐nbased dg tInP h platforms  properties, ‐ platforms based pl pra oSi t pr fvo/S irodm ivO ei sd‐  are an e  d main  InP‐ly ba use sedd pl inat near form‐s are mainly used in near‐ environment [42]. Never environment theless, as  [4 com 2]. p Never onents th einles some  sisli, con as ac com tiv  subs ep de onents trtate ectsi ous n in ua e si lem llliycon  ents ha vsubs  ebut  higher tr no ate lis ght dimensions  usua  sollurce y ha so v elutions,  higher  and dimensions  medial  optical losses (amid InP and  orders orders   of  magnitude of  magnitude  lowe  lowe orders r  than r  than   of ot h magnitude ot erh reported er reported  lowe   pla  pl trf oathan rtm fosrm .  ot As s.h  As ear  re reported as  re ulst,u  high lt,  pl high ‐ape tfo‐rpe rfomrrsma fo. rAs ma nc ean  cpa re e sspa suilvst,es i high ve  ‐performance  passive  maturity with chips comprising up to hundreds of components. Silicon-based photonic processes in a CMOS foundryin wh  ain CMO ic ah CMO  provides S fou S fou ndry   we ndry  lwh l‐controlled  wh ichic provides h provides  and  we  more   we ll‐controlled l lrapi ‐controlled d sc aland ab and i limore ty  more to  rapi the rapi  dfa brica sc dal scab taliioab ln it yil ito ty  the to the  fabrica  fabrica tionti on  a hiag hi hegrh pot er pot enteiantl ia for l  for volume  infr volume ared  scaling   sc (NIR) aling  and ,  wh and  inile tegr  in sitegr liacon tinfr ioant io nitride ared  [2n5] [2 .(NIR)  5] Despite  ca . Despite n ,operate  wh the ile the   si high  from li con high  pr  visib nitride  ocessin processin le  to ca g  NIR ntech  goperate  tech  nology [48]nology .  from     visible to NIR [48].  than in InP and since than silicon in  photonic InP and sinc s lack e si lilight con so Si photonic urce N) [5s 5] and .s Re la agck mapl rd light ifing iers,   so wa urce InP vele‐sbased  nand gth  a properties, platforms mplifiers,  pr InP Sio/Sv‐ibased iO de‐  an dplatforms  InP‐base d pr pl ovaitdfoer ms are mainly used in near‐ components components  are are  en abled enabled  bycomponents   by thi sthi pla s pla tform, t form, are thou  en thou abled gh gh electr  by electr  thi ical s ical pla  pump  tpump form,  for  thou  for ga iga ngh is in  electr una  is una vical aivlaai bl pump laebl due e  due for  to   ga th toe ith n   is e  unavailable due to the  environment [42]. Never environment environment theless, as [4 com 2] [4. 2] Never p. onents Never thet les in he ssi les , lias scon ,  com as  subs com ponents tr ponents ates  in us  si ua inli llsi con yli ha con  subs v esubs  higher trate trate s  us dimensions sua  usllua y llha y vha e  v higher e higher  dimensions  dimensions     mama turit turit y ar of ey  si of complementary licon  silicon  photon  photon ics,ics,  as Ultra   an as metal-oxide-semiconductor   ‐an ind low ind ir eloct isr seba ct Si ndga ba N ndga plp an ma ar pUltra   ma tlieght ria te‐lria w low  na alv tiv na  elo circ etiv s sga (CMOS)-compatible,  eSi uits  iga n N is i pn(P ldifficult  an isLC)  difficult ar  wit light  to h w  p realize toarop v realize e ag circ  at unuits io allowing  der un n  der los  (PLC) s  below  wit itsh 0. integration p1r op dBag /mat hav ion elos   to s below be  0.1 dB/m have  infrared (NIR), while silicon nitride can operate from visible to NIR [48].  a higher potential fora  volume higher  pot scaling entia and l for  in volume tegratio scnaling  [25].  and Despite  integr  the at io high n [2 pr 5]ocessin . Despite g  tech the nology high pr ocessing technology  insu insu latilng ati ng nat  nat ureu  rofe   of SiN/Si   SiN/Si insu O  glas O la tiglas ng s  WG  snat   WG su r[e55] s  of [55] .  Howe Si. N/Si Howe ver, O ver, glas   the sthe   de WG  mo des mo ns [55] tns ra. ttiHowe roanti oof n  ver, of optic   optic the al  gai ade l mo gai n  usin ns n  tusin rga tiogn   of  optical  gain  using  © © than in InP and sincethan  sithan licon  in  InP  in photonic  InP  an dan sinc ds  la sinc eck sie lili si con ght licon   photonic source  photonic s and s las ck a la m lick pl ght ifliiers, ght  source  so InP urce s‐ based and s and  am platforms  aplmifpl iers, ifiers,  InP  pr InP o‐based vid‐based e   platforms  platforms  pro pr viodvei de  been  demonstrated  by  Un been ivers  demonstrated ity  of  California   by , Un Sant ivers a  Ba ityrb  of ar aCa  (UCS lifornia B) and ,  Sa nt Liao nBa iXrb are rase  (UCS arch B) [5 8] and ,    LioniX   research  [58],  thisthi pla s pla tform. tform.  The The  pla pla tform tform  feat feures atures  are are  in‐ between in‐between  InP InP  and and  ultra  ul‐tra low‐low  los slos SisN Si techno N techno logies, logies,  with  with     maturit run y of in silicon a CMOS  photon maturit foundry ics,y as of  an silicon  ind which i rphoton ect ba pndga rics, ovides  as p  ma an Ultra  tind well-contr eria‐low irl ena ct lo tiv ba ssendga   Si ga olled Nin pp is ma lan difficult and tar eria  light lmor  na to wtiv arealize evee rapid  ga circ in un  uits is scalability der difficult  (P LC)  wit to realize h to prop the  un agat der fabrication io n loss below 0.1 dB/m have  erbium erbium ‐dope ‐dope d WG d WG  distrib  distrib erbium uteudte Br d‐ ag dope Brgag rg d eflec   rWG eflec tor distrib  tor (D BR (Du)BR te and )d  and Br distrib ag distrib g ru eflec teudte tor feedb d  feedb (DBR ack)a  c(DFB) and k (DFB)  distrib  laser  lau ser  arrays te darrays  feedb    ack (DFB) laser arrays  a higher potential for a  hi volume ag hi hegrh pot e rsc pot ealing nteiantl  ia and for l  for volume  in tegr volume a tsc ioaling n sc [2 aling 5] and . Despite  and  integr  in tegr the atio ahigh ntio [2n5]  pr [2. 5] ocessin Despite . Despite g the  tech  the  high nology  high  pr ocessin  processin g tech g tech nology nology     some some  activ  acetiv dee tde ecttieoctni oelnem  eorders lem entsents  but   of but   no magnitude   no light light  source  so lowe urce  so orders rlutions,   so than lutions,   of  ot  and magnitude he and r  me reported  me diadl  ioptic lowe al  pl optic aart lf than losses oarlm losses  sot .  (am As he (am r  iadreported   re InP ids uInP  land t,  high and   pla t‐fpe orrm fosr.ma  Asn cae  re  pa suslsti,v  high e  ‐performance  passive  this platform. The plathi tform s pla fe tform. atures The  are pla  in‐tbetween formbeen  feat InP ures   demonstrated  and  are  ul intra ‐between ‐low   by  los Un InP sivers  Si and Ni ty techno   uloftra  Ca‐logies, low lifo rnia los with s,  Si SaN  nt techno a  Barblogies, ara  (UCS  with B)  and  LioniX   research  [58],  environment [42]. Nevertheless, as components in silicon substrates usually have higher dimensions maturity of silicon photon mama turit turit ics, y of as y  si of an licon  si ind licon  photon ire ct photon  baics, ndga ics,  asp  an as ma  an ind te ria ind irelct ina r eba ct tiv ndga ba e ga ndga p in ma  is p  difficult ma teria telria nal  tiv to na realize etiv gae iga n  is iun n difficult  is der difficult    to  realize to realize  un der under     SiN) Si N) [55] [5. Re 5]. gRe ard gaing rding  wa wa vecomponents levn ele gtnhg properties, th properties,  are en Si abled /S SiiO /S ‐ components by iO an ‐ thi dan InP sd pla  InP ‐ba tform, ‐s ba eare ds pl e en dthou a pl tabled foartgh m fosr  by electr m are s thi  are  main ical s  main pla ly pump t form, use ly use d for   in thou d near   in ga gh near in‐  is electr  ‐unaical vaila pump ble due  for to ga thine  is unavailable due to the  some active detectionsome  elem ents activ but e de no tect liight on  eso lem urce ents orders  so but lutions,   no of  magnitude li and ght  so me urce dia lowe  lso optic lutions, r athan l losses  and   oth  (am me er d reported id ia lInP  optic  and apl l  losses atform (am s. As id  InP a  re and sult ,  high‐performance  passive  Appl. Appl.  Sci.  Sci. 2020 2020 , 10,,  x; 10 doi: , x; doi:     Appl. Sci. 2020, 10, x; doi:  www.mdpi.com/ www.mdpi.com/ journal/applsci journal/applsci   www.mdpi.com/   journal/applsci  than in InP and since silicon photonics lack light sources and amplifiers, InP-based platforms provide this platform. The pla thitsthi form  pla s pla t form. fetat form. ures  The  The are  pla  in pla tform ‐between tform  feat feures  at InP ures   are and are  in ul‐ between in tra‐between ‐low los  InP s InP   Si and N and   techno ultra  ul‐tra low logies, ‐low  los  slos with  SisN Si  techno N techno logies, logies,  with  with     infrinfr ared ared  (NIR)  (NIR) , wh , wh ile ile sili si con insu licon  nitride la tnitride ing  ca nat n ca uoperate rne  operate of  Si from N/Si insu  from  O visib l aglas  visib ting les  to lnat WG e  NIR tou srNIR  e [[4 55] of8] [4 ..Si  8] Howe N/Si .  Over,   glas  the s  WG   demo s  [55] nst.r aHowe tion  of ver,   optic   thea lde  gai mo n ns usin tratgi on  of  optical  gain  using  SiN) [55]. Regarding wa SiN) ve le [5n5]g.t Re h properties, garding wa Siv/S eleiO ncomponents g‐ tan h d properties,  InP‐ba are sed  Si en  pl/Sabled aitO fo‐ ran m by sd are   InP thi main s‐ ba pla setly d form,   pl use atd fthou o in rm near sgh are ‐electr  mainical ly  use pump d in  for near ga‐ in is unavailable due to the  some active detectiosome n esome lem acents tiv  acetiv  but  dee t de no ectt ielioct ght ni oe lnso em  eurce lem entsents  so but lutions,  but  no  no light   and light  so me urce  sodurce i aso l optic lutions,  solutions, al losses  and and  me  (am  me diiaddl  ioptic InP al optic  and al losses a  l losses  (am (am id InP id InP  and and     Ultra a Ultra higher ‐low‐low  los slo potential  Si ssN Si pNerbium lan plar an for liarght ‐dope  light volume wadw v eWG a vcirc e  circ uits distrib scaling uits  (P erbium LC) u (P teLC) d and  wit  Br‐dope  wit h ag integration pghr dop  rp eWG rflec ag opat ag tor  distrib ioat n(D io los nBR [ 25 uslos te )below  ]. sd and   below Br Despite  ag distrib  0.g1   0.dB re1flec  u/dB m te the  d tor /hav m feedb   high hav (D e  BR ea c)pr k and  (DFB) ocessing  distrib  laser ute technolog arrays d feedb   ack y(DFB) laser arrays  insulating  nature  of  SiN/SiO  glass  WGs  [55].  However,  the  demonstration  of  optical  gain  using  infrared (NIR), while infr silicon ared nitride  (NIR) ,ca wh n ile operate  silicon from  nitride  visib calen  to operate  NIR [4 from 8].   visible to NIR [48].  SiN) [55]. RegardingSi wa N) Siv N) [5 ele5] [5 n.g Re 5]th. g Re properties, ard gaing rding  wa wa v Siele /S vn eiO le gt‐ nhan g properties, th d  properties, InP‐ba©se Si d © /S pl SiiaO /S tf‐ ioO an rm‐ dan s InP  are d InP ‐ ba main ‐sba edly s pl e duse a pl tfodart in m fo srnear m are s are  ‐main  main ly use ly use d ind near  in near ‐ ‐ been been   demonstrated   demonstrated   by  by Un  Un ivers ivers ity iof ty  Ca of liCa folirnia fornia ,  Sa, nt Saant  Ba a rBa barrbaa  (UCS ra  (UCS B) B) and and   Li oLi nioXni Xrese  rearsech ar ch [58]  [5, 8],  Ultra maturity ‐low losof s Sisilicon N plUltra anarphotonics,  ‐lilow ght w loasvse Si circ N as puits lan anerbium  ar (P indir  LC) light ‐wit ect w dope ahv bandgap epd rcirc  op WG ag uits at distrib  io (Pn material LC)  los u te swit  d below  hBr pag native rop  0. g 1ag r edB flec atio /gain m tor n  hav los  (D is se BR below   di )  and cult 0. 1distrib  dB to/m ru ealize hav ted efeedb   under ack (DFB) laser arrays  infr Appl. ared Sci. (NIR)  2020, ,10 wh , x;ile  doi: infr  si infr liared con ared Appl.   (NIR) nitride  (NIR)  Sci.,  2020 wh  ca, nwh ile ,  10 operate  ile si , x;li  doi: si con licon    from nitride  nitride  visib  can lca e operate  to n  operate NIR  [4 from 8] from .  visib  visib www.mdpi.com/ le to le  NIR to NIR  [48] j[4 ournal/applsci . 8].  www.mdpi.com/   journal/applsci  orders orders   of  magnitude of  magnitude  lowe  lowe r  than r  than   oth  ot erh reported er reported   pla  pl tfoartm fosrm . As s.  As a  re as  re ulst,u  high lt,  high ‐pe‐rpe forrma forma ncen cpa e spa sivsesi ve  © © been  demonstrated  by been   Un  demonstrated iversity  of  Ca liby fo rnia Univers ,  Santity a  Ba of rCa barliaf o(UCS rnia, B) Sa and nta  Ba LirobnairXa  (UCS resear B)ch and   [58]  Li ,  oniX   research  [58],  this platform. The platform features are in-between InP and ultra-low loss SiN technologies, with Ultra‐low loss SiN pUltra lanUltra ar‐ low light ‐low  lows aslov Si ses N circ Si pNluits an plar an (P liar LC) ght  light  w wit aw vhea  p vcirc erop  circ uits aguits at (PioLC)  n (P los LC)  wit s  below wit h phrop  p r0.ag op 1 at ag dB ioat /nm io los  n hav  slos below es  below  0.1  0.dB 1 /dB m /hav m hav e  e  components components  are are  en abled enabled  by  by thi sthi pla s pla tform, tform,  thou  thou gh gh electr  electr icalical  pump  pump  for  for ga iga n is in una  is una vaivlaaibllaebl due e due  to  th toe th  e  Appl. Sci. 2020, 10, x; doi:  www.mdpi.com/journal/applsci  orders  of  magnitudeorders  lower  of than   magnitude   other reported  lower   pl than atf oot rm hes.r  As reported  a  resu lpl t, ahigh tform‐pe s. rAs for ma a  re nscu e ltpa ,  high ssive‐ performance  passive  © © © some activebeen detection   demonstrated elements  been bybeen   Un   demonstrated but ivers   demonstrated no ity light of  Ca  by lisour f  oby Un rnia   Un ivers ce , ivers Sa solutions, int tya iof tyBa  Ca of rb aliCa rfaoli and rnia (UCS fornia ,  Sa medial B) , nt Sa and ant  Ba a  Li rBa optical boanrrbiaXa  (UCS ra  re  (UCS se losses B) ar ch B) and  [5 and  (amid 8] Li, o Li nioXni InP Xrese  rearsech ar ch [58]  [5, 8],  insu insu latilng ati ng nat  nat ureu  rofe   of SiN/Si   SiN/Si O  glas O  glas s  WG s  WG s  [55] s  [55] .  Howe .  Howe ver,ver,   the  the   de mo demo nstns rattiroanti oof n   of optic   optic al  gai al  gai n  usin n  usin g  g  components are enabled components  by this pla  are tform,  enabled  thou by gh thi  electr s plaical tform,  pump  thou  for gh ga electr in is ical una pump vailabl for e due  ga ito n  isth una e  vailable due to the  orders  of  magnitude orders  lowe orders  rof  than   magnitude of  magnitude   other reported  lowe  lowe r  than  rpl  than at fot orh m ot ersh .reported  eAs r reported  a  res u pllta ,pl t fhigh oartm fo‐srpe m . As sr.f o As rama   re an s  re ucelst ,upa   high lt,s shigh iv‐pe e ‐rpe forrma forma ncen cpa e spa sivsesi ve  erbium erbium ‐and dope ‐dope d SiN)  WG d WG  [distrib 55 distrib ]. Regar uteudte Br d ding  ag Brgag rwavelength geflec  reflec tor tor (D BR (D)BR pr and ) operties, and  distrib  distrib uteSi udte /feedb SiO- d feedb aand cka c(DFB) k InP-based (DFB)  laser  laser  arrays  arrays platforms     are mainly used in insulating  nature  of insu SiN/Si latO ing  glas   natsu  WG re  ofs  [Si 55] N/Si .  Howe O  glas ver, s  WG   thes  de [55] mo. ns Howe tratiover, n  of  the   optic   demo al  gai nstnra  usin tion gof    optical  gain  using  components are enabled components components  by this  pla are are t en form,  abled enabled  thou  bygh   by thi  electr sthi pla s pla tical form, tform,  pump  thou  thou  for gh  gh ga electr  ielectr n isical  una ical  pump v ai pump la bl for e   for due ga iga n to is in  th una  ise  una vaivlaaibllaebl due e due  to  th toe th  e  erbium‐doped WG distrib erbium ute‐dope d Brdag WG g re flec distrib tor u(D teBR d Br ) and agg  distrib reflector ute (D d BR feedb ) and ack  distrib (DFB) ula teser d feedb  arrays ac k (DFB) laser arrays  near-infrared (NIR), while silicon nitride can operate from visible to NIR [48]. Appl. Appl.  Sci.  Sci. 2020 2020 , 10,,  x; 10 doi: , x; doi:    insulating  nature  ofinsu   Siinsu N/Si latilng aOt i ng glas nat  nat usr eWG u  rofe  sof Si  [55] N/Si   SiN/Si .  O Howe   glas Owww.mdpi.com/   glas ver, swww.mdpi.com/   WG s  the WG s  [de 55] s  [mo journal/applsci 55] .  Howe jns ournal/applsci .  Howe tratver, ionver,     of the    optic the   de mo de almo  ns gai tns rn att irusin oanti oof gn    of optic   optic al  gai al  gai n  usin n  usin g  g  Ultra-low loss SiN planar lightwave circuits (PLC) with propagation loss below 0.1 dB/m have erbium‐doped WG erbium distrib erbium u‐dope ted‐dope  Br d ag WG dg  WG r edistrib flec  distrib toru te (DudBR te Br d)  ag Br and gag r gedistrib flec  reflec toru tor te (Dd BR (D  feedb )BR and ) aand c kdistrib  (DFB)  distrib u telaudser te feedb d  arrays feedb acka  c(DFB) k (DFB)  laser  laser  arrays  arrays     Appl. Sci. 2020, 10, x; doi:  Appl. Sci. 2020, 10, x; doi:  www.mdpi.com/journal/applsci www.mdpi.com/   journal/applsci  been demonstrated by University of California, Santa Barbara (UCSB) and LioniX research [58], orders Appl. Sci. 2020, 10, x; doi: Appl. Appl.  Sci.  Sci. 2020 2020 , 10,,  x; 10 doi: , x; doi:     www.mdpi.com/journal/applsci www.mdpi.com/ www.mdpi.com/   journal/applsci journal/applsci     of magnitude lower than other reported platforms. As a result, high-performance passive components are enabled by this platform, though electrical pump for gain is unavailable due to the insulating nature of SiN/SiO glass WGs [55]. However, the demonstration of optical gain using erbium-doped WG distributed Bragg reflector (DBR) and distributed feedback (DFB) laser arrays integrated within ultra-low loss SiN [59] shows potential for the platform’s active component integration. Silicon is Appl. Sci. 2020, 10, 4024 5 of 19 among the most mature photonic integrated platforms, leveraging from existing technologies like silicon electronics and micro electro-mechanical systems (MEMS) industries and enabling foundry services robustness and product commercialization. InP platforms can be seen as one of the options that stem out from the alternatives since it integrates monolithically high-quality lasers, receivers, amplifiers, and passives [33,35,60]. Si and SiN are more prone to be used for passive and filtering components, with the need to recur to hybrid packaging [61] when incorporating lasing and gain. Some of the available foundries/players under the InP, Si, and SiN integrated technologies are described below: i. InP: Fraunhofer Heinrich-Hertz-Institut–Fraunhofer HHI (Berlin, Germany); Smart Photonics (Eindhoven, The Netherlands); Global Communication Semiconductors, LLC (Torrance, CA, USA); and fabless solution providers, e.g., the INTENGENT III/V Photonics Company (Ontario, Canada), VLC Photonics (Valencia, Spain), Bright Photonics (Eindhoven, The Netherlands), and PICadvanced (Aveiro, Portugal); ii. Si: Acacia Communications, Inc. (Maynard, MA, USA); Luxtera Inc. (Carlsbad, CA, USA); Intel Corporation (Mountain View, CA, USA); Cisco Systems Inc. (San José, CA, USA); Mellanox Technologies (Sunnyvale, CA, Israel/USA); Finisar Corporation (Sunnyvale, CA, USA); Hamamatsu Photonics K.K. (Shimokanzo, Iwata City, Japan); International Business Machines Corporation (IBM, Armonk, NY, USA); GlobalFoundries Inc. (Santa Clara, CA, USA); NeoPhotonics Corporation (San José, CA, USA); Oclaro Inc. (San José, CA, USA); CompoundTek (Singapore); and the American Institute for Manufacturing Integrated Photonics (AIM Photonics, Albany, NY, USA); iii. SiN: Ligentec (Ecublens, Switzerland); Lionix (Enschede, Netherlands); Institute of Microelectronics of Barcelona IBM-CNM, “Silicon Nitride Technology,” (Barcelona, Spain). Furthermore, several reference institutions with state-of-the-art research in integrated photonics contributed to the technology developments, namely the University of California, Santa Barbara (UCSB) with the available California NanoSystems Institute (CNSI) Nanostructure Cleanroom Facility (NCF); the Kavli Nanoscience Institute (KNI) laboratory at the California Institute of Technology (Caltech), the Fraunhofer Heinrich-Hertz-Institut (HHI); the ePIXfab, INTEC department–Photonics Research Group at Ghent University; the Nanophotonics Technology Center (NTC) at the Universitat Politècnica de València (UPV); etc. Beyond the generic availability of design/fabrication, it is necessary to further develop and invest in packaging technologies to reach simpler, standardized, and ecient approaches, thus making it accessible for users and/or companies. Currently, the technology-associated limitations are mainly related to the lack of general design rules that ease the encapsulation and allow successful testing of the manufactured photonic chips [6]. This last integration step (packaging) is imperative for labs and companies that are trying to enter/grow in the integrated photonic technology and market. A consortium model aiming to establish PIC packaging processes under European commission Horizon 2020 funding is currently being conducted [62] to facilitate the development of this PIC technologic branch through the development of standard technologies to provide access to a ordable, mature, and scalable packaging solutions [63]. 3. Passive Optical Networks From the 80s onwards, PONs [64] have evolved greatly with the simplification of network management, pushing network trac multiplexing closer to the user with the minimization of stranded capacity [65]. Since then, PON architecture remained one of the most predominant access network options. PONs have been under mass deployment, with more than 900 million broadband subscribers reported in 2017 [66]. This infrastructure has subsidized PONs establishment relevance for a long time [65]. PON basic technology includes: (i) the equipment at the edge of Metro/Access, i.e., the optical line terminal (OLT); (ii) the user end terminal, i.e., the optical networks unit (ONU); and (iii) the optical Appl. Sci. 2020, 10, x 6 of 19 Appl. Sci. 2020, 10, 4024 6 of 19 i.e., the optical line terminal (OLT); (ii) the user end terminal, i.e., the optical networks unit (ONU); distribution and (iii) the opti network cal distri (ODN) butithat on network ( connectsO the DN) tha OLT to t connects the the ONUs (see OLT to the ONUs (see optica optical access network branch l access in Figur network bran e 1). ch in Figure 1). PON PON emer emerg ginging technic technical ra equir l reements quiremen arets ar verye ver unique, y un being ique, being the the surviving solutions surviving particularly solutions sensitive particulato rly price sensit and ive t related o price and re costs, both lated capital costs, bot expense h capit (CAPEX) al expen and se (CAPEX operating ) and expense operat (OPEX) ing expense [67]. Nevertheless, (OPEX) [67]. Neverthele PON posesss, several PON pose advantages, s severasuch l advant as the agesimplification s, such as the s of impli infrastr ficat uctur ion oe f infr management, astructure as mana it isgement based ,on as it a fully is base passive d on a ODN fully p [65 ass ].ive OD A completely N [65]. A complet passive ODN ely pamade ssive O ofDburied N made o glass f buried with glass with cabinets to ensure connections and splitting anticipates long-term expectation of 20 years cabinets to ensure connections and splitting anticipates long-term expectation of 20 years or even mor or even more e. Its architectur . Its architect e derives ure der from ives thefr technical om the te appr chnica oach l approa to be deployed ch to be deployed a at the PON t the PON ends. ends. Several Several technologies are competing to be implemented in the access space, with the most common technologies are competing to be implemented in the access space, with the most common based on based a passive on a passive splitter splitter tree topology tree topology . The OL . The OLT T (interface (interface from the from operator the operator side) feeds side) one feedtr s one unk trun fiber k fiber that splits into several arms, each arm is divided into another set of arms, and so on, generating that splits into several arms, each arm is divided into another set of arms, and so on, generating a tr a tree ee strstructure, wh ucture, which, ich, d depending epending on on the the technolog technology,ycan , can range from low range from low (8 (8 to to 16) 16) to hi to high gh (64 (64 to to 256) 256) terminal counts. terminal counts. Optical Optical access access stan standar dardization dization h hasas ev evolved olved r rapidly apidly, w , with ith IE IEEE EE 802.3 802.3 and and International International Telecommunication Union - Telecommunication Standardization Sector (ITU-T) Q2 groups playing Telecommunication Union - Telecommunication Standardization Sector (ITU-T) Q2 groups playing dominant rdominant ro oles in the prles in ocess the proc [68]. Theess most [68]. The common most co technologies mmon tar echnologi e Gbit-capable es are G PON bit-c (GPON) apable PON and Ethernet (GPON) and Ethernet PON (EPON) [69], typically supporting up to 64 users in the same OLT trunk fiber. At PON (EPON) [69], typically supporting up to 64 users in the same OLT trunk fiber. At the end users the end users lays an ONU (the user terminal for the fiber). For each end technology, a different ONU lays an ONU (the user terminal for the fiber). For each end technology, a di erent ONU is typically is typically required. Currently, it is very common to have combined interfaces that allow multiple required. Currently, it is very common to have combined interfaces that allow multiple technologies to technologies to be handled within the same device, the so-called “combo” solutions [70]. Figure 2 be handled within the same device, the so-called “combo” solutions [70]. Figure 2 illustrates some of illustrates some of the main existing characteristics of the ITU-T related technologies. the main existing characteristics of the ITU-T related technologies. Figure 2. Recent International Telecommunication Union-Telecommunication Standardization Sector (ITU-T) Figure 2. Recent International Telecommunication Union-Telecommunication Standardization Sector (ITU- based optical technologies standards evolution. T) based optical technologies standards evolution. Some operators are engaging in the 10 G-capable symmetric PON (XGSPON) and 10 G-capable Some operators are engaging in the 10 G-capable symmetric PON (XGSPON) and 10 G-capable EPON (10GEPON). Moreover, a number of more aggressive and disrupting operators are investing in EPON (10GEPON). Moreover, a number of more aggressive and disrupting operators are investing deploying NGPON2, merging the traditional concepts of time-multiplexed single-channel per direction in deploying NGPON2, merging the traditional concepts of time-multiplexed single-channel per PON combined with wavelength division multiplexing (WDM) [71]. This approach allows for further direction PON combined with wavelength division multiplexing (WDM) [71]. This approach allows developing network flexibility concepts and the smooth evolution of o ered data rates [70], i.e., up to for further developing network flexibility concepts and the smooth evolution of offered data rates 40 or 80 Gbit/s aggregated rates. An example of a PON with coexisting technologies supported by the [70], i.e., up to 40 or 80 Gbit/s aggregated rates. An example of a PON with coexisting technologies current ITU-T standard series [71] is depicted in Figure 3. supported by the current ITU-T standard series [71] is depicted in Figure 3. Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 7 of 19 Appl. Sci. 2020, 10, x 7 of 19 Figure 3. Diagram describing a PON architecture with three coexisting technologies. Figure 3. Diagram describing a PON architecture with three coexisting technologies. New trends are emerging and triggering discussions in the fora, mostly focused on either an New trends are emerging and triggering discussions in the fora, mostly focused on either an architecture innovation, like the Super-PON, which is on the standardization path in IEEE and ITU-T, architecture innovation, like the Super-PON, which is on the standardization path in IEEE and ITU-T, or on the e orts to move to high-speed PON (HSP) towards higher data rate technologies, such as or on the efforts to move to high-speed PON (HSP) towards higher data rate technologies, such as 25 25 Gbit/s and 50 Gbit/s [72]. Gbit/s and 50 Gbit/s [72]. Current low-cost laser and receiver technologies face some challenges to deliver higher data rates Current low-cost laser and receiver technologies face some challenges to deliver higher data without increasing packaging or electronic costs. Namely, the current methods used for interconnecting rates without increasing packaging or electronic costs. Namely, the current methods used for devices with drivers and boards are typically based on wire bonding and flex printed circuit board interconnecting devices with drivers and boards are typically based on wire bonding and flex printed (f-PCB). The latter has limited high-frequency performance and tough mechanical design challenges to circuit board (f-PCB). The latter has limited high-frequency performance and tough mechanical meet the right soldering robustness, with an expected high impact on the electrical performance of design challenges to meet the right soldering robustness, with an expected high impact on the assemblies and sub-assemblies. electrical performance of assemblies and sub-assemblies. Among PON future technologies, high interest has been given to the research/development Among PON future technologies, high interest has been given to the research/development of of long-reach/high-speed transmission, where optical amplifiers, electrical domain digital signal long-reach/high-speed transmission, where optical amplifiers, electrical domain digital signal processing (DSP) to enhance the link budget, and/or transceiver technology are predicted to be key processing (DSP) to enhance the link budget, and/or transceiver technology are predicted to be key factors [73]. Generically, for N subscribers, a PON requires a single transceiver at the central oce, factors [73]. Generically, for N subscribers, a PON requires a single transceiver at the central office, which results in a total of N + 1 transceivers overall [67]. For NGPON2, the OLT transceiver should which results in a total of N + 1 transceivers overall [67]. For NGPON2, the OLT transceiver should contain four transmitters (Tx) and four receivers (Rx) with an internal wavelength mux/demux optical contain four transmitters (Tx) and four receivers (Rx) with an internal wavelength mux/demux module. In the ONU, a 10 Gbps transceiver with both tunable Tx and Rx is required [70]. By employing optical module. In the ONU, a 10 Gbps transceiver with both tunable Tx and Rx is required [70]. By wavelength-selective branching devices in ODN, losses can be diminished, nevertheless at the cost of employing wavelength-selective branching devices in ODN, losses can be diminished, nevertheless wavelength transparency waiving. Furthermore, by increasing the number of wavelengths, a high at the cost of wavelength transparency waiving. Furthermore, by increasing the number of number of transceivers at the OLT is expected, raising power consumption, port density, and cost [73]. wavelengths, a high number of transceivers at the OLT is expected, raising power consumption, port Similar to what happened with integrated circuits’ contribution to electronics development, PIC density, and cost [73]. Similar to what happened with integrated circuits’ contribution to electronics technology is one of the most attractive solutions to tackle the referred issues. Thus, integrated development, PIC technology is one of the most attractive solutions to tackle the referred issues. Thus, photonics can have a key role in the deployment of more flexible PON networks, as they can integrated photonics can have a key role in the deployment of more flexible PON networks, as they incorporate di erent optical components with various functions in a potentially cost-e ective way can incorporate different optical components with various functions in a potentially cost-effective without increasing the assembly process complexity [7,8]. way without increasing the assembly process complexity [7,8]. 4. PIC for Next-Generation PON 4. PIC for Next-Generation PON Photonic integration can provide advantageous solutions to PON by limiting the number of Photonic integration can provide advantageous solutions to PON by limiting the number of optical and electrical interconnections and thus overcoming some of the bulk packaging restrictions, optical and electrical interconnections and thus overcoming some of the bulk packaging restrictions, such as bandwidth, power dissipation, and cost [65,74]. Nevertheless, complexities can arise with such as bandwidth, power dissipation, and cost [65,74]. Nevertheless, complexities can arise with the the use of this technology, namely fiber interfacing diculties, number of electrical connections, use of this technology, namely fiber interfacing difficulties, number of electrical connections, and and possible high-density of components per device, which demands a high power dissipation possible high-density of components per device, which demands a high power dissipation Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 8 of 19 Appl. Sci. 2020, 10, x 8 of 19 management [70]. The development of PIC solutions for access networks has already been reported, management [70]. The development of PIC solutions for access networks has already been reported, e.g., with an InP monolithic transceiver PIC for NGPON2 applications [75], the proposed layout e.g., with an InP monolithic transceiver PIC for NGPON2 applications [75], the proposed layout has has the potential to be implemented as an OLT and with filter redesigning as an ONU. A photonic the potential to be implemented as an OLT and with filter redesigning as an ONU. A photonic integrated apparatus for tunable multi-wavelength transmission was patented in 2017 [76], the time and integrated apparatus for tunable multi-wavelength transmission was patented in 2017 [76], the time wavelength division multiplexing (TWDM)-PON transmitter system proposed is tailored to support and wavelength division multiplexing (TWDM)-PON transmitter system proposed is tailored to current and next-generation access technologies. Monolithically integrated dual electro-absorption support current and next-generation access technologies. Monolithically integrated dual electro- modulated laser (DEML) solutions with application in PON and claims of small footprint and low-cost absorption modulated laser (DEML) solutions with application in PON and claims of small footprint external-modulator-free Tx can likewise be found in the literature [46]. More recently, a theoretical and low-cost external-modulator-free Tx can likewise be found in the literature [46]. More recently, analysis of polarization-independent receiver (PI-Rx) based in a 3  3 symmetric coupler with a theoretical analysis of polarization-independent receiver (PI-Rx) based in a 3 × 3 symmetric coupler applications for access networks was reported [77]. An example of a BOSA transceiver solution with applications for access networks was reported [77]. An example of a BOSA transceiver solution implemented in ONU side of a PON with a representation of a 10 Gbit small form-factor pluggable implemented in ONU side of a PON with a representation of a 10 Gbit small form-factor pluggable (XFP) evolution from discrete optical component to PIC technology is depicted in Figure 4. (XFP) evolution from discrete optical component to PIC technology is depicted in Figure 4. Figure 4. Diagram describing the evolution of photonic integrated circuits (PIC) for PON, specifically Figure 4. Diagram describing the evolution of photonic integrated circuits (PIC) for PON, specifically the implementation of a bi-directional optical sub assembly (BOSA) transceiver solution in PON the implementation of a bi-directional optical sub assembly (BOSA) transceiver solution in PON ONU ONU side, i.e., XFP with discrete optical component packaging (current PON products) and with PIC side, i.e., XFP with discrete optical component packaging (current PON products) and with PIC approach technology (next-generation products). approach technology (next-generation products). Several steps and guidelines for PIC implementation in PON are addressed in this section, along Several steps and guidelines for PIC implementation in PON are addressed in this section, along with the technology impact on reach (Section 4.1); the adopted band and wavelength selection criteria with the technology impact on reach (Section 4.1); the adopted band and wavelength selection criteria (Section 4.2); the integrated photonics packaging (Section 4.3); and the issues related with the control (Section 4.2); the integrated photonics packaging (Section 4.3); and the issues related with the control of complexity, power dissipation, and form factor (Section 4.4). of complexity, power dissipation, and form factor (Section 4.4). 4.1. Technology and Impact on Reach 4.1. Technology and Impact on Reach A major requirement for future PON technologies is the need for coexistence with current deployed A major requirement for future PON technologies is the need for coexistence with current PON systems [65,70]. For example, GEPON has already been deployed on a scale of millions, thus deployed PON systems [65,70]. For example, GEPON has already been deployed on a scale of any new PON technology must be capable of coexisting with this large base [65]. A PON framework millions, thus any new PON technology must be capable of coexisting with this large base [65]. A of three coexisting technologies, i.e., GPON, XGSPON, and NGPON2, is depicted in Figure 3 from PON framework of three coexisting technologies, i.e., GPON, XGSPON, and NGPON2, is depicted Section 3. Here, the same ODN conveys several technologies allowing the migration and evolution of in Figure 3 from Section 3. Here, the same ODN conveys several technologies allowing the migration the network without forcing clients to shift technology. This approach leads to reduced CAPEX and and evolution of the network without forcing clients to shift technology. This approach leads to supports pay-as-you-go approaches since it allows keeping using the legacy operating technologies reduced CAPEX and supports pay-as-you-go approaches since it allows keeping using the legacy untouched, opening an evolution path for other technologies to follow [7]. operating technologies untouched, opening an evolution path for other technologies to follow [7]. The longer the required reach, the more dicult it gets to find the laser technology able to support The longer the required reach, the more difficult it gets to find the laser technology able to the demanded distance. As an example, for a 10 Gbit/s with a short-reach like 10 km, almost all support the demanded distance. As an example, for a 10 Gbit/s with a short-reach like 10 km, almost standard laser technologies can be used. If addressing the 2.5 Gbit/s market, a medium-reach like all standard laser technologies can be used. If addressing the 2.5 Gbit/s market, a medium-reach like 40 km and further are still not a major limiting factor to the laser choice. However, if requiring a 40 km and further are still not a major limiting factor to the laser choice. However, if requiring a common GPON ODN which ranges 20 km including splitters and the handling of dispersion penalty, common GPON ODN which ranges 20 km including splitters and the handling of dispersion penalty, it poses challenges to most of the 10 Gbit/s solutions. To achieve that target, the laser must be designed it poses challenges to most of the 10 Gbit/s solutions. To achieve that target, the laser must be designed to perform a low penalty, typically bellow 1 dB to 2 dB, at the required distance. To meet those specs, to perform a low penalty, typically bellow 1 dB to 2 dB, at the required distance. To meet those specs, Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 9 of 19 Appl. Sci. 2020, 10, x 9 of 19 specially designed direct modulated lasers (DML) are required, or even the migration to external specially designed direct modulated lasers (DML) are required, or even the migration to external modulated laser (EML) technologies [7,8]. modulated laser (EML) technologies [7,8]. Furthermore, in most recent standards, ODN should support 128 users and a 20 km reach. These Furthermore, in most recent standards, ODN should support 128 users and a 20 km reach. These requirements have the penalty of a 21-dB attenuation stemming from splitting losses plus 4 dB due requirements have the penalty of a 21-dB attenuation stemming from splitting losses plus 4 dB due to fiber losses and around 3 dB insertion loss (IL) of co-existence elements, leading to an ODN total to fiber losses and around 3 dB insertion loss (IL) of co-existence elements, leading to an ODN total loss greater than 28 dB. If we target 10 Gbit/s with avalanche photodiode (APD) receivers allowing a loss greater than 28 dB. If we target 10 Gbit/s with avalanche photodiode (APD) receivers allowing −26 dBm to −30 dBm receiver sensitivity, it leads to a minimum laser output power of 4 dBm. A a 26 dBm to 30 dBm receiver sensitivity, it leads to a minimum laser output power of 4 dBm. possible alternative to overcome this requirement is to use an amplification stage in the path which A possible alternative to overcome this requirement is to use an amplification stage in the path which removes the passivity of the ODN, however, it reduces the potential usage of EML-based solutions removes the passivity of the ODN, however, it reduces the potential usage of EML-based solutions since its typical power does not exceed the 0 dBm. since its typical power does not exceed the 0 dBm. 4.2. Band and Wavelength Selection Criteria 4.2. Band and Wavelength Selection Criteria To improve reach, several techniques are available and many stem from the laser (e.g., low To improve reach, several techniques are available and many stem from the laser (e.g., low dynamic dynamic chirp or frequency modulation efficiency), laser driving (pre-chirping or equalization), and chirp or frequency modulation eciency), laser driving (pre-chirping or equalization), and wavelength wavelength selection (e.g., O-band instead of C and L bands) [2,70]. O-Band has been used for selection (e.g., O-band instead of C and L bands) [2,70]. O-Band has been used for supporting upstream supporting upstream and was adopted by some of the standards like GPON and XGSPON. O-band, and was adopted by some of the standards like GPON and XGSPON. O-band, besides presenting besides presenting low or null dispersion, only introduces slightly higher attenuation than C-band. low or null dispersion, only introduces slightly higher attenuation than C-band. These facts greatly These facts greatly reduce the pressure on the O-band components industry, impacting positively on reduce the pressure on the O-band components industry, impacting positively on the cost and yield. the cost and yield. The current spectral allocation from O to L-band is depicted in Figure 5. The current spectral allocation from O to L-band is depicted in Figure 5. Figure 5. Spectrum allocation in ITU-T based standards for PON and trends for channel spacing. Figure 5. Spectrum allocation in ITU-T based standards for PON and trends for channel spacing. If a certain technology is deployed in greenfield, a viable approach is to implement standards that If a certain technology is deployed in greenfield, a viable approach is to implement standards are not back-compatible, i.e., does not support legacy technologies. In this scenario, the use of O-band that are not back-compatible, i.e., does not support legacy technologies. In this scenario, the use of is an option for future PON. The drawback of this option is that the operator has to guarantee that the O-band is an option for future PON. The drawback of this option is that the operator has to guarantee PON evolution is on top of the new technology deployed. To cope with the maturity of the technology that the PON evolution is on top of the new technology deployed. To cope with the maturity of the and promote an easier and simplified entry into the market, initial PON technologies, like GPON, technology and promote an easier and simplified entry into the market, initial PON technologies, like were set in large bandwidths for better yield in laser choice with the upstream in the O-band [7,67]. GPON, were set in large bandwidths for better yield in laser choice with the upstream in the O-band The wavelength range of 20 nm to 30 nm per trac direction was reserved for this technology, which [7,67]. The wavelength range of 20 nm to 30 nm per traffic direction was reserved for this technology, allowed it to easily mature while still being competitive. This strategy proved to be solid since it which allowed it to easily mature while still being competitive. This strategy proved to be solid since resulted in the current GPON BOSA to sit in the few dollars range (as of today). it resulted in the current GPON BOSA to sit in the few dollars range (as of today). Furthermore, PON technology evolution can be achieved by data rate multiplication and more Furthermore, PON technology evolution can be achieved by data rate multiplication and more ecient use of the bands to promote further network evolution scenarios. Following this path, XGSPON efficient use of the bands to promote further network evolution scenarios. Following this path, Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 10 of 19 Appl. Sci. 2020, 10, x 10 of 19 standard was conceived with slightly smaller bandwidths for both upstream and downstream, which XGSPON standard was conceived with slightly smaller bandwidths for both upstream and resulted in a four-times higher bitrate than GPON [70,78]. downstream, which resulted in a four-times higher bitrate than GPON [70,78]. To further exploit the available bands (see Figure 5), dense wavelength division multiplexing To further exploit the available bands (see Figure 5), dense wavelength division multiplexing (DWDM) (DWDM) can can be a route t be a route tooexplor explore. Th e. Thee possibilit possibility y of of including including t tunability unability al allows lows network network active active transformation and management. Even considering the associated price to pay, it is an important transformation and management. Even considering the associated price to pay, it is an important solution solution under undethe r th re equir reqement uirement of tig of htly tigcontr htly cont olledrol lasers. led la Furthermor sers. Furthermore, w e, with this capability ith this cap , a pr abilit ojected y, a OPEX project re eduction d OPEX red is expected, uction is since expeclients cted, since can seamlessly clients can migrate seamles to sly any miof grat the e tavailable o any of t wavelengths he available while wavelen thegnetwork ths while gr the network grow ows smoothly and s s systematically moothly and .systematically. The The most most evident evident bar barrier rier for for the the spr spre ead ad of of this te this technology chnology i is s t the he laser laser and and rece receiver iver re requir quirement ements, s, which which sho should uld be at be attained tained un under der a pot a potential ential low cost low cost and sim and ult simultaneously aneously have a have high gr a high ade ograde f stabilit of y stability [7,8]. Figur [7,8 e]. 5 presents the Figure 5 presents bands for the bands the different for the dist eps o erent fsteps the netwo of thernet k evo work lution evolution, , i.e., from i.e., the from legacy the legacy technologies technologies wide bwide ands to the ne bands to xt ge the next neration t generation ighter bandw tighter bandwidths. idths. A A represent representation ation of of the the typi typical cal distribution distributi of on of lasers, lase stemming rs, stemmin fromga from a single wafer single wafe run, is depicted r run, is in depict Figur ed e 6in F A. Each igure of 6A the . E lasers ach of t collected he laser fr som colthe lectwafer ed from will thhave e waf its er emission will have wavelength its emission w anda thus velengt they h can and t behused us they in can be a more specific used in/ a more tighter wavelength specific/tight range. er waT velen o accomplish gth range. To this featur accom e,p alish t tuning his pr feat ocess ure, is a rtu equir ning pr ed, e.g., oces temperatur s is require, ed curr , e.g ent, ., te etc. mpe Each ratur wafer e, curr run ent, etc. E may present ach wafer di erent run statistics may present due to different material deposition statistics due to ma doping and terial prdeposi ocessing, tionsee doping Figurand e 6B. pr Nonetheless, ocessing, see the Figu wafer re 6B. unifor Nonetheless, th mity wavelength e wafer map uniformit is in general y wavelen scar gcely th ma reported p is in gene by the ral sc foundries, arcely re some ported by t works h suggest e foundr these ies, s claims ome works s [79,80].uT gge ight st contr these claims ol of the doping [79,80]. T process ight control of the doping may reduce this variation prand ocess m greatly ay r impr educe t ove h the is v yield ariat and ion temperatur and greatley contr improve the ol mechanisms. yield and te Themperature co finer the requir ntrol mechan ed tuning, isms. The fin the more complex er the requir the laser ed tuning selection , th pr e more ocess. The complex t qualification he laser of se a lect laser ion to proces operate s. The in a q certain ualific wavelength ation of a la range ser tor esults operatfr e om in a setting certain its wave maximum length allowed range res wavelength ults from set attiinitial ng its max temperatur imum al es.lowed The br wavelen oad requir gth at ements initia of l tthe emp technology eratures. Th ine broa termsd of req the uirclient ements of locations the technol may requir ogy in e terms of industrial the cl temperatur ient locat e ranges ions ma ( y req 40 to uir 85 e ind C),uwhich strial tbring emperextra ature rrange equisites s (−4to 0 tthe o 85 laser °C), whic wavelength h bring ext choice ra requ or thermal isites tocontr the lol asmechanisms. er wavelengthDir cho ectly ice or modulated thermal clasers ontrol have mecha good nisms. Directly optical output modula power ted la and sers areha easy ve good opti to drive and cal output modulate. power However and are ea , thesy to dri inherent ve high and wavelength modulate. Ho fluctuation wever, the in when herent high w modulatedaor velen theginher th fluctua ent chirp tion when modula can result in pr ted opagation or the inherent chi limitations. rp Laser can redesign sult in propagat /control e ion limitation orts are being s.made Laser to de minimize sign/control these effo e rts are bei ects and n curr g m ently ade to mi , thereni ar miz e alr e these eady some effectdevices s and cuin rrent the ly, market there are able alto ready cope so with me dev some ices of in the the m most arket stringent able to cope with some of standard requirements the most [81], e.g., stringent the NGPON2. standard re W quire ith an ments [81], e.g., the external cavity, EMLs NGPO result N2. Wi in a th much an externa lowerl ca chirp, vity, EMLs resul however, having t in a typically much lower a mor chirp, howeve e complex tunability r, having ty mechanism pically a more c when omplex t compar ued nab to ilit the y mechan simpleis curr m when com ent or thermal pared tuning to the si of mpl theeDML current or therma [7]. l tuning of the DML [7]. Figure 6. Representation of a generic statistical distribution of lasers over their initial wavelength () in Figure 6. Representation of a generic statistical distribution of lasers over their initial wavelength (λ) a set of three wafer runs. Di erent wafers may result in di erent central s. (A): distribution of initial in a set of three wafer runs. Different wafers may result in different central λs. (A): distribution of of wafer #2; (B): example of an initial s distribution for three di erent wafers. initial λ of wafer #2; (B): example of an initial λs distribution for three different wafers. Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 11 of 19 Appl. Sci. 2020, 10, x 11 of 19 4.3. Integrated Photonics Packaging 4.3. Integrated Photonics Packaging Photonic packaging technology has achieved a higher significance under optical communication Photonic packaging technology has achieved a higher significance under optical communication systems’ recent developments [82] by covering the optical and electronic connections in/out of the systems’ recent developments [82] by covering the optical and electronic connections in/out of the PIC. Packaging process developments are of great importance for the next generation of optical PIC. Packaging process developments are of great importance for the next generation of optical components [6]. Being one of the most complex segments of the integrated component viability, components [6]. Being one of the most complex segments of the integrated component viability, it it can pose several challenges, such as limitations in terms of volume, cost, RF performance, power can pose several challenges, such as limitations in terms of volume, cost, RF performance, power dissipation, and its high-volume manufacturing capability [83], which can highly impact the cost of dissipation, and its high-volume manufacturing capability [83], which can highly impact the cost of the solution. the solution. Currently, packaging is seen as one of the most significant bottlenecks in the development of Currently, packaging is seen as one of the most significant bottlenecks in the development of commercially relevant PIC devices [60,84]. The packaging design flow is divided into three main commercially relevant PIC devices [60,84]. The packaging design flow is divided into three main areas: the optical design, the electrical design, and the thermal management of the module. A first areas: the optical design, the electrical design, and the thermal management of the module. A first open-access PIC assembly and packaging pilot line of Europe’s leading industrial and research open-access PIC assembly and packaging pilot line of Europe’s leading industrial and research organization teams (i.e., PIXAPP) are dedicating e orts to the development of a photonic packaging organization teams (i.e., PIXAPP) are dedicating efforts to the development of a photonic packaging platform to gather state-of-the-art technologies and procedures [62]. This highly interdisciplinary platform to gather state-of-the-art technologies and procedures [62]. This highly interdisciplinary team provides single-point access to PIC assembly and packaging for users. The project key objectives team provides single-point access to PIC assembly and packaging for users. The project key objectives include: (i) custom solutions through standard packaging technologies; (ii) training and education as a include: (i) custom solutions through standard packaging technologies; (ii) training and education as future workforce; and (iii) link the PIC ecosystem through the development of packaging standards a future workforce; and (iii) link the PIC ecosystem through the development of packaging standards and roadmaps [17]. Considering the typical wavelength gain band of an active device, ranging from and roadmaps [17]. Considering the typical wavelength gain band of an active device, ranging from 20 nm to 30 nm for the O- to L-bands, and the technology wavelength map presented in Figure 7, 20 nm to 30 nm for the O- to L-bands, and the technology wavelength map presented in Figure 7, several approaches may be required to merge in a single device the upstream/downstream signals. several approaches may be required to merge in a single device the upstream/downstream signals. There are several network standards, like XGSPON, which require upstream/downstream wavelengths There are several network standards, like XGSPON, which require upstream/downstream spaced by more than 200 nm. A 200 nm spacing brings higher challenges and may require hybrid wavelengths spaced by more than 200 nm. A 200 nm spacing brings higher challenges and may integration, which poses additional packaging challenges [7]. require hybrid integration, which poses additional packaging challenges [7]. Figure 7. Diagram describing transmitter and receiver technologies with potential use in access Figure 7. Diagram describing transmitter and receiver technologies with potential use in access networks. Typical gain and lasing media profiles are presented, with 20 nm to 60 nm bandwidths for networks. Typical gain and lasing media profiles are presented, with 20 nm to 60 nm bandwidths for common current materials, PINs with di erent doping materials, and APDs. (A): transmitter/(pre-) common current materials, PINs with different doping materials, and APDs. (A): transmitter/(pre-) amplification side; (B): receiver side. amplification side; (B): receiver side. Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 12 of 19 In the same technological space, NGPON2 requires only 60 nm between the upstream and downstream, thus a fully monolithic approach may be achievable by changing slightly the doping or applying regrowth. Figure 7 provides a representation of the gain curve for a generic material doping, the abstraction of a laser for the transmitter side, and three types of available receiver techniques/devices. On the transmitter side tunability limitation of a laser is depicted and corroborated by the limited gain media in which the laser light is generated, see Figure 7A. This constraint results in 20 nm to 30 nm tunability range, considering laser operation with significant output power. Simple tuning based on thermal e ects usually results in an available tuning range of 3 nm to 4 nm. A combination of a tunable device with an external cavity supported by a convenient control mechanism results in a wider tuning range. On the receiver side several techniques are described, such as a positive-intrinsic-negative photodiode (PIN), APD, and coherent [7,8], see Figure 7B. The PIN is one of the cheapest and simplest detecting techniques presenting a wide light wavelength detection range. Its profile can be changed by the type of materials and doping used. PINs can be easily integrated into e.g., InP PIC, which is already available for bandwidths exceeding >35 GHz and operational wavelength ranges covering the common fiber telecommunication bands [33,60,85]. APDs are tougher to integrate, however, from the system point of view, they result in improved sensitivity due to their intrinsic avalanche gain. The referred receiving technologies are wide wavelength band, however, with a coherent detection scheme tunable reception can be achieved. Depending on the arrangement, a di erent number of associated PINs (from dual-polarization di erential with 8 PINs to quasi-coherent single photodetector) simultaneous gain and filtering (stemming from the local oscillator beating with the signal) can be implemented [7,77,86]. To achieve the optical interface between the PIC and the fiber, there are several challenges to be surpassed, such as the mode adaptation between the WG in the PIC and the cylinder-shaped fiber core [87]. Spot size convert (SSC) modules in the PIC, lensed fibers connected through V-grooves, holders, and other techniques are used to achieve consistent solutions. The PIC packaging interfacing of the electrical connections between the PIC and the PCB is usually carried out by wire-bonding [34]. As bandwidth grows, the trend is to replace the bonding wires by flip-chip solutions to reach higher thermal and electrical performance. Furthermore, packaging should be a gateway to solve power dissipation, which is expected to increase significantly with density [7]. Packaging solutions based on holders with high thermal conductivity and inherent thermal monitoring is an attractive solution to overcome this constraint. 4.4. Control Complexity, Power Dissipation and Form Factor The di erent PON standards and technologies have their own requirements in terms of complexity control, especially for tunable devices. When wavelength control is not essential, simpler actuation systems with lower power are required [88]. Nonetheless, once the wavelength spectrum becomes more crowded, the options have to be restricted and the requirements for more complex control increase [7]. A summary of the technology and expected power for its optoelectronic interfaces versus the complexity and requirements for a certain interface is depicted in Figure 8. A general sweep, from low data rate with large wavelength range and short-reach to higher data rate with tighter wavelength range and longer reaches, are also presented in the Figure 8. Additionally, the technologies with an approximate relative power requirement classification (from low to high power) are also identified. The x-axis represents the optical requirements, ranging from low data rate and short-reach to long-reach DWDM and high data rate. The red arrows describe the complexity steps from the system requirements. Appl. Sci. 2020, 10, 4024 13 of 19 Appl. Sci. 2020, 10, x 13 of 19 Figure 8. Diagram of requirements in terms of control, complexity, and power for different Figure 8. Diagram of requirements in terms of control, complexity, and power for di erent technologies. technologies. Potential form factor solutions able to cope with the required power dissipation are also presented in thePotenti far right al f oform f Figuraector 8. Technology solutions a evolution ble to cope wi poses incr th the requi easing challenges red power dissi in the contr patol ion a complexity re also and presented in t required power he far right of Fig . As the demanded ure 8. Tec power hnology ev grows,o alchange ution poses in the in form creasing ch factor is allenges needed. in the control Form factors have complexity and two major characteristics: required power. As minimum the dem volume anded and pmaximum ower grow dissipated s, a change power in th[e form 89]. factor is needed. An appr Form oximate factors have two major chart of the average char pricing acteri for stics: minimum GPON, XGSPON, volume and a NGPON2 nd maximum dissip evolution versus ated power [89]. time is presented in Figure 9. GPON faced a strong price drop with its increased manufacturability, An approximate chart of the average pricing for GPON, XGSPON, and NGPON2 evolution pushed by the worldwide broad adoption of the technology by the operators. XGSPON is following versus time is presented in Figure 9. GPON faced a strong price drop with its increased the same steps, which for the user can be the motto to have 10 Gbit solutions sooner. Technically, manufacturability, pushed by the worldwide broad adoption of the technology by the operators. XGSPON generically adopted the physical layer characteristics of IEEE 802.3av 10GEPON systems, XGSPON is following the same steps, which for the user can be the motto to have 10 Gbit solutions e.g., di ering in the burst mode timing requirements [70,78]. Moreover, to jump-start the market, sooner. Technically, XGSPON generically adopted the physical layer characteristics of IEEE 802.3av initial implementations of XGSPON systems relaxed the timing requirements to fully adopt 10GEPON 10GEPON systems, e.g., differing in the burst mode timing requirements [70,78]. Moreover, to jump- standards [70]. With this rapid price erosion model, the profit margins in the supply chain depreciate start the market, initial implementations of XGSPON systems relaxed the timing requirements to very fast. As NGPON2 is based on the limited tunability of DWDM lasers and receivers, it poses fully adopt 10GEPON standards [70]. With this rapid price erosion model, the profit margins in the some challenges for its adoption by manufacturers, vendors, and operators. This fact has delayed its supply chain depreciate very fast. As NGPON2 is based on the limited tunability of DWDM lasers deployment process. NGPON2 technology di ers from the traditional model since it goes out of the and receivers, it poses some challenges for its adoption by manufacturers, vendors, and operators. O-band, making the laser control and manufacturability more stringent. Thus, it results in a potentially This fact has delayed its deployment process. NGPON2 technology differs from the traditional model slower cost reduction and more sustainability from the supply chain point of view [7]. since it goes out of the O-band, making the laser control and manufacturability more stringent. Thus, it results in a potentially slower cost reduction and more sustainability from the supply chain point of view [7]. Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 14 of 19 Appl. Sci. 2020, 10, x 14 of 19 Figure 9. Representation of average price evolution of PON technology for GPON, XGSPON, Figure 9. Representation of average price evolution of PON technology for GPON, XGSPON, and and NGPON2 bulk type BOSA (not PIC based). Pricing was empirically collected along the years from NGPON2 bulk type BOSA (not PIC based). Pricing was empirically collected along the years from several providers and averaged in the graph. several providers and averaged in the graph. The indicative pricing evolution of the traditional bulk type BOSA for the three technologies is The indicative pricing evolution of the traditional bulk type BOSA for the three technologies is depicted in Figure 9. Early, broad and late adoption notes refer to perception and predictions estimated depicted in Figure 9. Early, broad and late adoption notes refer to perception and predictions by the authors given the present standing of the technology. Pricing is indicative and may not represent estimated by the authors given the present standing of the technology. Pricing is indicative and may all realities/contexts, and is based on, per vendor and per order, 100 pieces at the early adoption stage, not represent all realities/contexts, and is based on, per vendor and per order, 100 pieces at the early 100k pieces at broad adoption, and 1M pieces at late adoption stages, see Figure 9. adoption stage, 100k pieces at broad adoption, and 1M pieces at late adoption stages, see Figure 9. A reduction in physical volume, number of sub-assemblies, and calibration steps are expected A reduction in physical volume, number of sub-assemblies, and calibration steps are expected with the migration to PICs. These steps may greatly reduce the price of the subassemblies based on PICs with the migration to PICs. These steps may greatly reduce the price of the subassemblies based on when compared with traditional bulk BOSA [7,8]. As identified above, by having upstream/downstream PICs when compared with traditional bulk BOSA [7,8]. As identified above, by having on approximately the same wavelength band, NGPON2 can be a great applicant for monolithic PIC. upstream/downstream on approximately the same wavelength band, NGPON2 can be a great In such a case, ONU and OLT can coexist in the same PIC platform without further processing. applicant for monolithic PIC. In such a case, ONU and OLT can coexist in the same PIC platform XGSPON, besides being already stressed in price, may require O-band and L-band integration, which without further processing. XGSPON, besides being already stressed in price, may require O-band can entail extra processing and packaging steps, thus increasing the limitations of PIC viability in this and L-band integration, which can entail extra processing and packaging steps, thus increasing the wavelength range. DWDM is also included in the wavelength plan of NGPON2 and is already an limitations of PIC viability in this wavelength range. DWDM is also included in the wavelength plan ITU-T standard being used for implementing several telecommunication systems, which also poses a of NGPON2 and is already an ITU-T standard being used for implementing several good opportunity for the use of the PIC technology. telecommunication systems, which also poses a good opportunity for the use of the PIC technology. 5. Conclusions 5. Conclusions PICs are a promising technology with great potential in several fields including telecom, sensing, PICs are a promising technology with great potential in several fields including telecom, sensing, and bio-photonics. In this work, we have reviewed the PON technology standards and evaluated the and bio-photonics. In this work, we have reviewed the PON technology standards and evaluated the challenges and benefits of meeting its requirements with the prospective usage of PIC. Depending challenges and benefits of meeting its requirements with the prospective usage of PIC. Depending on on the requirements, the type of materials, and components, a tailored approach has to be carefully the requirements, the type of materials, and components, a tailored approach has to be carefully specified. The di erent materials used in the available solutions for implementing PIC result in di erent specified. The different materials used in the available solutions for implementing PIC result in behaviors, steps, processes, and capabilities. The main constraint of PIC is still the limited gain band different behaviors, steps, processes, and capabilities. The main constraint of PIC is still the limited of the active devices which are in its core. This may imply advanced processing and/or packaging gain band of the active devices which are in its core. This may imply advanced processing and/or packaging techniques to be able to cope with the existing standards, e.g., regrowth and hybrid Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 15 of 19 techniques to be able to cope with the existing standards, e.g., regrowth and hybrid packaging. After carefully choosing the standard to be followed and the packaging approach, its control complexity also has to be cautiously considered to guarantee that the solution is feasible and adapted. Specifically, for PON the most stringent requirements are the cost and robustness of the proposed solution. We have discussed several of the challenges to be considered when equating the introduction of PIC in the next-generation PONs, like productization, wideband wavelength range (O, C, and L-bands), laser control, and tunability mechanisms. PON standards have di erent flavors that result in quite di erent requirements, especially regarding the wavelength ranges to be covered by the two trac directions, i.e., the upstream and downstream. For instance, GPON and XGSPON have specifications of >200 nm spacing between upstream and downstream, while NGPON2 requires around 60 nm for the same parameter. Due to technological inherent limitations of some technologies, hybrid integration may be required, e.g., XGSPON and GPON. Smaller bands will ease this process and therefore potentiate monolithic PIC implementation, simplifying packaging and deployment, e.g., NGPON2. PICs have typically two major interfaces, electrical and optical, each with di erent requirements, techniques, and available materials to be used. Packaging and technical considerations such as size, power, RF compliance, and sealing are relevant. In a nutshell, the manufacturability is anticipated to be one of the most critical steps for the technology to be successful, especially in PON. In our vision, the use of PICs in PON and other subsystems is very close to being an e ective reality with prospective advantages. Author Contributions: This is a review paper, each author contributed to all chapters. C.P. and A.T. prepared the manuscript, i.e., writing, review and editing. All authors have read and agreed to the published version of the manuscript. Funding: This work is supported by the European Regional Development Fund (FEDER), through the Competitiveness and Internationalization Operational Programme (COMPETE 2020) of the Portugal 2020 framework [Project Virtual Fiber Box with Nr. 033910 (POCI-01-0247-FEDER-033910)]; plugPON (POCI-01-0247-FEDER-047221); FEDER through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework [Project HeatIT with Nr. 017942 (CENTRO-01-0247-FEDER-017942)]; and IT (UID/EEA/50008/2019). Conflicts of Interest: The authors declare no conflict of interest. References 1. Teixeira, A.; Shahpari, A.; Ferreira, R.; Guiomar, F.P.; Reis, J.D. Coherent Access. In Proceedings of the OFC 2016—Optical Fiber Communication Conference, Anaheim, CA, USA, 20–24 March 2016; p. M3C.5. 2. Shahpari, A.; Ferreira, R.M.; Luis, R.S.; Vujicic, Z.; Guiomar, F.P.; Reis, J.D.; Teixeira, A.L. Coherent Access: A Review. J. Lightwave Technol. 2017, 35, 1050–1058. [CrossRef] 3. Micolta, J.C.V. Next Generation Optical Access Networks and Coexistence with Legacy PONs. Ph.D. Thesis, Unversitat Politecnica de Catalunya, Barcelona, Spain, 2019. 4. Grand View Research. Photonic Integrated Circuit (IC) Market Size Report. 2016. Available online: http://www.grandviewresearch.com/industry-analysis/photonic-integrated-circuit-ic-market (accessed on 12 February 2020). 5. Chovan, J.; Uherek, F. Photonic Integrated Circuits for Communication Systems. Radio Eng. 2018, 27, 357–363. [CrossRef] 6. Latkowski, S.; Pustakhod, D.; Chatzimichailidis, M.; Yao, W.; Leijtens, X.J.M. Open Standards for Automation of Testing of Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2019, 25. [CrossRef] 7. Teixeira, A. Photonic Integrated Circuits for NG-PON2 ONU Transceivers. In Proceedings of the OFC 2019—Optical Fiber Communications Conference, San Diego, CA, USA, 3–7 March 2019; p. M4G.4 1–34. 8. Teixeira, A. NG-PON2 direct modulation-based optics status and evolution path, Broadband Forum Broadband Acceleration Seminar: NG-PON2 Roadmap and Evolution—A Universal Platform for Residential, Business, and Wireless/5G? In Proceedings of the OFC 2019—Optical Fiber Communications Conference, San Diego, CA, USA, 3–7 March 2019; pp. 8–10. Appl. Sci. 2020, 10, 4024 16 of 19 9. Smit, M.; Williams, K.; van der Tol, J. Past, present, and future of InP-based photonic integration. APL Photonics 2019, 4, 1–10. [CrossRef] 10. Desurvire, E.; Kazmierski, C.; Lelarge, F.; Marcadet, X.; Scavennec, A.; Kish, F.A.; Welch, D.F.; Nagarajan, R.; Joyner, C.H.; Schneider, R.P.; et al. Science and technology challenges in XXIst century optical communications. Comptes Rendus Phys. 2011, 12, 387–416. [CrossRef] 11. Pinho, C.; Tavares, A.; Cabral, G.; Morgado, T.; Shahpari, A.; Lima, M.; Teixeira, A. Design and Characterization of an Optical Chip for Data Compression based on Haar Wavelet Transform. In Proceedings of the OFC 2017—Optical Fiber Communication Conference, Los Angeles, CA, USA, 19–23 March 2017; p. Th2A.9(3). 12. Pinho, C.; Neto, B.; Morgado, T.M.; Neto, H.; Lima, M.; Teixeira, A. InP AAC for Data Compression Applications. IET Optoelectron. Spec. Issue 2019, 13, 67–71. [CrossRef] 13. Pinho, C.; Micó, G.; Lima, M.; Muñoz, P.; Teixeira, A. Optimized Design of Si3N4 Structures for Photonic Integrated Data Compression Applications. In Proceedings of the IMOC 2019—International Microwave and Optoelectronics Conference, Aveiro, Portugal, 10–14 November 2019; pp. 1–3. 14. Pinho, C.; Morgado, T.; Neto, B.; Lima, M.; Teixeira, A. Implementation and Optimization of a Cost-E ective 2D Haar Transform Network for Image Compression. In Proceedings of the FIO+LS 2018—OSA Frontiers in Optics and Laser Science Conference, Washington, DC, USA, 16–20 September 2018; p. JTu3A.88(2). 15. Brodnik, G.M.; Pinho, C.; Chang, F.; Blumenthal, D.J. Extended Reach 40km Transmission of C-Band Real-Time 53.125 Gbps PAM-4 Enabled with a Photonic Integrated Tunable Lattice Filter Dispersion Compensator. In Proceedings of the OFC 2018—Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; p. W2A.30(3). 16. Gundavarapu, S.; Brodnik, G.M.; Puckett, M.; Hu man, T.; Bose, D.; Behunin, R.; Wu, J.; Qiu, T.; Pinho, C.; Chauhan, N.; et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photonics 2019, 13, 60–67. [CrossRef] 17. Hu man, T.A.; Brodnik, G.M.; Pinho, C.; Gundavarapu, S.; Baney, D.; Blumenthal, D.J. Integrated Resonators in an Ultralow Loss Si3N4/SiO2 Platform for Multifunction Applications. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–9. [CrossRef] 18. Gundavarapu, S.; Puckett, M.; Hu man, T.; Behunin, R.; Wu, J.; Qiu, T.; Brodnik, G.M.; Pinho, C.; Bose, D.; Rakich, P.T.; et al. Integrated Waveguide Brillouin Laser. In Physics Archive (Physics-arXiv); Cornell University Library: New York, USA, 2017; pp. 1–15. 19. Pinho, C.; Gordon, G.S.D.; Neto, B.; Morgado, T.M.; Rodrigues, F.; Tavares, A.; Lima, M.; Wilkinson, T.D.; Teixeira, A. Flexible Spatial Light Modulator Based Coupling Platform for Photonic Integrated Processors. Int. J. Adv. Telecommun. 2018, 11, 20–31. 20. Pinho, C.; Rodrigues, F.; Tavares, A.; Gordon, G.S.D.; Shahpari, A.; Lima, M.M.; Wilkinson, T.D.; Teixeira, A.A. Flexible Platform for Feeding Photonic Integrated Processors. In Proceedings of the AICT 2017—Advanced International Conference on Telecommunications, Venice, Italy, 25–19 June 2017; pp. 1–4. 21. Pashkova, T.; O’Brien, P. Development of silicon grating-to-grating coupling technology and demonstration of fan-in/fan-out for multi-core fiber applications. In Proceedings of the EPTC 2019—IEEE 21st Electronics Packaging Technology Conference, Singapore, 4–6 December 2019; pp. 582–585. 22. González, A.B.; Pozo, J. The Biophotonics Revolution in Healthcare. Opt. Photonik 2017, 12, 16–17. 23. Wang, R.; Vasiliev, A.; Muneeb, M.; Malik, A.; Sprengel, S.; Boehm, G.; Amann, M.-C.; Šimonyte, I.; Vizbaras, A.; Vizbaras, K.; et al. III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 m Wavelength Range. Sensors 2017, 17, 1788. [CrossRef] [PubMed] 24. Duarte, V.C.; Prata, J.G.; Ribeiro, C.F.; Nogueira, R.N.; Winzer, G.; Zimmermann, L.; Walker, R.; Clements, S.; Filipowicz, M.; Napierala, M.; et al. Modular coherent photonic-aided payload receiver for communications satellites. Nat. Commun. 2019, 10, 1–9. [CrossRef] [PubMed] 25. Smit, M.; van der Tol, J.; Hill, M. Moore’s law in photonics. Laser Photonics Rev. 2012, 6, 1–13. [CrossRef] 26. Bardeen, J.; Brattain, W.H. Three-Electrode Circuit Element Utilizing Semiconductive Materials. U.S. Patent 2,524,035, 17 June 1948. 27. William, S. Circuit Element Utilizing Semiconductive Material. U.S. Patent 2,569,347, 26 June 1948. 28. Alferov, M.K.; Andreev, Z.I.; Portnoi, V.M.; Trukan, E.L. AlAs-GaAs Heterojunction injection lasers with a low room-temperature threshold. Fizika i Tekhnika Poluprovodnikov Soviet Physics Semiconductors 1969, 3, 1328–1332. 29. Kilby, J.S. Miniaturized Electronic Circuits. U.S. Patent 3,138,743, 6 February 1959. Appl. Sci. 2020, 10, 4024 17 of 19 30. Wanlass, F.M.; Sah, C.T. Nanowatt logic using field-e ect metal-oxide semiconductor triodes. In Proceedings of the IEEE International Solid-State Circuits Conference, Philadelphia, PA, USA, 20–22 February 1963; Volume VI, pp. 32–33. 31. Suzuki, M.; Noda, Y.; Tanaka, H.; Akiba, S.; Kushiro, Y.; Isshiki, H. Monolithic integration of InGaAsP/InP distributed feedback laser and electroabsorption modulator by vapor phase epitaxy. J. Lightwave Technol. 1987, 5, 1277–1285. [CrossRef] 32. Moore, G.E. Moore’s law at 40. In Understanding Moore’s Law: Four Decades of Innovation; Brock, D.C., Ed.; Chemical Heritage Foundation: Philadelphia, PA, USA, 2006; pp. 67–84. 33. JePPIX—Joint European Platform for Photonic Integration of Components and Circuits. JePPIX Roadmap 2018. May 2018. Available online: http://www.jeppix.eu/introduction-to-roadmaps (accessed on 22 November 2019). 34. AIM Photonics. MIT Microphotonics Center, and International Electronics Manufacturing Initiative (iNEMI). 2017 Integrated Photonic Systems Roadmap (IPSR). 2018. Available online: https://aimphotonics.academy/ roadmap/ipsr-roadmap (accessed on 20 December 2019). 35. JePPIX. JePPIX—Joint European Platform for Photonic Integration of Components and Circuits. 2019. Available online: http://www.jeppix.eu/ (accessed on 22 November 2019). 36. Heideman, R.G.; Leinse, A.; Hoekman, M.; Schreuder, F.; Falke, F.H. TriPleX: The low loss passive photonics platform, Industrial applications through Multi Project Wafer runs. In Proceedings of the 2014 IEEE Photonics Conference, San Diego, CA, USA, 12–16 October 2014; pp. 224–225. 37. EPIXfab. ePIXfab-European Silicon Photonics Alliance. 2019. Available online: http://epixfab.eu/ (accessed on 6 January 2020). 38. Fahrenkopf, N.M.; McDonough, C.; Leake, G.L.; Su, Z.; Timurdogan, E.; Coolbaugh, D.D. The AIM Photonics MPW: A Highly Accessible Cutting Edge Technology for Rapid Prototyping of Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–6. [CrossRef] 39. Schmitt, A.; Wilkinson, S. OFC 2019—The Future of Optical Networking and Communications—Post-Show Report, An Overview of the Market; Cignal AI-Active Insight: San Diego, CA, USA, 2019. 40. Carey, E.; Lidholm, S. Millimeter-Wave Integrated Circuits; Springer: New York, NY, USA, 2005. 41. Tien, P.K. Integrated optics and new wave phenomena in optical waveguides. Rev. Mod. Phys. 1977, 49, 361–420. [CrossRef] 42. Lim, A.E.-J.; Song, J.; Fang, Q.; Li, C.; Tu, X.; Duan, N.; Chen, K.K.; Tern, R.P.-C.; Tsung-Yang, L. Review of Silicon Photonics Foundry E orts. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 405–416. [CrossRef] 43. Coldren, L.A.; Corzine, S.W.; Mašanovic, ´ M.L. Diode Lasers and Photonic Integrated Circuits, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. 44. Bowers, J.E.; Park, H.; Kuo, Y.h.; Fang, A.W.; Jones, R.; Paniccia, M.J.; Cohen, O.; Raday, O. Integrated optical amplifiers on silicon waveguides. In Proceedings of the OSA IPNRA 2007—Integrated Photonics and Nanophotonics Research and Applications, Salt Lake City, UT, USA, 8–11 July 2007; p. ITuG1-3. 45. Matsui, Y.; Eriksson, U.; Wesstrom, J.O.; Liu, Y.; Hammerfeldt, S.; Hassler, M.; Stoltz, B.; Carlsson, N.; Siraj, S.; Goobar, E. Narrow linewidth tunable semiconductor laser. In Proceedings of the 2016 Compound Semiconductor Week, CSW 2016—Includes 28th International Conference on Indium Phosphide and Related Materials, IPRM and 43rd International Symposium on Compound Semiconductors, ISCS 2016, Toyama, Japan, 26–30 June 2016. 46. Velásquez, J.C.; Tabares, J.; Prat, J. Di erential 8-APSK monolithically integrated dual-EML transmitter for flexible coherent PONs. Opt. Lett. 2019, 44, 2760. [CrossRef] 47. Connelly, M.J. Semiconductor by Optical Amplifiers; Kluwer Academic: Boston, MA, USA, 2002. 48. Muñoz, P.; Micó, G.; Bru, L.A.; Pastor, D.; Pérez, D.; Doménech, J.D.; Fernández, J.; Baños, R.; Gargallo, B.; Alemany, R.; et al. Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications. Sensors 2017, 17, 2088. [CrossRef] [PubMed] 49. Bowers, J.E.; Komljenovic, T.; Davenport, M.; Hulme, J.; Liu, A.Y.; Santis, C.T.; Spott, A.; Srinivasan, S.; Stanton, E.J.; Zhang, C. Recent advances in silicon photonic integrated circuits. In Proceedings of the Next-Generation Optical Communication: Components, Sub-Systems, and Systems, San Francisco, CA, USA, 16–18 February 2016; Volume 977402, pp. 1–18. 50. Helkey, R.; Saleh, A.A.M.; Buckwalter, J.; Bowers, J.E. High-performance photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron. 2019, 25. [CrossRef] Appl. Sci. 2020, 10, 4024 18 of 19 51. Nagarajan, R.; Kato, M.; Pleumeekers, J.; Evans, P.; Corzine, S.; Hurtt, S.; Dentai, A.; Murthy, S.; Missey, M.; Muthiah, R.; et al. InP Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1113–1125. [CrossRef] 52. Ławniczuk, K.; Augustin, L.M.; Grote, N.; Wale, M.J.; Smit, M.K.; Williams, K.A. Open access to technology platforms for InP-based photonic integrated circuits. Adv. Opt. Technol. 2015, 4, 157–165. [CrossRef] 53. Soares, F.M.; Baier, M.; Gaertner, T.; Feyer, M.; Möhrle, M.; Grote, N.; Schell, M. High-Performance InP PIC Technology Development based on a Generic Photonic Integration Foundry. In Proceedings of the OFC 2018—Optical Fiber Communications Conference, San Diego, CA, USA, 11–15 March 2018; p. M3F.3(3). 54. Stroganov, A.; Geiselmann, M. Silicon Nitride PICS Platform Development From a Foundry Perspective: From Concepts to Real Applications. In Proceedings of the ECIO 2019-European Conference on Integrated Optics, Ghent, Belgium, 24–26 April 2019; pp. 1–3. 55. John, D.D.; Brodnik, G.; Gundavarapu, S.; Moreira, R.L.; Belt, M.; Hu man, T.; Blumenthal, D.J. Low-Loss Photonic Integration: Applications in Datacenters. In Datacenter Connectivity Technologies: Principles and Practice; Chang, F., Ed.; River Publishers Series in Optics and Photonics: Gistrup, Denmark, 2018; pp. 431–480. 56. Augustin, L.; Smit, M.; Grote, N.; Wale, M.; Visser, R. Standardized process could revolutionize photonic integration. Euro Photonics 2013, 18, 30–34. 57. Pinho, C. Optimized Photonic Integrated Solutions for Next Generation Optical Systems. Ph.D. Thesis, University of Aveiro, Averio, Portugal, 2019. 58. Bauters, J.F.; Heck, M.J.R.; John, D.D.; Barton, J.S.; Bruinink, C.M.; Leinse, A.; Heideman, R.G.; Blumenthal, D.J.; Bowers, J.E. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 2011, 19, 24090–24101. [CrossRef] [PubMed] 59. Belt, M.; Blumenthal, D.J. Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform. Opt. Express 2014, 22, 10655–10660. [CrossRef] [PubMed] 60. Liehr, M.; Baier, M.; Hoefler, G.; Fahrenkopf, N.M.; Bowers, J.; Gladhill, R.; O’Brien, P.; Timurdogan, E.; Su, Z.; Kish, F. Foundry capabilities for photonic integrated circuits. In Optical Fiber Telecommunications VII.; Elsevier: London, UK; Academic Press: London, UK, 2019; pp. 143–193. 61. Ramirez, J.M.; Elfaiki, H.; Verolet, T.; Besancon, C.; Gallet, A.; Néel, D.; Hassan, K.; Olivier, S.; Jany, C.; Malhouitre, S.; et al. III-V-on-Silicon Integration: From Hybrid Devices to Heterogeneous Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2020, 26. [CrossRef] 62. PIXAPP—H2020-EU.2.1.1. Report Summary-Photonic Integrated Circuits Assembly and Packaging Pilot line (PIXAPP), H2020-EC, CORDIS, European Commission. 2019. Available online: https://cordis.europa.eu/ project/rcn/206352/factsheet/en (accessed on 17 November 2019). 63. Photonics 21—Public Private Partnership. PIXAPP—Photonic Integrated Circuits Assembly and Packaging Pilot Line. 2017. Available online: https://pixapp.eu/ (accessed on 17 November 2019). 64. Stern, J.R.; Ballance, J.W.; Faulkner, D.W.; Hornung, S.; Payne, D.B.; Oakley, K. Passive Optical Local Networks for Telephony Applications And Beyond. Electron. Lett. 1987, 23, 1255–1256. [CrossRef] 65. E enberger, F. PONs: State of the Art and Standardized. In Optical Fiber Telecommunications—Systems and Networks, 6th ed.; Elsevier: Orlando, FL, USA; Academic Press: Orlando, FL, USA, 2013; pp. 1314–1363. 66. Point Topic Global Broadband Statistics. Point Topic—World Broadband Statistics (Q4 2017). In Point Topic; 2017; Available online: http://point-topic.com/free-analysis/world-broadband-statistics-q4-2017/ (accessed on 17 November 2019). 67. Wong, E. Next-generation broadband access networks and technologies. J. Lightwave Technol. 2012, 30, 597–608. [CrossRef] 68. ITU-T Recommendation G. 989.2. 40-Gigabit-Capable Passive Optical Networks 2 (NG-PON2): Physical Media Dependent (PMD) Layer Specification. 2014. Available online: https://www.itu.int/rec/T-REC-G.989. 2-201412-I/en (accessed on 6 February 2020). 69. IEEE P802.3av Task Force, “10Gb/s Ethernet Passive Optical Network. 2009. Available online: http: //www.ieee802.org/3/av/ (accessed on 6 February 2020). 70. Lam, C.F.; Yin, S. Evolution of fiber access networks. In Optical Fiber Telecommunications VII; Elsevier: Amsterdam, The Netherlands, 2020; pp. 827–865. 71. ITU-T Recommendation G. 989.2, “G.989.2: 40-Gigabit-Capable Passive Optical Networks 2 (NG-PON2): Physical Media Dependent (PMD) Layer Specification. Sep. 2019. Available online: https://www.itu.int/rec/ T-REC-G.989.2 (accessed on 6 February 2020). Appl. Sci. 2020, 10, 4024 19 of 19 72. Kim, K.; Doo, K.-H.; Lee, H.H.; Kim, S.; Park, H.; Oh, J.-Y.; Chung, H.S. High Speed and Low Latency Passive Optical Network for 5G Wireless Systems. J. Lightwave Technol. 2019, 37, 2873–2882. [CrossRef] 73. O’Byrne, V.; Lee, C.H.; Kim, Y.; Zhao, Z. FTTX Worldwide Deployment. In Optical Fiber Telecommunications—Systems and Networks; Elsevier: Orlando, FL, USA; Academic Press: Orlando, FL, USA, 2013; pp. 1448–1525. 74. Alimi, I.; Tavares, A.; Pinho, C.; Abdalla, A.M.; Monteiro, P.; Teixeira, A. Enabling optical wired and wireless technologies for 5G and beyond networks. In Telecommunication Systems; IntechOpen: London, UK, 2019; pp. 1–31. 75. Tavares, A.; Lopes, A.; Rodrigues, C.; Mãocheia, P.; Mendes, T.; Brandão, S.; Rodrigues, F.; Ferreira, R.; Teixeira, A. Photonic integrated transmitter and receiver for NG-PON2. In Proceedings of the AOP 2014—International Conference on Applications of Optics and Photonics, Aveiro, Portugal, 26–30 May 2014; Volume 9286, p. 928605(4). 76. Teixeira, A.; Tavares, A.; Lopes, A.P.S.; Rodrigues, C.E. Photonic Integrated Tunable Multi-Wavelength Transmitter Circuit. U.S. Patent 10,326,529, 18 June 2019. 77. Ciaramella, E. Assessment of a Polarization-Independent DSP-Free Coherent Receiver for Intensity-Modulated Signals. J. Lightwave Technol. 2020, 38, 676–683. [CrossRef] 78. ITU-T G.9807.1, “10-Gigabit-Capable Symmetric Passive Optical Network (XGS-PON). 2016. Available online: https://www.itu.int/rec/T-REC-G.9807.1-201606-I/en (accessed on 6 February 2020). 79. Muhammetgulyyev, A.; Kinaci, B.; Aho, A.; Yalcin, Y.; Cetinkaya, C.; Kuruoglu, F.; Guina, M.; Erol, A. V-groove etched 1-eV-GaInNAs nipi solar cell. Appl. Phys. A Mater. Sci. Process. 2019, 125, 1–7. [CrossRef] 80. Wetzel, C.; Detchprohm, T. Development of high power green light emitting diode chips. MRS Internet J. Nitride Semicond. Res. 2005, 10, 1–38. [CrossRef] 81. PICadvanced. XFP NG-PON2 ONU Class 3|PICadvanced. 2020. Available online: https://www.picadvanced. store/product-page/xfp-ng-pon2-onu-class-3 (accessed on 12 October 2019). 82. Fischer-Hirchert, U.H.P. Photonic Packaging Sourcebook: Fiber-Chip Coupling for Optical Components, Basic Calculations, Modules; Springer: Berlin/Heidelberg, Germany, 2015. 83. Pavarelli, N.; Lee, J.S.; O’Brien, P.A. Packaging challenges for integrated silicon photonic circuits. In Proceedings of the Silicon Photonics and Photonic Integrated Circuits IV, Brussels, Belgium, 1 May 2014; Volume 9133, p. 91330F-1–9. 84. Carroll, L.; Lee, J.-S.; Scarcella, C.; Gradkowski, K.; Duperron, M.; Lu, H.; Zhao, Y.; Eason, C.; Morrissey, P.; Rensing, M.; et al. Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Appl. Sci. 2016, 6, 426. [CrossRef] 85. HHI, “Fraunhofer Heinrich-Hertz-Institut–Fraunhofer HHI. 2020. Available online: https://www.hhi. fraunhofer.de/ (accessed on 6 February 2020). 86. Cano, I.N.; Velasquez, J.C.; Prat, J. 7.5 Gb/s direct DFB phase modulation with 8-DPSK for 6.25 GHz spaced coherent UDWDM-PONs. In Proceedings of the OFC 2016-Optical Fiber Communications Conference and Exhibition, Anaheim, CA, USA, 20–24 March 2016; p. M3C.4(1–3). 87. O’Brien, P. Scaling of Integrated Photonic Packaging for Volume Manufacture. In Proceedings of the International Conference on Optical MEMS and Nanophotonics, Lausanne, Switzerland, 29 July–2 August 2018; Volume INV-3, pp. 30–31. 88. Lam, C.F. PON Architectures Review. In Passive Optical Networks; Lam, C.F., Ed.; Elsevier: Burlington, MA, USA; Academic Press: Burlington, MA, USA, 2007; pp. 19–86. 89. Mack, B.; Graham, T. Pluggable Optics Modules-Thermal Specifications. In Electronics Cooling; 2016; Available online: https://www.electronics-cooling.com/2016/07/pluggable-optics-modules-thermal-specifications-part- 1 (accessed on 3 November 2019). © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Sciences Multidisciplinary Digital Publishing Institute

Photonic Integrated Circuits for NGPON2 ONU Transceivers (Invited)

Loading next page...
 
/lp/multidisciplinary-digital-publishing-institute/photonic-integrated-circuits-for-ngpon2-onu-transceivers-invited-UjYFRjCAup

References (100)

Publisher
Multidisciplinary Digital Publishing Institute
Copyright
© 1996-2020 MDPI (Basel, Switzerland) unless otherwise stated Disclaimer The statements, opinions and data contained in the journals are solely those of the individual authors and contributors and not of the publisher and the editor(s). Terms and Conditions Privacy Policy
ISSN
2076-3417
DOI
10.3390/app10114024
Publisher site
See Article on Publisher Site

Abstract

applied sciences Review Photonic Integrated Circuits for NGPON2 ONU Transceivers (Invited) 1 , 2 , 3 1 , 2 , 3 1 , 2 , 3 3 Cátia Pinho , Francisco Rodrigues , Ana Maia Tavares , Carla Rodrigues , 4 1 , 2 , Cláudio Emanuel Rodrigues and António Teixeira * Instituto de Telecomunicações (IT), University of Aveiro, 3810-193 Aveiro, Portugal; catiap@ua.pt (C.P.); francisco@picadvanced.com (F.R.); ana@picadvanced.com (A.M.T.) Department of Electronics, Telecommunications and Informatics (DETI), University of Aveiro, 3810-193 Aveiro, Portugal PICadvanced, PCI—Creative Science Park Via do Conhecimento, Edifício Central, 3830-352 Ílhavo, Portugal; carla.rodrigues@picadvanced.com Altice Labs, R. José Ferreira Pinto Basto, 3810-106 Aveiro, Portugal; claudio-e-rodrigues@alticelabs.com * Correspondence: teixeira@ua.pt Received: 31 March 2020; Accepted: 3 June 2020; Published: 10 June 2020 Abstract: The development of photonic integrated circuits (PIC) for access network applications, such as passive optical networks (PON), constitutes a very attractive ecosystem due to PON’s potential mass market. The implementation of PIC solutions in this context is expected to facilitate the possibility of increasing the complexity and functionalities of devices at a potentially lower cost. We present a review addressing the prominent access network market requirements and the main restrictions stemming from its specific field of application. Higher focus is given to PON devices for the optical network unit (ONU) and the implications of designing a device ready for market by discussing its various perspectives in terms of technology and cost. The discussed PIC solutions/approaches in this paper are mainly based on indium phosphide (InP) technology, due to its monolithic integration capabilities. A comprehensive set of guidelines considering the current technology limitations, benefits, and processes are presented. Additionally, key current approaches and e orts are analyzed for PON next generations, such as next-generation PON 2 (NGPON2) and high-speed PON (HSP). Keywords: photonic integrated circuits (PIC); access networks; passive optical network (PON); next-generation passive optical network 2 (NGPON2); high-speed PON (HSP); super-PON 1. Introduction Telecommunication network infrastructures can be described by three main network segments, i.e., core or backbone, metro/regional, and access networks, as depicted Figure 1. Long-distance communications with high aggregate trac are attained with core and metro networks, while access networks entail service provider to end-user fiber-optic telecommunications technology. These systems are subject to significant growth in capacity requirements with operators looking for feasible cost-e ective solutions. The potentiation of cost-e ective solutions can be reached with the improvement of current network technologies, as they become widely used, e.g., coherent systems in future optical access networks [1,2]. Appl. Sci. 2020, 10, 4024; doi:10.3390/app10114024 www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 2 of 19 Appl. Sci. 2020, 10, x 2 of 19 Figure Figure 1. 1. Diagram Diagram of a te of a telecommunications lecommunications netw network ork infrastructure, based infrastructure, basedin [3]. in [3]. Photonic integrated circuits (PIC) are considered an evolving technology o ering a sustainable Photonic integrated circuits (PIC) are considered an evolving technology offering a sustainable (ecient and cost-e ective) alternative to data transmission interfaces [4]. The implementation of (efficient and cost-effective) alternative to data transmission interfaces [4]. The implementation of integrated photonics can thus enable savings and new functionalities, increasing the transmission integrated photonics can thus enable savings and new functionalities, increasing the transmission capacity capacity [5 [5].]. In the a In the access ccess network context, network context, PIC can offer compelling per PIC can o er compelling performance formance improv improvements ements compared to traditional bulk technology [6], like bi-directional optical sub assembly (BOSA). Upgrades compared to traditional bulk technology [6], like bi-directional optical sub assembly (BOSA). in Upgra terms des of in weight terms o and f we volume, ight and r vol educed ume, re power duce consumption, d power consump high tion, h mechanical igh mechanic and thermal al and tstability hermal , and stabil assembly ity, andsimplification assembly simplif for high ication subsystem for high integration subsystem i aren expected tegration under are expected under PIC PIC solutions [6–9]. solutions [6–9]. By combining the need of providing enhanced passive optical network (PON) technologies and taking By combinin advantage g the need of of photonic providing en integrated hanced solutions passive optical net benefits, a compr work (PO ehensive N) t description echnologies ofand PIC taking advantage of photonic integrated solutions benefits, a comprehensive description of PIC design challenges for the optical network unit (ONU) side of next-generation PON is delivered design challenges for the optical network unit (ONU) side of next-generation PON is delivered in this in this study (see optical access network branch in Figure 1). The paper is organized into four study (see optical access network branch in Figure 1). The paper is organized into four additional additional sections. The historical PIC evolution addressing current developments and expectations sections. The historical PIC evolution addressing current developments and expectations are are described in Section 2. Section 3 addresses the PON standards and next-generation PON timeline. described in Section 2. Section 3 addresses the PON standards and next-generation PON timeline. The implementation of PIC solutions for PON is introduced in Section 4, discussing the technology The implementation of PIC solutions for PON is introduced in Section 4, discussing the technology impact on reach (Section 4.1), the adopted band and wavelength selection criteria (Section 4.2), photonic impact on reach (Section 4.1), the adopted band and wavelength selection criteria (Section 4.2), packaging (Section 4.3), and control complexity, power dissipation and form factor issues (Section 4.4). photonic packaging (Section 4.3), and control complexity, power dissipation and form factor issues The study is concluded in Section 5. (Section 4.4). The study is concluded in Section 5. 2. PIC Evolution 2. PIC Evolution Photonic integrated solutions are a promising technology for the 21st-century optical systems, Photonic integrated solutions are a promising technology for the 21st-century optical systems, under the current demand for flexibility/reconfigurability in optical communication networks [5,10]. under the current demand for flexibility/reconfigurability in optical communication networks [5] Di erentiated examples of PIC solutions include the implementation of photonic integrated optical [10]. Differentiated examples of PIC solutions include the implementation of photonic integrated transforms for data compression applications in di erent integrated platforms, e.g., indium phosphide optical transforms for data compression applications in different integrated platforms, e.g., indium (InP) [11,12], silicon nitride (SiN) [13], and new organic-inorganic hybrid materials [14]; SiN-integrated phosphide (InP) [11,12], silicon nitride (SiN) [13], and new organic-inorganic hybrid materials [14]; photonic dispersion compensator enabling extended reach pulse-amplitude modulation with four SiN-integrated photonic dispersion compensator enabling extended reach pulse-amplitude amplitude levels (PAM-4) transmission as a low-cost interface for data center interconnects (DCI) [15]; modulation with four amplitude levels (PAM-4) transmission as a low-cost interface for data center development of state-of-the-art sub-hertz fundamental linewidth (<1 Hz) photonic integrated Brillouin interconnects (DCI) [15]; development of state-of-the-art sub-hertz fundamental linewidth (< 1 Hz) laser, narrow enough to move demanding scientific applications to the chip-scale [16–18]; and a new photonic integrated Brillouin laser, narrow enough to move demanding scientific applications to the soft-packaging flexible platform approach for photonic integrated processors, based on the spatial chip-scale [16–18]; and a new soft-packaging flexible platform approach for photonic integrated light modulation operation principle [19,20]. Moreover, new concepts of PIC-to-PIC interconnects processors, based on the spatial light modulation operation principle [19,20]. Moreover, new concepts with integrated fan-in/fan-out multicore fiber applications for optical dense networks have been of PIC-to-PIC interconnects with integrated fan-in/fan-out multicore fiber applications for optical Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 3 of 19 reported [21]. Photonic integration appears as a dominant technology in high bandwidth optical communication systems [9], o ering increased valuable solutions in several innovative fields, such as bio-photonics [22], sensing [23], and space technology [24]. Nevertheless, PIC technology is still more expensive than standard microelectronics, which can restrict its application into some niche markets [5]. PICs are the equivalent of electronic integrated circuits (EIC) in the optical domain. As an alternative to transistors and other electronic components, PICs contain optical elements, such as modulators, detectors, attenuators, multiplexers, optical amplifiers, and lasers embedded in a single chip using a waveguide (WG) architecture [19]. The photonic integration technology is going through a similar evolution path as microelectronic integration, however, with a time delay of about 20 to 30 years [25]. Historically, the invention of the transistor in 1948 [26,27] launched microelectronic integration developments; analogously, the invention of the semiconductor laser in 1969 [28] was the breakthrough of photonic integration technology. Transistor and laser technologies were primarily implemented as discrete components. Microelectronics integration technology started with Kilby in 1959 [29] and maturated with the complementary metal-oxide-semiconductor (CMOS) [30] in the 1970s. A first PIC comprising a laser integrated with a modulator was reported in 1987 [31], marking the start of PIC exponential development, typically associated with Moore’s law [25]. Moore’s law forecasted a double in the number of components per integrated circuit about every two years, with a new technology generation introduced approximately every three years and an expected compound annual growth rate (CAGR) under the dozens [32]. Optical communications evolution has brought the advent of improved PIC, presenting an economic and sustainable alternative to data transmission [4]. PIC technology o ers compelling performance advances in terms of small weight and volume, low power consumption, high mechanical and thermal stability, and the ease for assembling a substantial number of complex systems [9]. Consequently, the current PIC-related contexts are evolving at a good rate with an overall worldwide concertation set of e orts aiming to reach a sustainable PIC ecosystem model [33,34]. From the 2000s when the first consortia started to consolidate the concepts around photonics multi-project wafer (MPW), the way for groundbreaking photonic integration developments was paved. State-of-the-art PIC-based consortia, such as JePPIX [35], TriPleX [36], and ePIX [37], pioneered the e ort in Europe and globally, followed by private and public-private arrangements, like AIM photonics [38], Compoundtek silicon photonics, and others [39]. They are working to replicate in optics what happened in the 80s–90s with electronics, e.g., the Marconi GaAs MPW runs and others [40]. The traction gathered by these consortia allowed a fast development of integrated optics simulators and of the process design software (PDS) market, supported by software suites running process design kits (PDK) from almost all available fabs. The development of a generic common language for the photonic design was an important breakthrough that allowed integrated photonics to be regarded as a promising sort-term technology. During these developments, many integrated and hybrid solutions emerged [41–43]; nonetheless, the majority were bulky, expensive, and typically non-replicable, making these approaches unfeasible to be integrated into further complex systems and subsystems. For instance, devices such as optical amplifiers [44], lasers [16,45], and modulators [46], are not supplied by the di erent integrated platforms due to limitations of semiconductor integration technology. Thus, it restricted the investment of the di erent labs and research institutes in the development of their concepts/testing to validate their contributions/solutions while waiting for the necessary developments of the technology. In the 90s, few basic building blocks (BB) were made available in a packaged version, e.g., the semiconductor optical amplifier (SOA) based Mach-Zehnder interferometer (MZI) [47], though with an expensive associated cost of several tens of thousands of euros. Di erent materials are suitable to produce PICs, nonetheless, only a few have been selected by actors in the ecosystem and, therefore, have gained traction into foundries, software suppliers, design houses, and fabless companies [48]. Current main photonic integration platform technologies Appl. Appl.  Sci.  Sci. 2020 2020 , 10,,  x10  , x  Appl. Sci. 2020, 10, x  4  of4  19 of   19  4  of  19  inteinte gragra tedt ed ph otonic photonic  pla pla tform tinte form  to gra  realize toted realize  ph PICs otonic  PICs  is  pla dr isiven  tdr form iven  by to  by the  realize  the  functiona  fu PICs nctiona l  isre ldr quire  reiven quire m by ents m the ents  of fu  the ofnctiona  the  devices  devices l re quire   ments of the devices  to be to  deve be deve loplop ed eand d and  the the  unto derly un be derly  deve ingi ng av lop a av ieladabi and llaeb compone l ethe  compone  underly ntsn (ac itsng t(ac iv av e/p tiv aie/p laassive balessive  compone ) fo)r  fo thre th differen nets differen  (activ t e/p plat t plat aforms ssive forms )  for  the different platforms  Appl. Sci. 2020, 10, x  Appl. Sci. 2020, 10, x  4  of  19  4  of  19  [33[,55 33,5 ,556],5. 6] An . An  overview  overview  of  the [of 33 the , 55 ke,5 y ke 6] chy. ar An chac ar overview teri acteri stics st ics be of tw  be the een tw ke een  the y  the ch diar ffe di acrffe eteri ntre st av ntics ai avlab  be ailab tw le int een le eint grat the egrat  ed diffe ed plat r eplat nt form  av form ai  lab  le integrated platform  Appl. Sci. 2020, 10, x  4  of  19  technolo technolo giesgies  is provided  is provided  intechnolo   Table in Table  1 gies [33  1 [33 ,56 is ,5 ,provided 567],5. 7] BB.  BB com   in com p Table onents, ponents,  1 [33  su,ch  56 su ,5 as ch7]  la as . sers, BB  lasers,  com  optical  poptical onents,  am apl m su ifpl iers, chif iers, as and  la and sers,     optical amplifiers, and  integrated photonic platform integra  to trealize ed photonic  PICs  ispla drtform iven  by to  realize the functiona  PICs isl  re drquire iven m byents  the  of fu nctiona the devices l require   ments of the devices  Appl. Sci. 2020, 10, 4024 4 of 19 detec detec tors, tors,   pose   pose   de sign design   ch allenge detec challenge tors, s  for s  pose  for their   their de  im sign  pim lem  p chlem eallenge nta ention tation s  in for   in a  their   SiaN  Si ‐based im N‐p based lem  monoli e nmonoli tation thic thic in  in  a te in Si gra te Ngra t‐ed based t ed   monolithic  integrated  to be developed and the un toderly  be deve inglop  avaeidla and ble  compone the underly ntsi ng (ac tav ivae/p ilaabssive le compone ) for then ts differen  (active/p t plat assive forms ) fo  r the different platforms  integrated photonic platform to realize PICs is driven by the functional requirements of the devices  platplat form form ; thi; sthi constrain s constrain  can plat can  be form  be overcom  overcom ; thise constrain  with e with  hy br hy can id br and  ibe d and  overcom /or /heterogeneous or heterogeneous e with hybr pro id pro  cand esses cesses /or, as heterogeneous ,  pre as pre sente sente d  d  processes, as presented  [33,55,56]. An overview of[3 the 3,55 ke ,5y6] ch . An arac overview teristics  be of tw theeen  ke ythe ch di arffe acteri rentst av icsai be lab twleeen  int ethe grat died ffe plat rentform  avai lable integrated platform  to be developed and the underlying available components (active/passive) for the different platforms  in Table in Table  1. Si 1.mil  Simil arly, arl hybr y, hybr id/he in id/he Table terogen t erogen 1. Siemil ous eoa rl us processes y, processes  hybrid/he  are are  templo erogen  emplo yeeodyus efor d processes   for lasers  lasers  and  are and  optic  emplo  optic al am ayle am plif d for plif ier lasier sers s   and optical amplifiers  technologies is provided technolo in Table gies 1 [33 is ,56 provided ,57]. BB com  in Table ponents,  1 [33 su ,56 ch,5 as 7].  la BB sers,  com optical ponents,  am su plifchiers,  as  la and sers,   optical amplifiers, and  Appl. Appl.  Sci.  Sci. 2020 2020 , 10,,  x10  , x  4  of4  19 of   19  [33,55,56]. An overview of the key characteristics between the different available integrated platform  o ering access BBs to BBs  ingeneric   Si in‐ ba Si‐sba eds e pr techno d ocesses techno logy. logy. BBs   and   in Si manufacturing ‐based technology. thr   ough multi-project wafer (MPW) runs are detectors,  pose  design  chdetec allenge tors, s  for pose   their   de sign imp lch emallenge entation s  for   in  their a  SiN  im‐based plem emonoli ntationthic   in   in a te Sigra N‐based ted    monolithic  integrated  technologies is provided in Table 1 [33,56,57]. BB components, such as lasers, optical amplifiers, and  Appl. Sci. 2020, 10, x  Appl. Sci. 2020, 10, x  4  of  19  4  of  19  inteinte gragra tsilicon edt ed ph otonic photonic (Si) pla [ 49 pla tform plat ,50 tform form ], toindium   realize to;  thi realize s  constrain PICs phosphide  PICs  is dr is can iven  dr plat iven  be form by (InP) overcom   by the ;  thi the  fus[nctiona   fu 51 constrain e nctiona with –53l ], hy rel and quire  can br reiquire d be and m silicon  ents overcom m/or ents   of heterogeneous   nitride the ofe  the  with devices  devices  hy (SiN) br   ipro d  and c [esses 48/or ,54 ,heterogeneous  as ]. pre The sente selection d   processes, as presented  detectors,  pose  design  challenges  for  their  implementation  in  a  SiN‐based  monolithic  integrated  Table Table   1.  Key 1. Key  fea tfe ure ature s from s from  thre Table  thre e availab  e1. availab  Keyle  fephotonic laet ure photonic s from  integ   integ thre ration er ation availab  platfor  platfor lem photonic s,m i.s,e. ,i. indiu e. ,integ  indiu mr ation phosphide m phosphide  platfor  m s, i.e., indium phosphide  to be to  deve be deve loplop ed eand d and  the Appl.  the  un in  derly un  Sci. Table derly  2020 ing 1. , 10 i  ng av Si , xmil a  av ilaaabirl Appl. llaey,b compone Appl.  lhybr  eSci. compone   Sci. 2020 inid/he   Table 2020 , n 10ts t,,erogen   n x 10 (ac   ts 1. , x  t(ac Si ivmil e/p etiv ous ae/p arlssive  processes y, assive  hybr ) fo)rid/he   fo th rare e th differen terogen  eemplo  differen ety oplat eus dt  plat for  forms processes  la forms sers     and  are  optic emplo aly am ed 4  plif of for  19 ier la  sers s   and optic 4 aofl 4 am  19 of  plif 19  iers  of the integrated photonic platform platto form realize ; this constrain PICs is can driven  be overcom by the e with fu nctional hybrid andr/equir or heterogeneous ements of pro the cesses, as presented  integrated photonic pla inte tform grated to  ph realize otonic PICs  pla tis form  driven  to realize  by the  PICs functiona  is driven l require  by the ments  functiona  of the ldevices  require ments of the devices  (InP), (InP),  sili con silicon  (Si), (S and i), and  sili con silicon  ni (InP), t rni idter si i(SiN) dliecon  (SiN)   monolithic (Si), monolithic  and sili technologies. con technologies.  nitride (SiN)      monolithic technologies.  BBs in Si‐based technology. BBs   in Si‐based technology.  [33[,55 33,5 ,556],5. 6] An . An  overview  overview  of  the of the  key ke chyar chac arteri acteri stics st ics betw  beeen tween  the the  diffe  dirffe entre av nt ai avlab ailab le int le eint grat egrat ed ed plat plat form form     to be developed and the to be un deve derlylop inge dav and aila the ble  un compone derly in Table ing nts  av 1. (ac aSiitlmil iv abe/p lea rlcompone ay, ssive  hybr ) fo id/he nr ts th (ac et erogen differen tive/peaotssive  us plat processes )forms  for th e differen  are emplo t plat yeforms d for la  sers and optical amplifiers  devices to be developed and the underlying available components (active/passive) for the di erent integrated photonic inte plainte tgra form gra ted to t ed ph realize  otonic photonic   PICs pla pla tform  ist form dr iven to  realize to by  realize  the PICs  fu PICs nctiona  is dr isiven  dr l re iven  quire by  by them the  fu ents nctiona  fu of nctiona  thel  re devices lquire  require m  ents ments  of  the of the  devices  devices     technolo technolo giesgies  is provided  is provided  in  Table in Table  1 [33  1 [33 ,56,5 ,567],5. 7] BB.  BB com com ponents, ponents,  such  su as ch  la assers,  lasers,  optical  optical  am aplmifpl iers, ifiers,  and and     [33,55,56]. An overview [33 of ,55 the ,56] ke . An y ch overview aracterist ofics the  BBs be ke tw in yeen   ch Si ‐ar the baac s edi teri dffe techno strics ent be av logy. tw ailab een  l ethe  int di egrat ffered ent plat  avaiform lable  integrated platform  Build Build inging  blo blo ck c(BB) k (BB)     InP Build InP   ing    blocSi k  (BB) Si    SiN InP SiN      Si  SiN  platforms [33,55,56]. An overview of the key characteristics between the di erent available integrated to be developed andto the be to un   deve bederly  deve loping lop ed  av eand da and i lthe ab lthe  eun compone  derly underly ingni ng av ts (ac a av ilataiv billaee/p b compone lea ssive compone ) fo nts r n th (ac tse  t(ac differen ive/p tive/p assive ta plat ssive ) fo forms )r  fo thre  th differen e differen t plat t plat forms forms     Table  1. Key features from Table three  availab 1. Key lfe e aphotonic tures from  integ  thre ration e availab  platfor le photonic ms, i.e.,  indiu integm ration  phosphide  platfor ms, i.e., indium phosphide  detec detec tors, tors,   pose   pose   de sign design   ch allenge challenge s  for s  for their   their   im pim lem plem enta ention tation   in   in a  SiaN  Si‐based N‐based   monoli   monoli thicthic   in teingra tegra tedt ed  technologies is provided technolo  in Table gies  1is [33  provided ,56,57].  BB in Table  comp 1onents,  [33,56 ,5 su7]ch . BB  as  com lasers, ponents,  optical su am chpl asif iers, lasers,  and optical    amplifiers, and  PasPas sivesive  components  components     ✓✓ Pas ✓✓ s ive  components ✓✓ ✓✓      ✓✓✓ ✓✓ ✓✓✓      ✓✓  ✓✓✓  [33,55,5(InP), 6]. An si overview licon (S[3i),3 [,and 55 3 of 3,5 , 55  the s6] ili,5.con   ke 6] An .(InP), y  An ni  overview ch tr iar overview d sieac li (SiN) con teri  of (S st monolithic  i), ics  the of and   be the  ketw  sy ke ili een ch con  y technologies. ar ch  the ni ac ar tteri r ac di idteri effe st (SiN) ics rst ent ics be monolithic  av tw  beai een tw lab een  the le   int technologies. the  dieffe  grat dirffe ent ed re  av nt plat   ai avlab form ailab le  int le eint grat egrat ed ed plat plat form form     platplat form form platform ; thi; sthi constrain s constrain technologies  can can  be  be overcom  overcom is provided e with e with  hyin br hyiT d br able  and id and /1 or[ /heterogeneous 33 or ,heterogeneous 56,57]. BB pro components,  pro cesses cesses , as,  pre as pre ssuch ente sente d asd lasers, optical amplifiers, Table  1. Key features from three available photonic integration platforms, i.e., indium phosphide  detectors,  pose  design detec   challenge tors,  pose s  for  de  their sign  im challenge plemensta  for tion  their   in  a  im Sip Nl‐em based enta  tion monoli   in thic a  Si  N in‐tebased grated  monoli   thic  integrated  technologies is provided technolo technolo  in Table gies Lase gies Lase  is rs 1   provided  [33 is rs  provided ,56,57] .in BB ✓✓✓   Table in ✓✓✓ com  Table   1p onents, Lase [33   1 [33 ,56 rs ⚪ ,5 , 56 ⚪ su  7] H,5.ch   7] BB H .as   BB com  la com sers, ⚪ ✓✓✓ ponents, ⚪  H p optical onents,   H    su ach  su m ⚪ as ch pl  H if la as iers,  sers,  lasers,  and  optical ⚪   optical  H  am aplmifpl iers, ifiers,  and and     in Table in Table  1. Si 1.mil  Simil arly, arl hybr y, hybr id/he id/he terogen terogen eous eo us processes  processes  are are  emplo  emplo yedy efor d  for lasers  lasers  and and  optic  optic al am al am plifplif iersier  s  (InP), silicon (Si), and silicon nitride (SiN) monolithic technologies.  platform and ; thi det s constrain ectors, plat can pose form  be;  design thi overcom s constrain e challenges  with can  hy be bri d overcom  for and/their or eheterogeneous  with implement  hybrid and  pro ation /or cesses  heterogeneous in , as a pre SiN-based sente pro d  cesses monolithic , as presente integrated d  Building block (BB)  Build InP  ing blockSi (BB)     InP SiN   Si  SiN  detectors,  pose  design detec detec   chtors, allenge tors,   pose   spose   for de  sign de their sign   ch  im allenge ch plallenge emesn ta for stion   for their   in their    im a  Si pim N lem p‐based lem enta ention  ta monoli tion   in   in athic   SiaN  Si in‐based N te‐gra based t ed monoli   monoli thicthic   in teingra tegra tedt ed  BBsBBs  in  Si in‐ ba Si‐sba eds etechno d techno logy. logy.     Modulators Modulators     ✓✓✓ ✓✓✓ Modulators     ✓✓ ✓✓      ✓✓✓ ✓ ✓   ✓✓  ✓  in Table 1. Similarly, in hybr  Table id/he 1.t erogen Similarleoy,us hybr  processes id/heterogen  are emplo eousy processes ed for lasers  are and  emplo  optic yeadl  for am la plif sers ier sand    optical amplifiers  platform; this constrain can be overcome with hybrid and/or heterogeneous processes, as presented in platform; this constrain platplat  form canform  be ; thi overcom ; sthi constrain s constrain e with  can  hy can  be Build br  be overcom id  ing overcom and blo /ore  cwith heterogeneous ke  (BB) with  hy  br hyid br and iInP d  pro and / orc /esses heterogeneous or heterogeneous , as Si pre   sente  pro d pro SiN  cesses c esses , as,  pre as pre sente sente d  d  Passive components  Pas ✓✓ sive    components ✓✓    ✓✓✓ ✓✓    ✓✓  ✓✓✓  BBs in Si‐based techno BBs logy.  in  Si‐based technology. SwiSwi tches tches     ✓✓ ✓✓   Swi   tches ✓✓ ✓✓     ✓✓ ✓ ✓   ✓✓  ✓  Table 1. Similarly in Table , hybrid  1. Simil/aheter rly,in hybr  Table in ogeneous  Table id/he  1. Si t1. erogen mil  Sipr mil arlocesses y, eaorl us hybr y,  processes hybr id/he ar id/he eterogen employed  tare erogen  emplo eous eo us processes ye for  dprocesses  for lasers  la sers are are   and emplo and emplo  optic optical yedya efor ld am   for la amplifiers plif sers  lasers ier and s  and  optic  optic BBs al am al am plifplif iersier  s  Table Table   1.  Key 1. Key  fea tfe ure ature s from s from  thre thre e availab e availab le photonic le photonic  integ  integ ration ration  platfor  platfor ms,m i.s,e. ,i. indiu e., indiu m phosphide m phosphide     Lasers  ✓✓✓ Lasers⚪    H  ✓✓✓ ⚪ H   ⚪ H  ⚪ H  Passive components  ✓✓  ✓✓  ✓✓✓  Optical Optical  am aplif mplif iersie  rs  ✓✓✓ ✓✓✓ Optical     am ⚪ plif ⚪  H ie rs H   ⚪ ✓✓✓ ⚪  H  H    ⚪ H  ⚪ H  (InP), (InP),  sili con silicon  (Si), (S and i),BBs  and  sili  in con sili Si con  ni‐ba t rni isdeterd i(SiN) d techno e (SiN)  BBs monolithic  logy. BBs monolithic  in  Si in ‐ ba Si technologies. ‐sba etechnologies. ds etechno d techno  logy.  logy.     in Si-based technology. Table  1. Key features from Table thre   1. eKey  availab  feature le photonic s from thre  integ e availab ration leplatfor  photonic ms,  i.integ e., indiu ration m  platfor phosphide ms,  i.e., indium phosphide  Modulators  ✓✓✓ Modulators   ✓✓    ✓✓✓ ✓    ✓✓  ✓  Lasers  ✓✓✓  ⚪ H  ⚪ H  Detec Detec torstors     ✓✓✓ ✓✓✓  Detec   tors ✓✓ ✓✓     ⚪ ✓✓✓ ⚪  H  H    ✓✓  ⚪ H  (InP), silicon (Si), and sili (InP), con  ni sitlircon ide  (SiN) (Si), and  monolithic  silicon ni technologies. tride (SiN) monolithic    technologies.  Switches  ✓✓ Switches✓✓     ✓✓ ✓   ✓✓  ✓  Build Build ing Table ing  blo  blo c1.k  Key c(BB) k (BB)  fe  ature   sInP Table  from InP Table      thre 1.  Key 1.e  Key availab  fe Sia  tfe Si ure al teure s  photonic from s from SiN  thre SiN Modulators   thre  integ e availab  e ravailab ation le   platfor photonic le photonic ms, ✓✓✓ integ  i.e integ ., rindiu ation   ration m platfor  phosphide  ✓✓ platfor m s,m i.s, e. ,i. indiu e., ✓ indiu m   phosphide m phosphide     Footprin Footprin t  t  ✓✓ ✓✓   Footprin   ✓✓✓ ✓✓✓ t      ✓✓ ✓ ✓   ✓✓✓  ✓  Table 1. Key features from three available photonic integration platforms, i.e., indium phosphide (InP), (InP), silicon (Si), and s(InP), ilicon (InP),  si ni li tcon si rilidcon  e(S (SiN) i), (S and i), monolithic  and  sili con silicon  ni ttechnologies.  rni idter i(SiN) de (SiN)  monolithic   monolithic  technologies.  technologies.     Optical amplifiers  ✓✓✓ Optical   amplif ⚪i eH rs   ✓✓✓ ⚪ H   ⚪ H  ⚪ H  Building block (BB) BuildInP ing  block (BB) Si   InP SiNSwi   tches Si   SiN ✓✓     ✓✓  ✓  ✓✓ ✓✓     ✓✓ ✓✓     ✓✓✓ ✓✓✓     PasPas sivesive  components  components     Chip Chip  cost cost     ✓ ✓Chip    cost ✓✓ ✓✓     ✓✓ ✓ ✓✓      ✓✓  ✓✓  silicon (Si), and silicon nitride (SiN) monolithic technologies. Detectors  ✓✓✓Detec   tors ✓✓     ✓✓✓ ✓✓✓ ⚪ H    ✓✓  ⚪ H  Optical amplifiers  ⚪ H  ⚪ H  Lase Lase rs  rs  ✓✓✓ ✓✓✓     Passive components Pas CMOS sCMOS ive ✓✓  components compa    compa t⚪ ib✓✓ ilt⚪  iitH b yil   it Hy   ✓✓ CMOS ⚪ ✓✓✓   ⚪  H   compa H   ✓✓ ✓✓ ti✓✓ b  il  ity   ✓✓✓ ✓ ✓    ✓✓  ✓  ⚪⚪ ⚪⚪     ⚪⚪  Building block (BB)Build   Build ing InP ing  blo    blo ck c(BB) k (BB) Si      InPInP   SiN     Si Si  SiNSiN     Footprint  ✓✓ Detec Footprin tors ✓✓✓ 1t   1   ✓✓✓ ✓✓ ✓    ✓✓✓ ✓✓ 1    ✓  Building Block (BB) InP Si SiN ⚪ H  Modulators Modulators     ✓✓✓ ✓✓✓     ✓✓ ✓✓     ✓ ✓  ⚪ ⚪ /✓✓ /✓✓ ⚪ /✓✓ Lasers  ✓✓✓ Lase  rs  ⚪ H  ✓✓✓ ⚪   H  ⚪ H  ⚪ H  Passive componentsPas   Pas sive ✓✓ sive  components   components ✓✓      ✓✓ ✓✓  ✓✓✓ ✓✓   ✓✓    ✓✓   ✓✓     ✓✓✓ ✓✓✓   ✓✓     Low Low ‐cost‐cost  pa ck paack gianggi ng  ⚪ Low ⚪   ‐cost    packaging  ⚪  2 2 2 Chip cost  ✓  Chip cost ✓✓       ✓✓ ✓    ✓✓    ✓✓  Footprint  ✓✓  ✓✓✓  ✓  SwiSwi tches tches     ✓✓ ✓✓     ✓✓ ✓✓     ✓ ✓  Modulators  ✓✓✓ Modulators     ✓✓  ✓✓✓ ✓  ✓✓  ✓  Passive components 33 33 333 Lasers  ✓✓✓ Lase Lase rs    rs  ⚪ H ✓✓✓ ✓✓✓ ⚪     H  ⚪⚪  H  H  ⚪⚪  H  H  CMOS compatibility  ⚪⚪ CMOS  compa✓✓ tibilit  y  ⚪⚪ ✓    ✓✓  ✓  Chip cost  ✓  ✓✓  ✓✓  Optical Optical Perform  am Perform  aplif mplif aience: rsaie nce:  rs ✓✓✓    ✓✓✓ ✓✓✓  ✓✓✓ very   very   good;  Perform  good;  ⚪ ✓✓  ⚪  ✓✓ H a nce:  good  H   good ✓✓✓ ;  ✓ ⚪ ;   ✓ mod  ⚪  H very   mod   eH s tgood;  ;e ⚪ st; ⚪   chal ✓✓  chal leng   good leng ing;ing ;  ⚪⚪ ✓;  ⚪⚪ mod very es very t;  challeng ⚪ challeng  challeng ing.ing  ing. ; ⚪⚪ very challenging.  Swi Lasers tches  ✓✓ Swi tches 333 ✓✓  ✓✓  ✓  ✓✓  ✓  H H Modulators  Modulators ✓✓✓ Modulators     ✓✓     ✓✓✓ ✓✓✓   ✓   ✓✓ ✓✓     ✓ ✓  1 1 ⚪ /✓✓ ⚪ /✓✓ H: hybrid/hete H: hybrid/hete rogeneous rogeneous  processe  processe H: hybrid/hete s tos over  to over corme ogeneous co me the  the desig   processe desig n chnalleng  chs alleng to es over  asso esco asso me ciated  cthe iated  with  desig  with  the n c  the monolithic halleng  monolithic es asso    ciated with the monolithic  CMOS compatibility  ⚪⚪  ✓✓  ✓  Modulators Detec Detec torstors     ✓✓✓ ✓✓✓     333 ✓✓ ✓✓     ⚪⚪  H  H  33 3 Optical amplifiers  Optical ✓✓✓ am  plifie⚪ rs  H  ✓✓✓ ⚪   H  ⚪ H  ⚪ H  Low‐cost packaging  Low‐cost packaging  ✓✓  ✓✓  ⚪  ⚪  Switches  Swi ✓✓ Swi tches   tches     ✓✓  ✓✓ ✓✓   ✓    ✓✓ ✓✓     ✓ ✓  1 1 1 2 2 2 2 2 integ integ rated rated  tec htec nol honol gy.ogy.  End End ‐fire integ ‐fire  cou r ated cou pling p tec ling  (lo hnol w (lo reflect owgy.  reflect  iEnd on); ion); ‐ fire  vertical   cou  vertical  pling  cou cou  p(lo ling w pl  ireflect (medium ng (medium ion); reflection).    vertical  reflection).    cou   p  ling (medium reflection).  ⚪ /✓✓ Switches 33 33 3 Footprin Footprin t  t  ✓✓ ✓✓     ✓✓✓ ✓✓✓     ✓ ✓  Detectors  ✓✓✓ Detec tors  ✓✓  ✓✓✓ ⚪   H  ✓✓  ⚪ H  Low‐cost packaging  ⚪  ✓✓  Optical amplifiers  Optical Optical ✓✓✓  am  aplif mplif iers ⚪ ie  rs H   ✓✓✓ ✓✓✓ ⚪     H  ⚪⚪  H  H  ⚪⚪  H  H  Performance:  ✓✓✓  very good; Perform   ✓✓ ance:   good   ✓✓✓ ;  ✓   mod verye good; st; ⚪  ✓✓ chal leng good ing ; ;✓ ⚪⚪   mod every st; ⚪  challeng  challeng inging .  ; ⚪⚪ very challenging.  Optical amplifiers 333 H H Chip Chip  cost cost     ✓ ✓  ✓✓ ✓✓     ✓✓ ✓✓     Footprint  ✓✓ Footprin   t  ✓✓✓  ✓✓  ✓  ✓✓✓  ✓  Sever Sever al adv al adv anta anta gesg and es and /orSever  /limi or limi tat al ions tadv ations  aca nta n ca gbe n es  be high  and  high lighted /or lighted limi tfrom at ions from  the ca the  n referre  be referre  high d tech lighted d tech nologies. nologies.  from  Hi the gh Hi referre  gh  d technologies. High  Detectors  ✓✓✓ Detec Detec t orstors     ✓✓  ✓✓✓ ✓✓✓ ⚪     H  ✓✓ ✓✓     ⚪⚪  H  H  H: hybrid/heterogeneous processe H: hybrid/hete s to overco rogeneous me the desig  processe n challeng s to over es asso come ci ated the desig  withn the  ch alleng monolithic es asso  ciated with the monolithic  Performance:  ✓✓✓  very good;  ✓✓  good;  ✓  modest; ⚪ challenging; ⚪⚪ very challenging.  Detectors 333 33 CMOS CMOS gain gain  compa , spee  compa , spee d,ti band d, iltiit band y illow  ity low   loss lo ar ssgain e ar three e,  three spee  of✓✓  d, the of✓✓  and  the   ma   low ma in at in lo tr at ss ✓ ibtr u ar ✓ ib tes eu  three  tof es  phot of  of phot  onic theonic  ma  devices’ in devices’  attr ib improved u improved tes of phot  performa H performa onic devices’ nce.nce.     improved performance.  Chip cost  ⚪⚪ ⚪⚪ Chip ✓    cost     ✓✓  ✓  ✓✓  ✓✓  ✓✓  1 1 2 2 integrated technology. Footprin  End‐integ fire t  cou rated pling  tec h(lo nol Footprin ✓✓ woFootprin  reflect gy.   End ti on);‐tfire ✓✓✓     vertical  coup  ling ✓✓  cou ✓✓  (lo pw li✓ ng reflect   (medium ✓✓✓ i✓✓✓ on);   reflection).  vertical    ✓ cou  ✓ pl ing (medium reflection).  H: hybrid/heterogeneous processes to overcome the design challenges associated with the monolithic  1 1 As As InP InP  is  ais direct  a direct  ba nba dga ndpga As  mat p  InP mat erial,  is erial,   ait direct  presen  it presen  batsn the dtsga the  best p mat  best  ave rial, ai avlab ai it lab le  presen ga le iga n perform in ts  perform the best ance, a av nce,  however, ailab  however, le ga iwith n  perform with     ance, however, with  ⚪ ⚪ /✓✓ /✓✓ CMOS compatibility CMOS ⚪⚪  compa   tibil✓✓ ity    ⚪⚪ ✓  ✓✓  ✓  Footprint 33 1 333 2 3 Low Low ‐cost‐cost  pa ck paack gianggi ng  ⚪ Chip ⚪     cost integ  rated technol Chip ✓ oChip ✓✓ gy.   cost ✓✓   End  cost    ‐fire   ✓✓  cou  pling ✓  (lo ✓✓✓ w   reflect   ✓✓ ion); ✓✓     vertical   ✓✓  cou ✓✓  pling   (medium reflection).  higher higher  assoc  assoc iateiate d loss d loss es du eshigher  edu toe  el to eassoc  celtreic 2ctariate li2 cdoping ad l doping  loss es from  du  from  ecurren  to curren  eletc tinj ritc einj action l doping ection  which  which  from  require   curren require s the t sinj the  incl ection  incl usiu owhich n si on   requires the inclusion      1 1 Several advantages and/or Sever  limiatlat adv ions anta  cang es be and  high /or lighted  limitat from ions  the can  referre be high dlighted  technologies.  from the  Hi gh referre   d technologies. High  ⚪ /✓✓ ⚪ /✓✓ Chip cost 3 33 33 Low‐cost packaging  Low CMOS‐cost ⚪ compa   packtaibgilinitgyCMOS    CMOS ⚪⚪ ⚪  compa   compa ✓✓   ti biltiitb✓✓ yil ity   ⚪⚪ ⚪⚪  ✓✓ ✓    ✓✓ ✓✓     ✓ ✓  of optic of optic al am al am plifplif iersier [5s5] [5. 5] of Reg .  optic Reg ardaing ard l ing am  sy plif stems systems ier‐son [5‐‐on 5] ch.‐ip ch Reg  (SOC) ipa (SOC) rding  com   sy com pstems lexity, plexity, ‐on InP ‐ch InP  ip plat  (SOC) plat form form   ha com  sha aps lexity, good  a good   InP   platform has a good  2 2 gain, speed, and low loss ar gain e three , spee of d, the  and ma low in  at lotr ssib aruet es three  of phot  of the onic ma devices’ in attrib improved utes of phot performa onic devices’ nce.  improved performance.      Perform Perform ance: ance:   ✓✓✓   ✓✓✓   very   very  good;  good;   ✓✓   ✓✓   good   good ;  ✓;   ✓ mod   mod esSever t;e ⚪ st; ⚪ a chal l adv  chal leng aleng nta ingg;ing  es ⚪⚪  ; and ⚪⚪  /very or  very limi  challeng t challeng ations ing ca .ing   n .be    highlighted from the referred technologies. High  CMOS compatibility 33 3 1 1 1 mama turit turit y wi y twi h chips th chips  comprising  comprising maturit  upy  up to wi  hundreds to th  hundreds chips comprising  of  components. of components. ⚪  up/✓✓  to S hundreds ili  Scon ilicon ‐ba‐s ba of e⚪ ds  components. ep⚪ dh /otonic p✓✓ h/otonic ✓✓  proce  proce  Silisses con sses  are ‐ba are  sed  photonic processes are  As InP is a direct bandgaAs p mat  InPe rial, is a  direct it presen  bantsd the gap  best mat eav rial, ailab  it lpresen e gain ts perform  the best ance,  avai however, lable gain with  perform   ance, however, with  Low‐cost packagingLow   Low ‐cost ⚪ ‐cost   pa ck paack gianggi ng  ⚪⚪   ✓✓     ✓✓ ✓✓     H: hybrid/hete H: hybrid/hete rogeneous rogeneous  processe  processe s tos over  to over come co me thegain   the desig  desig , spee n chnalleng d, ch and alleng es low  asso es  asso lo ciss ated c ar iated  ewith  three  with  the  of the monolithic  the  monolithic  main  at tributes of photonic devices’ improved performance.  1 2 Performance:  ✓✓✓  very Perform  good; ance:   ✓✓  ✓✓✓   good ; very ✓  mod  good; es t;✓✓  ⚪  chal good leng ;  ✓ ing  mod ; ⚪⚪ est; ⚪  very chal 2 challeng lenginging ; ⚪⚪ .   very 2  2challenging.  Low-cost packaging 33 complementary complementary  metal  metal ‐ox‐ide ox complementary ide ‐sem‐sem iconduc iconduc tor metal  tor (CMOS  (CMOS ‐oxide )‐co‐)sem ‐mpat compat iconduc  /ible, 33 ible,  altor lowi  al lowi (CMOS ng ng its  it)in‐sc t oeinmpat gra  tegra tion ible, tion  to  al be tolowi   be run ng run    it s integration to be run  1higher 1  associated losses du higher e to el 2assoc ec2triicate al doping d losses from  due  to curren  electtr iinj cael ction doping  which  from require  currenst  the inje incl ction us which ion   requires the inclusion  integ integ rated rated  tec htec nol honol gy.ogy.  End End ‐fire‐fire  cou cou pling pling  (low (lo reflect w reflect ion); ion);    vertical    vertical  cou cou pling pl i(medium ng (medium  reflection).  reflection).     As InP is a direct bandgap material, it presents the best available gain performance, however, with  H: hybrid/heterogeneous H: processe  hybrid/hete s to over rogeneous come the  processe  designs  to ch alleng overcoes me asso  thec idesig ated nwith  challeng  the monolithic es associated    with the monolithic  in ain CMO  a CMO S fou S fou ndry ndry  wh wh ichinic provides  ha  provides CMOS  we fou  we lln‐controlled dry ll‐controlled  which  and provides  and  more  more   we rapi lrapi l‐dcontrolled  sc dal scab aliab lit yiand l ito ty   the to more  the  fa brica  rapi fabrica dti osc ntial onab  ility to the fabrication  of optical amplifiers [55]of . Reg  optic ardaing l am sy plif stems iers ‐[5 on5]‐ch . Reg ip (SOC) arding com  systems plexity, ‐on ‐InP chip plat  (SOC) form com  hasp lexity, a good InP    platform has a good  Performance:  ✓✓✓ Perform very Perform  good; ance: a✓✓ nce:   ✓✓✓    ✓✓✓ good  very ;  ✓ very   good; mod  good; e s✓✓ t;  ⚪ ✓✓   good  chal   good leng ;  ✓;  ing ✓ mod  ; mod ⚪⚪ est;e ⚪ st ;very  ⚪  chal  chal challeng lengleng ing;ing ing  ⚪⚪ ;.  ⚪⚪  very very  challeng  challeng ing.ing   .  Performance: 1 333 very good; 1 higher 33  assoc good; 2 iate3 d loss modest; es due to 2  elecchallenging; trical doping from curren very t injchallenging. ection which requires the inclusion  integrated technology.  integ End‐rfire ated cou  tecphling nol o(lo gy. w  reflect End‐fire ion);  cou   p vertical ling (lo cou w reflect pling i(medium on);   vertical  reflection).  coupling    (medium reflection).  environment environment  [42] [4. 2] Never . Never thenvironment etles hesles , as s,  com as com p [4 onents 2] ponents . Never  in  siin thli esi con les licon  ssubs , as subs  com trate trpate sonents  ussua  usllua yin llha si y vliha econ  v higher e  subs higher  dimensions trate  dimensions s usuall y ha  ve higher dimensions  Sever Sever al adv al adv anta anta gesg and es ma H: and turit /or hybrid/hete  /limi or y  wi limi tat thions t chips atrogeneous ions  ca comprising n ca H: be n   hybrid/hete  H: ma processe be high   hybrid/hete turit high lighted  up ylighted s  to wi to rogeneous  over t  h hundreds from r ogeneous chips  co from  me the  processe comprising   the the  referre   of processe  desig   referre components. s d nto  cstech  over h  dup to alleng  tech  over  nologies. to co me hundreds nologies. es co Sili  me asso the con   the  desig cHi i‐ated ba   desig gh Hi  of sne    gh with ccomponents. dhn p alleng   chh the otonic alleng  es monolithic  asso es proce  asso  Scili iated con csses  iated  with ‐ba  are  with s the e d   the p monolithic hotonic  monolithic  proce     sses are  H: hybrid/heterogeneous processes to overcome the design challenges associated with the monolithic integrated of optical amplifiers [55]. Regarding systems‐on‐chip (SOC) complexity, InP platform has a good  than than  in  InP in InP  an dan sinc d sinc e sieli si con lithan con  photonic  photonic  in InPs  an lasck d la sinc  lickght lieght   si soliurce  con source  sphotonic  and s and  am apl sm la ifpl ck iers, if liiers, ght  InP  InP so‐based urce ‐based s platforms  and platforms  ampl if priers, o pr viod InP vei d‐ebased    platforms provide  1 2 1 1 1 2 2 2 gain gain , spee , spee d, and d, technology  and  low low  loss lo . ar complementary sse End-fir  integ ar three e three rated  of e coupling   the  of tec the  hma  nol metal  ma in ogy. (low  at in‐integ tr ox  at End ibinteg complementary ide rtr eflection); urib‐tated fire es‐u sem r tated of es  cou tec i phot of conduc  htec p nol phot ling honic vertical onol gy. (lo onic  tor ometal  w devices’ gy.  End   reflect (CMOS  devices’ coupling  End ‐‐fire ox‐iide  fire on);  improved cou )‐‐ c improved sem  cou o p (medium  mpat ling vertical piling conduc  (lo ible, performa w  (lo cou   performa reflect rw eflection). al tor p reflect llowi ing (CMOS ion); nce.  (medium ng ion); nce.     it vertical s )  ‐ vertical in co reflection). tmpat e gra cou tcou ible, pion ling p  l to ial (medium ng lowi be (medium  run ng   reflection). its  reflection). integra  tion    to be run  maturity with chips comprising up to hundreds of components. Silicon‐based photonic processes are  Several advantages and Sever /ora limi l adv tataions ntag es ca nand  be/ or high  limi lighted tations from  can  the be  high referre lighted d tech from nologies.  the referre  High d technologies. High  a hiag hi hegrh pot er pot enteiantl ia for l  for volume  volume a hi gschaling  esc r aling pot and ent and ia inl tegr  for integr  avolume tioantio [2n 5] sc [2. aling 5] Despite . Despite  and the  in the  tegr high  high a tpr ion ocessin pr [2ocessin 5]. Despite g tech g tech nology  the nology  high     processing technology  As As InP InP  is  ais direct  a direct  ba nba dga ndin pga  mat ap  CMO mat erial, erial, S  itfou  presen  itn presen dryts wh  the tsicin the  hbest   aprovides   best CMO  av ai av Slab ai fou we lab le nga llldry e‐controlled  iga n  perform iwh n perform ich  provides and ance, a nce, more  however,   however, we rapi ll‐controlled d with  sc with al abi l iand ty to more  the fa rapi brica d tsc ioal n ability to the fabrication  gain, speed, and low lo gain ss ar , spee e three d, and  of the  low ma loin ss  at artrecomplementary  ib three utes of of the  phot ma onic in metal  at devices’ trib‐ox utide es improved  of‐sem  phot iconduc onic performa  devices’ tor (CMOS nce.  improved   )‐compat  performa ible, allowi nce. ng its integration to be run  mama turit turit y ofy  si oflicon  silicon  photon  photon ics, maics,  turit as  an asy  an  ind of  ind si irlicon ect ir eba ct photon  ndga bandga p ics, ma p  ma tas eria an telria  na ind l tiv na ireetiv ct ga eba iga nndga  is in difficult  isp difficult  mate to ria  realize to l na realize tiv eun ga der un inder   is difficult    to realize under  Several advantages Sever andSever /or al  limi adv al adv taat nta ions anta ges ca g and esn  and be /or high  /limi or limi lighted tations tations   from can ca be n the  be high  referre  high lighted lighted d tech  from  nologies. from  the the  referre   Hi referre ghd  tech d tech nologies. nologies.  Hi gh Hi gh  environment [42]. Nevertenvironment heless, as com [4p2] onents . Never  int si heliles con s,  subs as com trate ponents s usua lliny  siha liv con e higher  substr dimensions ates usually  have higher dimensions  higher higher  assoc  assoc iateiate d loss d loss es du es edu toe  el toe celtreicctarli cdoping al doping  from  from  curren  curren t injt einj ction ection  which  which  require  require s the s the  incl incl usiu on si on  As InP is a direct banAs dga InP p mat  is ae rial, direct it  presen bandgatsp  the mat in  abest e rial, CMO  av itai S presen  lab foulen dry ga ts ithe n wh  perform  best ich  provides avaai nce, lab lhowever, e  we gailnl‐ controlled perform  with ance,  and however,  more rapi with d sc  alability to the fabrication  Several advantages and/or limitations can be highlighted from the referred technologies. High thisthi pla s pla tform. tform.  The The  pla pla tform tform thi fe s at pla feures attform. ures  are  are  The in‐ between in pla ‐between tform InP  fe InP  at and ures  and  ul are tra  ul‐tra  low in‐‐low between  los slos SisN  Si InP  techno N  and techno  logies, ultra logies, ‐low  with   with los  s  SiN technologies, with  gain, speed, and lowgain  logain ss,  ar spee ,e spee  three d, and d, of and   low the low   ma loss in lo ar ss ate tr ar three ib e u three tes of of  the of phot  the  ma onic ma in at in tr devices’  at ibtruib tes u tof es improved   phot of phot onic onic  performa  devices’  devices’  nce. improved  improved    performa  performa nce.nce.     of optic of optic al am al am plifplif iersier [5s5] [5than . 5] Reg . Reg  in ard InP aing rd an ing  sy d stems  sinc systems e ‐si on li‐‐con on ch than ‐ip ch photonic   (SOC) ip in  InP (SOC)   an com s la d com ck sinc p lexity, lipght elexity,  si liso con InP urce  InP   photonic plat s  and plat form  aform m s  pl ha lack if sha iers,  alis ght good  a InP  good  so ‐urce based   s and  platforms  amplif iers, prov InP ide ‐based platforms provide  higher associated losshigher es due assoc  to eleiate ctridc aloss l doping es du efrom environment  to el curren ectricalt   doping inj [42] ection . Never  from  which th curren eles require s, as t inj  com se ction the ponents  incl  which us iin on  si require   licon subs s thetr incl atesu sus ioua n lly have higher dimensions  some some  activ  acetiv dee tde ecttieoctni oelnem  elem some entsents  but  ac but tiv  noe  no li de ght liteght  ct soiource  so n urce el em solutions,  so ents lutions,  but and  no and   li me ght me di so adl urce ioptic al optic  so al lutions, losses al losses  (am  and  (am id me  InP idd InP  iand al  optic and     al losses (amid InP and  gain, speed, and low loss are three of the main attributes of photonic devices’ improved performance. As InP is a direct baAs nd As ga InP pInP   is mat   ais edirect  rial, a direct  it ba presen  nba dga ndpts ga mat  the p mat e best rial, erial,   av it presen ai itlab  presen lets ga the ts in  the  perform best best  av ai av alab nce, ailab le however,  ga le iga n perform in perform  witha nce, ance,  however,  however,  with  with     mama turit turit y wi y twi h chips th chips  comprising  comprising a high eup r pot   up to  ehundreds to nt hundreds ial for  volume of  acomponents. of hi components. g hsceraling  pote  and Sntiliia Scon  lili in for con tegr ‐ba volume ‐sba aetdio s epndh  [2 otonic  psc h5]otonic aling . Despite  proce  and  proce sses   in the sses tegr   are high  aare  tio pr n ocessin [25]. Despite g tech nology the high   processing technology  of optical amplifiers of [5 5] optic . Reg ala am rding plif sy ierstems s [55]‐.on  Reg than ‐chaip rd in ing (SOC)  InP sy an stems com d sinc p‐lexity, on e si‐ch licon ip InP  (SOC)  photonic  plat form com s la p ha lexity, cks li aght  good  InP  source   platsform  and  aha mspl aif iers, good InP   ‐based platforms provide  SiN) Si N) [55] [5. Re 5]. gRe ard gaing rding  wa wa velevSin eN) le gtnh [5 g properties, t5] h .properties,  Regarding  Si/S  Si wa iO /Sv‐ iO an ele‐ dn an g InP d th InP  ‐properties, ba‐sba eds pl eda pl tf Si oart/S m foisrOm are ‐ san are  main d  InP main ly‐ba use lys euse dd  in pld anear  in tf onear r‐ms‐ are mainly used in near‐ higher associated loss higher eshigher  du assoc e to assoc  eliate ecitate dri closs adl  loss doping es du es edu  to from e  el toe  cel curren treicctarli cdoping ta inj l doping ection  from   which from  curren  curren  require t injt einj sction  the ection   incl which  which usio require n  require s the s the  incl incl usiu on si on  complementary complementary As InP metal is metal a dir ‐ox‐ma ide ect oxide turit ‐sem bandgap ‐sem yiconduc  ofi conduc silicon tor material,   tor photon (CMOS  (CMOS ma ics, )‐turit c it oas )‐mpat pr c oan ympat  esents of ind ible,  silicon iible, r eal ctthe lowi    ba al photon lowi ndga ng best  ng itp ics, s   available ma itin sas t tein e gra an ria te gra ind tl ion natiion tiv r gain to ect e  be  to ga ba  be irun ndga performance, n  isrun   difficult p  materia tol  realize nahowever tive  ga unider n is , difficult with  to realize under  a higher potential for volume scaling and integration [25]. Despite the high processing technology  maturity with chips comprising maturity wi up th  to chips  hundreds  comprising  of components.  up to hundreds  Silicon of‐ ba components. sed photonic Sili proce con‐ba sses se dare ph  otonic processes are  infrinfr ared ared  (NIR)  (NIR) , wh , wh ile ile sili si con liinfr con  nitride ared  nitride  (NIR)  can ca operate ,n wh  operate ile  from sili from con visib  nitride  visib le to le ca  NIR ton  NIR operate  [48] [4. 8] .from    visible to NIR [48].  of optical amplifiersof [5 optic of 5] .optic  Reg al am aard l am plif ingplif ier  sysier stems  [5s5] [5. ‐5] Reg on . ‐Reg ch ard ipaing  rd (SOC) ing  sy stems sy com stems ‐pon lexity, ‐‐on ch‐ip ch  InP (SOC) ip (SOC)  plat com form  com plexity,  ha plexity, s a  InP good  InP  plat   plat form form  ha sha as good  a good     this platform. The platform this fe pla atures tform. are The  in‐ between platform  InP feat ures and  ul are tra in‐low ‐between  loss Si InP N techno  and ul logies, tra‐low with  los s SiN technologies, with  in ain CMO  a CMO S fou S fou ndry ndry  wh wh ichic provides h provides   we  we ll‐controlled ll‐controlled  and and  more  more  rapi rapi d sc dal scab aliab lityil ito ty  the to the  fabrica  fabrica tionti on  complementary higher associated  metalcomplementary ‐oxide‐losses semiconduc  due metal tor to‐ox  (CMOS electrical idema ‐sem turit )‐cioconduc mpat ydoping  of siible, tor licon  (CMOS al fr photon lowi omng )‐curr c ics, it ompat s  as in ent t an eible, gra injection ind t ion al irlowi e ct to  ba be ngndga which   run its in p tma egra requir teria tion l na  es totiv be the e  run gainclusion in  is difficult to realize under  Ultra Ultra ‐low‐low  los slo Si ssN Si pNlan plar an liar Ultra ght  light w‐low aw vea  vcirc loes scirc uits  SiN uits  (P pLC) l an (PLC) ar wit  li ght wit h pw hrop  apvrag op e circ at agioat uits nio los n (P slos LC) below s below  wit 0. h1  p 0.dB r1op /dB m ag /hav at mio hav en  los e  s below 0.1 dB/m have  maturity with chips ma comprising ma turit turit y wi y  tup wi h chips t to h chips  hundreds  comprising  comprising  of components.  up  up to  hundreds to hundreds  Silicon  of  components. ‐of ba components. sed photonic  Sili  Scon proce ilicon ‐basses ‐sba eds  are epdh  otonic photonic  proce  proce ssessses  are are     some active detection elem some ents  ac but tiv no e de light tect so ionurce  elem soents lutions,  but  no and li ght med so iaurce l optic soalutions, l losses  and (am ime d InP dia and l optic   al losses (amid InP and  environment environment  [42] [4. 2] Never . Never thetles hesles , as s,  com as com ponents ponents  in  siinli si con licon  subs subs trate trate s ussua  usllua y llha y vha e v higher e higher  dimensions  dimensions     in a CMOS foundry in wh aic CMO h provides S foun dry wel l‐wh controlled ich thi provides s pla  and tform.   more wel lThe ‐ controlled rapi pla d tsc form al ab and  ife li at tmore yures  to the   rapi are fa d inbrica  ‐sc between altab ioinli ty InP  to  the and fa ulbrica tra‐low tion  loss SiN technologies, with  of optical amplifiers [55]. Regarding systems-on-chip (SOC) complexity, InP platform © © has a good © been been   demonstrated   demonstrated   by  by Un been Un ivers ivers  idemonstrated ty iof ty  Ca of liCa folirnia fo  by rnia ,  Sa Un , nt Sa ivers ant  Ba a irBa ty ba rrof baa  (UCS rCa a li(UCS foB) rnia  B) and ,  and Sa  Li nt oaLi n iBa oXnri X brease r arear se (UCS ch ar ch [5B) 8]  [5 ,and  8],   LioniX   research  [58],  complementary metal complementary ‐complementary oxide‐semiconduc  metal  metal tor‐ox (CMOS ‐ide oxide ‐sem‐sem )‐iconduc coimpat conduc tor ible, tor (CMOS  al (CMOS lowi)ng‐co) it‐mpat cso mpat intible, egra ible,  talion lowi  al to lowi ng be ng it run s  itins t eingra tegra tiontion  to  be to  be run run     than than  in  InP in InP  an dan sinc d sinc e sieli si con Si licon N) photonic  [5 photonic 5]. Resg la asrd ck laing  lickght  li wa ght  so veurce Si so leN) nurce gs [5 tand h5] s properties,  and .  Re amg apl am rd ifpl iers, ing if Si iers,  wa  /S InP iO vInP ‐e‐ based le an‐nbased dg tInP h platforms  properties, ‐ platforms based pl pra oSi t pr fvo/S irodm ivO ei sd‐  are an e  d main  InP‐ly ba use sedd pl inat near form‐s are mainly used in near‐ environment [42]. Never environment theless, as  [4 com 2]. p Never onents th einles some  sisli, con as ac com tiv  subs ep de onents trtate ectsi ous n in ua e si lem llliycon  ents ha vsubs  ebut  higher tr no ate lis ght dimensions  usua  sollurce y ha so v elutions,  higher  and dimensions  medial  optical losses (amid InP and  orders orders   of  magnitude of  magnitude  lowe  lowe orders r  than r  than   of ot h magnitude ot erh reported er reported  lowe   pla  pl trf oathan rtm fosrm .  ot As s.h  As ear  re reported as  re ulst,u  high lt,  pl high ‐ape tfo‐rpe rfomrrsma fo. rAs ma nc ean  cpa re e sspa suilvst,es i high ve  ‐performance  passive  maturity with chips comprising up to hundreds of components. Silicon-based photonic processes in a CMOS foundryin wh  ain CMO ic ah CMO  provides S fou S fou ndry   we ndry  lwh l‐controlled  wh ichic provides h provides  and  we  more   we ll‐controlled l lrapi ‐controlled d sc aland ab and i limore ty  more to  rapi the rapi  dfa brica sc dal scab taliioab ln it yil ito ty  the to the  fabrica  fabrica tionti on  a hiag hi hegrh pot er pot enteiantl ia for l  for volume  infr volume ared  scaling   sc (NIR) aling  and ,  wh and  inile tegr  in sitegr liacon tinfr ioant io nitride ared  [2n5] [2 .(NIR)  5] Despite  ca . Despite n ,operate  wh the ile the   si high  from li con high  pr  visib nitride  ocessin processin le  to ca g  NIR ntech  goperate  tech  nology [48]nology .  from     visible to NIR [48].  than in InP and since than silicon in  photonic InP and sinc s lack e si lilight con so Si photonic urce N) [5s 5] and .s Re la agck mapl rd light ifing iers,   so wa urce InP vele‐sbased  nand gth  a properties, platforms mplifiers,  pr InP Sio/Sv‐ibased iO de‐  an dplatforms  InP‐base d pr pl ovaitdfoer ms are mainly used in near‐ components components  are are  en abled enabled  bycomponents   by thi sthi pla s pla tform, t form, are thou  en thou abled gh gh electr  by electr  thi ical s ical pla  pump  tpump form,  for  thou  for ga iga ngh is in  electr una  is una vical aivlaai bl pump laebl due e  due for  to   ga th toe ith n   is e  unavailable due to the  environment [42]. Never environment environment theless, as [4 com 2] [4. 2] Never p. onents Never thet les in he ssi les , lias scon ,  com as  subs com ponents tr ponents ates  in us  si ua inli llsi con yli ha con  subs v esubs  higher trate trate s  us dimensions sua  usllua y llha y vha e  v higher e higher  dimensions  dimensions     mama turit turit y ar of ey  si of complementary licon  silicon  photon  photon ics,ics,  as Ultra   an as metal-oxide-semiconductor   ‐an ind low ind ir eloct isr seba ct Si ndga ba N ndga plp an ma ar pUltra   ma tlieght ria te‐lria w low  na alv tiv na  elo circ etiv s sga (CMOS)-compatible,  eSi uits  iga n N is i pn(P ldifficult  an isLC)  difficult ar  wit light  to h w  p realize toarop v realize e ag circ  at unuits io allowing  der un n  der los  (PLC) s  below  wit itsh 0. integration p1r op dBag /mat hav ion elos   to s below be  0.1 dB/m have  infrared (NIR), while silicon nitride can operate from visible to NIR [48].  a higher potential fora  volume higher  pot scaling entia and l for  in volume tegratio scnaling  [25].  and Despite  integr  the at io high n [2 pr 5]ocessin . Despite g  tech the nology high pr ocessing technology  insu insu latilng ati ng nat  nat ureu  rofe   of SiN/Si   SiN/Si insu O  glas O la tiglas ng s  WG  snat   WG su r[e55] s  of [55] .  Howe Si. N/Si Howe ver, O ver, glas   the sthe   de WG  mo des mo ns [55] tns ra. ttiHowe roanti oof n  ver, of optic   optic the al  gai ade l mo gai n  usin ns n  tusin rga tiogn   of  optical  gain  using  © © than in InP and sincethan  sithan licon  in  InP  in photonic  InP  an dan sinc ds  la sinc eck sie lili si con ght licon   photonic source  photonic s and s las ck a la m lick pl ght ifliiers, ght  source  so InP urce s‐ based and s and  am platforms  aplmifpl iers, ifiers,  InP  pr InP o‐based vid‐based e   platforms  platforms  pro pr viodvei de  been  demonstrated  by  Un been ivers  demonstrated ity  of  California   by , Un Sant ivers a  Ba ityrb  of ar aCa  (UCS lifornia B) and ,  Sa nt Liao nBa iXrb are rase  (UCS arch B) [5 8] and ,    LioniX   research  [58],  thisthi pla s pla tform. tform.  The The  pla pla tform tform  feat feures atures  are are  in‐ between in‐between  InP InP  and and  ultra  ul‐tra low‐low  los slos SisN Si techno N techno logies, logies,  with  with     maturit run y of in silicon a CMOS  photon maturit foundry ics,y as of  an silicon  ind which i rphoton ect ba pndga rics, ovides  as p  ma an Ultra  tind well-contr eria‐low irl ena ct lo tiv ba ssendga   Si ga olled Nin pp is ma lan difficult and tar eria  light lmor  na to wtiv arealize evee rapid  ga circ in un  uits is scalability der difficult  (P LC)  wit to realize h to prop the  un agat der fabrication io n loss below 0.1 dB/m have  erbium erbium ‐dope ‐dope d WG d WG  distrib  distrib erbium uteudte Br d‐ ag dope Brgag rg d eflec   rWG eflec tor distrib  tor (D BR (Du)BR te and )d  and Br distrib ag distrib g ru eflec teudte tor feedb d  feedb (DBR ack)a  c(DFB) and k (DFB)  distrib  laser  lau ser  arrays te darrays  feedb    ack (DFB) laser arrays  a higher potential for a  hi volume ag hi hegrh pot e rsc pot ealing nteiantl  ia and for l  for volume  in tegr volume a tsc ioaling n sc [2 aling 5] and . Despite  and  integr  in tegr the atio ahigh ntio [2n5]  pr [2. 5] ocessin Despite . Despite g the  tech  the  high nology  high  pr ocessin  processin g tech g tech nology nology     some some  activ  acetiv dee tde ecttieoctni oelnem  eorders lem entsents  but   of but   no magnitude   no light light  source  so lowe urce  so orders rlutions,   so than lutions,   of  ot  and magnitude he and r  me reported  me diadl  ioptic lowe al  pl optic aart lf than losses oarlm losses  sot .  (am As he (am r  iadreported   re InP ids uInP  land t,  high and   pla t‐fpe orrm fosr.ma  Asn cae  re  pa suslsti,v  high e  ‐performance  passive  this platform. The plathi tform s pla fe tform. atures The  are pla  in‐tbetween formbeen  feat InP ures   demonstrated  and  are  ul intra ‐between ‐low   by  los Un InP sivers  Si and Ni ty techno   uloftra  Ca‐logies, low lifo rnia los with s,  Si SaN  nt techno a  Barblogies, ara  (UCS  with B)  and  LioniX   research  [58],  environment [42]. Nevertheless, as components in silicon substrates usually have higher dimensions maturity of silicon photon mama turit turit ics, y of as y  si of an licon  si ind licon  photon ire ct photon  baics, ndga ics,  asp  an as ma  an ind te ria ind irelct ina r eba ct tiv ndga ba e ga ndga p in ma  is p  difficult ma teria telria nal  tiv to na realize etiv gae iga n  is iun n difficult  is der difficult    to  realize to realize  un der under     SiN) Si N) [55] [5. Re 5]. gRe ard gaing rding  wa wa vecomponents levn ele gtnhg properties, th properties,  are en Si abled /S SiiO /S ‐ components by iO an ‐ thi dan InP sd pla  InP ‐ba tform, ‐s ba eare ds pl e en dthou a pl tabled foartgh m fosr  by electr m are s thi  are  main ical s  main pla ly pump t form, use ly use d for   in thou d near   in ga gh near in‐  is electr  ‐unaical vaila pump ble due  for to ga thine  is unavailable due to the  some active detectionsome  elem ents activ but e de no tect liight on  eso lem urce ents orders  so but lutions,   no of  magnitude li and ght  so me urce dia lowe  lso optic lutions, r athan l losses  and   oth  (am me er d reported id ia lInP  optic  and apl l  losses atform (am s. As id  InP a  re and sult ,  high‐performance  passive  Appl. Appl.  Sci.  Sci. 2020 2020 , 10,,  x; 10 doi: , x; doi:     Appl. Sci. 2020, 10, x; doi:  www.mdpi.com/ www.mdpi.com/ journal/applsci journal/applsci   www.mdpi.com/   journal/applsci  than in InP and since silicon photonics lack light sources and amplifiers, InP-based platforms provide this platform. The pla thitsthi form  pla s pla t form. fetat form. ures  The  The are  pla  in pla tform ‐between tform  feat feures  at InP ures   are and are  in ul‐ between in tra‐between ‐low los  InP s InP   Si and N and   techno ultra  ul‐tra low logies, ‐low  los  slos with  SisN Si  techno N techno logies, logies,  with  with     infrinfr ared ared  (NIR)  (NIR) , wh , wh ile ile sili si con insu licon  nitride la tnitride ing  ca nat n ca uoperate rne  operate of  Si from N/Si insu  from  O visib l aglas  visib ting les  to lnat WG e  NIR tou srNIR  e [[4 55] of8] [4 ..Si  8] Howe N/Si .  Over,   glas  the s  WG   demo s  [55] nst.r aHowe tion  of ver,   optic   thea lde  gai mo n ns usin tratgi on  of  optical  gain  using  SiN) [55]. Regarding wa SiN) ve le [5n5]g.t Re h properties, garding wa Siv/S eleiO ncomponents g‐ tan h d properties,  InP‐ba are sed  Si en  pl/Sabled aitO fo‐ ran m by sd are   InP thi main s‐ ba pla setly d form,   pl use atd fthou o in rm near sgh are ‐electr  mainical ly  use pump d in  for near ga‐ in is unavailable due to the  some active detectiosome n esome lem acents tiv  acetiv  but  dee t de no ectt ielioct ght ni oe lnso em  eurce lem entsents  so but lutions,  but  no  no light   and light  so me urce  sodurce i aso l optic lutions,  solutions, al losses  and and  me  (am  me diiaddl  ioptic InP al optic  and al losses a  l losses  (am (am id InP id InP  and and     Ultra a Ultra higher ‐low‐low  los slo potential  Si ssN Si pNerbium lan plar an for liarght ‐dope  light volume wadw v eWG a vcirc e  circ uits distrib scaling uits  (P erbium LC) u (P teLC) d and  wit  Br‐dope  wit h ag integration pghr dop  rp eWG rflec ag opat ag tor  distrib ioat n(D io los nBR [ 25 uslos te )below  ]. sd and   below Br Despite  ag distrib  0.g1   0.dB re1flec  u/dB m te the  d tor /hav m feedb   high hav (D e  BR ea c)pr k and  (DFB) ocessing  distrib  laser ute technolog arrays d feedb   ack y(DFB) laser arrays  insulating  nature  of  SiN/SiO  glass  WGs  [55].  However,  the  demonstration  of  optical  gain  using  infrared (NIR), while infr silicon ared nitride  (NIR) ,ca wh n ile operate  silicon from  nitride  visib calen  to operate  NIR [4 from 8].   visible to NIR [48].  SiN) [55]. RegardingSi wa N) Siv N) [5 ele5] [5 n.g Re 5]th. g Re properties, ard gaing rding  wa wa v Siele /S vn eiO le gt‐ nhan g properties, th d  properties, InP‐ba©se Si d © /S pl SiiaO /S tf‐ ioO an rm‐ dan s InP  are d InP ‐ ba main ‐sba edly s pl e duse a pl tfodart in m fo srnear m are s are  ‐main  main ly use ly use d ind near  in near ‐ ‐ been been   demonstrated   demonstrated   by  by Un  Un ivers ivers ity iof ty  Ca of liCa folirnia fornia ,  Sa, nt Saant  Ba a rBa barrbaa  (UCS ra  (UCS B) B) and and   Li oLi nioXni Xrese  rearsech ar ch [58]  [5, 8],  Ultra maturity ‐low losof s Sisilicon N plUltra anarphotonics,  ‐lilow ght w loasvse Si circ N as puits lan anerbium  ar (P indir  LC) light ‐wit ect w dope ahv bandgap epd rcirc  op WG ag uits at distrib  io (Pn material LC)  los u te swit  d below  hBr pag native rop  0. g 1ag r edB flec atio /gain m tor n  hav los  (D is se BR below   di )  and cult 0. 1distrib  dB to/m ru ealize hav ted efeedb   under ack (DFB) laser arrays  infr Appl. ared Sci. (NIR)  2020, ,10 wh , x;ile  doi: infr  si infr liared con ared Appl.   (NIR) nitride  (NIR)  Sci.,  2020 wh  ca, nwh ile ,  10 operate  ile si , x;li  doi: si con licon    from nitride  nitride  visib  can lca e operate  to n  operate NIR  [4 from 8] from .  visib  visib www.mdpi.com/ le to le  NIR to NIR  [48] j[4 ournal/applsci . 8].  www.mdpi.com/   journal/applsci  orders orders   of  magnitude of  magnitude  lowe  lowe r  than r  than   oth  ot erh reported er reported   pla  pl tfoartm fosrm . As s.  As a  re as  re ulst,u  high lt,  high ‐pe‐rpe forrma forma ncen cpa e spa sivsesi ve  © © been  demonstrated  by been   Un  demonstrated iversity  of  Ca liby fo rnia Univers ,  Santity a  Ba of rCa barliaf o(UCS rnia, B) Sa and nta  Ba LirobnairXa  (UCS resear B)ch and   [58]  Li ,  oniX   research  [58],  this platform. The platform features are in-between InP and ultra-low loss SiN technologies, with Ultra‐low loss SiN pUltra lanUltra ar‐ low light ‐low  lows aslov Si ses N circ Si pNluits an plar an (P liar LC) ght  light  w wit aw vhea  p vcirc erop  circ uits aguits at (PioLC)  n (P los LC)  wit s  below wit h phrop  p r0.ag op 1 at ag dB ioat /nm io los  n hav  slos below es  below  0.1  0.dB 1 /dB m /hav m hav e  e  components components  are are  en abled enabled  by  by thi sthi pla s pla tform, tform,  thou  thou gh gh electr  electr icalical  pump  pump  for  for ga iga n is in una  is una vaivlaaibllaebl due e due  to  th toe th  e  Appl. Sci. 2020, 10, x; doi:  www.mdpi.com/journal/applsci  orders  of  magnitudeorders  lower  of than   magnitude   other reported  lower   pl than atf oot rm hes.r  As reported  a  resu lpl t, ahigh tform‐pe s. rAs for ma a  re nscu e ltpa ,  high ssive‐ performance  passive  © © © some activebeen detection   demonstrated elements  been bybeen   Un   demonstrated but ivers   demonstrated no ity light of  Ca  by lisour f  oby Un rnia   Un ivers ce , ivers Sa solutions, int tya iof tyBa  Ca of rb aliCa rfaoli and rnia (UCS fornia ,  Sa medial B) , nt Sa and ant  Ba a  Li rBa optical boanrrbiaXa  (UCS ra  re  (UCS se losses B) ar ch B) and  [5 and  (amid 8] Li, o Li nioXni InP Xrese  rearsech ar ch [58]  [5, 8],  insu insu latilng ati ng nat  nat ureu  rofe   of SiN/Si   SiN/Si O  glas O  glas s  WG s  WG s  [55] s  [55] .  Howe .  Howe ver,ver,   the  the   de mo demo nstns rattiroanti oof n   of optic   optic al  gai al  gai n  usin n  usin g  g  components are enabled components  by this pla  are tform,  enabled  thou by gh thi  electr s plaical tform,  pump  thou  for gh ga electr in is ical una pump vailabl for e due  ga ito n  isth una e  vailable due to the  orders  of  magnitude orders  lowe orders  rof  than   magnitude of  magnitude   other reported  lowe  lowe r  than  rpl  than at fot orh m ot ersh .reported  eAs r reported  a  res u pllta ,pl t fhigh oartm fo‐srpe m . As sr.f o As rama   re an s  re ucelst ,upa   high lt,s shigh iv‐pe e ‐rpe forrma forma ncen cpa e spa sivsesi ve  erbium erbium ‐and dope ‐dope d SiN)  WG d WG  [distrib 55 distrib ]. Regar uteudte Br d ding  ag Brgag rwavelength geflec  reflec tor tor (D BR (D)BR pr and ) operties, and  distrib  distrib uteSi udte /feedb SiO- d feedb aand cka c(DFB) k InP-based (DFB)  laser  laser  arrays  arrays platforms     are mainly used in insulating  nature  of insu SiN/Si latO ing  glas   natsu  WG re  ofs  [Si 55] N/Si .  Howe O  glas ver, s  WG   thes  de [55] mo. ns Howe tratiover, n  of  the   optic   demo al  gai nstnra  usin tion gof    optical  gain  using  components are enabled components components  by this  pla are are t en form,  abled enabled  thou  bygh   by thi  electr sthi pla s pla tical form, tform,  pump  thou  thou  for gh  gh ga electr  ielectr n isical  una ical  pump v ai pump la bl for e   for due ga iga n to is in  th una  ise  una vaivlaaibllaebl due e due  to  th toe th  e  erbium‐doped WG distrib erbium ute‐dope d Brdag WG g re flec distrib tor u(D teBR d Br ) and agg  distrib reflector ute (D d BR feedb ) and ack  distrib (DFB) ula teser d feedb  arrays ac k (DFB) laser arrays  near-infrared (NIR), while silicon nitride can operate from visible to NIR [48]. Appl. Appl.  Sci.  Sci. 2020 2020 , 10,,  x; 10 doi: , x; doi:    insulating  nature  ofinsu   Siinsu N/Si latilng aOt i ng glas nat  nat usr eWG u  rofe  sof Si  [55] N/Si   SiN/Si .  O Howe   glas Owww.mdpi.com/   glas ver, swww.mdpi.com/   WG s  the WG s  [de 55] s  [mo journal/applsci 55] .  Howe jns ournal/applsci .  Howe tratver, ionver,     of the    optic the   de mo de almo  ns gai tns rn att irusin oanti oof gn    of optic   optic al  gai al  gai n  usin n  usin g  g  Ultra-low loss SiN planar lightwave circuits (PLC) with propagation loss below 0.1 dB/m have erbium‐doped WG erbium distrib erbium u‐dope ted‐dope  Br d ag WG dg  WG r edistrib flec  distrib toru te (DudBR te Br d)  ag Br and gag r gedistrib flec  reflec toru tor te (Dd BR (D  feedb )BR and ) aand c kdistrib  (DFB)  distrib u telaudser te feedb d  arrays feedb acka  c(DFB) k (DFB)  laser  laser  arrays  arrays     Appl. Sci. 2020, 10, x; doi:  Appl. Sci. 2020, 10, x; doi:  www.mdpi.com/journal/applsci www.mdpi.com/   journal/applsci  been demonstrated by University of California, Santa Barbara (UCSB) and LioniX research [58], orders Appl. Sci. 2020, 10, x; doi: Appl. Appl.  Sci.  Sci. 2020 2020 , 10,,  x; 10 doi: , x; doi:     www.mdpi.com/journal/applsci www.mdpi.com/ www.mdpi.com/   journal/applsci journal/applsci     of magnitude lower than other reported platforms. As a result, high-performance passive components are enabled by this platform, though electrical pump for gain is unavailable due to the insulating nature of SiN/SiO glass WGs [55]. However, the demonstration of optical gain using erbium-doped WG distributed Bragg reflector (DBR) and distributed feedback (DFB) laser arrays integrated within ultra-low loss SiN [59] shows potential for the platform’s active component integration. Silicon is Appl. Sci. 2020, 10, 4024 5 of 19 among the most mature photonic integrated platforms, leveraging from existing technologies like silicon electronics and micro electro-mechanical systems (MEMS) industries and enabling foundry services robustness and product commercialization. InP platforms can be seen as one of the options that stem out from the alternatives since it integrates monolithically high-quality lasers, receivers, amplifiers, and passives [33,35,60]. Si and SiN are more prone to be used for passive and filtering components, with the need to recur to hybrid packaging [61] when incorporating lasing and gain. Some of the available foundries/players under the InP, Si, and SiN integrated technologies are described below: i. InP: Fraunhofer Heinrich-Hertz-Institut–Fraunhofer HHI (Berlin, Germany); Smart Photonics (Eindhoven, The Netherlands); Global Communication Semiconductors, LLC (Torrance, CA, USA); and fabless solution providers, e.g., the INTENGENT III/V Photonics Company (Ontario, Canada), VLC Photonics (Valencia, Spain), Bright Photonics (Eindhoven, The Netherlands), and PICadvanced (Aveiro, Portugal); ii. Si: Acacia Communications, Inc. (Maynard, MA, USA); Luxtera Inc. (Carlsbad, CA, USA); Intel Corporation (Mountain View, CA, USA); Cisco Systems Inc. (San José, CA, USA); Mellanox Technologies (Sunnyvale, CA, Israel/USA); Finisar Corporation (Sunnyvale, CA, USA); Hamamatsu Photonics K.K. (Shimokanzo, Iwata City, Japan); International Business Machines Corporation (IBM, Armonk, NY, USA); GlobalFoundries Inc. (Santa Clara, CA, USA); NeoPhotonics Corporation (San José, CA, USA); Oclaro Inc. (San José, CA, USA); CompoundTek (Singapore); and the American Institute for Manufacturing Integrated Photonics (AIM Photonics, Albany, NY, USA); iii. SiN: Ligentec (Ecublens, Switzerland); Lionix (Enschede, Netherlands); Institute of Microelectronics of Barcelona IBM-CNM, “Silicon Nitride Technology,” (Barcelona, Spain). Furthermore, several reference institutions with state-of-the-art research in integrated photonics contributed to the technology developments, namely the University of California, Santa Barbara (UCSB) with the available California NanoSystems Institute (CNSI) Nanostructure Cleanroom Facility (NCF); the Kavli Nanoscience Institute (KNI) laboratory at the California Institute of Technology (Caltech), the Fraunhofer Heinrich-Hertz-Institut (HHI); the ePIXfab, INTEC department–Photonics Research Group at Ghent University; the Nanophotonics Technology Center (NTC) at the Universitat Politècnica de València (UPV); etc. Beyond the generic availability of design/fabrication, it is necessary to further develop and invest in packaging technologies to reach simpler, standardized, and ecient approaches, thus making it accessible for users and/or companies. Currently, the technology-associated limitations are mainly related to the lack of general design rules that ease the encapsulation and allow successful testing of the manufactured photonic chips [6]. This last integration step (packaging) is imperative for labs and companies that are trying to enter/grow in the integrated photonic technology and market. A consortium model aiming to establish PIC packaging processes under European commission Horizon 2020 funding is currently being conducted [62] to facilitate the development of this PIC technologic branch through the development of standard technologies to provide access to a ordable, mature, and scalable packaging solutions [63]. 3. Passive Optical Networks From the 80s onwards, PONs [64] have evolved greatly with the simplification of network management, pushing network trac multiplexing closer to the user with the minimization of stranded capacity [65]. Since then, PON architecture remained one of the most predominant access network options. PONs have been under mass deployment, with more than 900 million broadband subscribers reported in 2017 [66]. This infrastructure has subsidized PONs establishment relevance for a long time [65]. PON basic technology includes: (i) the equipment at the edge of Metro/Access, i.e., the optical line terminal (OLT); (ii) the user end terminal, i.e., the optical networks unit (ONU); and (iii) the optical Appl. Sci. 2020, 10, x 6 of 19 Appl. Sci. 2020, 10, 4024 6 of 19 i.e., the optical line terminal (OLT); (ii) the user end terminal, i.e., the optical networks unit (ONU); distribution and (iii) the opti network cal distri (ODN) butithat on network ( connectsO the DN) tha OLT to t connects the the ONUs (see OLT to the ONUs (see optica optical access network branch l access in Figur network bran e 1). ch in Figure 1). PON PON emer emerg ginging technic technical ra equir l reements quiremen arets ar verye ver unique, y un being ique, being the the surviving solutions surviving particularly solutions sensitive particulato rly price sensit and ive t related o price and re costs, both lated capital costs, bot expense h capit (CAPEX) al expen and se (CAPEX operating ) and expense operat (OPEX) ing expense [67]. Nevertheless, (OPEX) [67]. Neverthele PON posesss, several PON pose advantages, s severasuch l advant as the agesimplification s, such as the s of impli infrastr ficat uctur ion oe f infr management, astructure as mana it isgement based ,on as it a fully is base passive d on a ODN fully p [65 ass ].ive OD A completely N [65]. A complet passive ODN ely pamade ssive O ofDburied N made o glass f buried with glass with cabinets to ensure connections and splitting anticipates long-term expectation of 20 years cabinets to ensure connections and splitting anticipates long-term expectation of 20 years or even mor or even more e. Its architectur . Its architect e derives ure der from ives thefr technical om the te appr chnica oach l approa to be deployed ch to be deployed a at the PON t the PON ends. ends. Several Several technologies are competing to be implemented in the access space, with the most common technologies are competing to be implemented in the access space, with the most common based on based a passive on a passive splitter splitter tree topology tree topology . The OL . The OLT T (interface (interface from the from operator the operator side) feeds side) one feedtr s one unk trun fiber k fiber that splits into several arms, each arm is divided into another set of arms, and so on, generating that splits into several arms, each arm is divided into another set of arms, and so on, generating a tr a tree ee strstructure, wh ucture, which, ich, d depending epending on on the the technolog technology,ycan , can range from low range from low (8 (8 to to 16) 16) to hi to high gh (64 (64 to to 256) 256) terminal counts. terminal counts. Optical Optical access access stan standar dardization dization h hasas ev evolved olved r rapidly apidly, w , with ith IE IEEE EE 802.3 802.3 and and International International Telecommunication Union - Telecommunication Standardization Sector (ITU-T) Q2 groups playing Telecommunication Union - Telecommunication Standardization Sector (ITU-T) Q2 groups playing dominant rdominant ro oles in the prles in ocess the proc [68]. Theess most [68]. The common most co technologies mmon tar echnologi e Gbit-capable es are G PON bit-c (GPON) apable PON and Ethernet (GPON) and Ethernet PON (EPON) [69], typically supporting up to 64 users in the same OLT trunk fiber. At PON (EPON) [69], typically supporting up to 64 users in the same OLT trunk fiber. At the end users the end users lays an ONU (the user terminal for the fiber). For each end technology, a different ONU lays an ONU (the user terminal for the fiber). For each end technology, a di erent ONU is typically is typically required. Currently, it is very common to have combined interfaces that allow multiple required. Currently, it is very common to have combined interfaces that allow multiple technologies to technologies to be handled within the same device, the so-called “combo” solutions [70]. Figure 2 be handled within the same device, the so-called “combo” solutions [70]. Figure 2 illustrates some of illustrates some of the main existing characteristics of the ITU-T related technologies. the main existing characteristics of the ITU-T related technologies. Figure 2. Recent International Telecommunication Union-Telecommunication Standardization Sector (ITU-T) Figure 2. Recent International Telecommunication Union-Telecommunication Standardization Sector (ITU- based optical technologies standards evolution. T) based optical technologies standards evolution. Some operators are engaging in the 10 G-capable symmetric PON (XGSPON) and 10 G-capable Some operators are engaging in the 10 G-capable symmetric PON (XGSPON) and 10 G-capable EPON (10GEPON). Moreover, a number of more aggressive and disrupting operators are investing in EPON (10GEPON). Moreover, a number of more aggressive and disrupting operators are investing deploying NGPON2, merging the traditional concepts of time-multiplexed single-channel per direction in deploying NGPON2, merging the traditional concepts of time-multiplexed single-channel per PON combined with wavelength division multiplexing (WDM) [71]. This approach allows for further direction PON combined with wavelength division multiplexing (WDM) [71]. This approach allows developing network flexibility concepts and the smooth evolution of o ered data rates [70], i.e., up to for further developing network flexibility concepts and the smooth evolution of offered data rates 40 or 80 Gbit/s aggregated rates. An example of a PON with coexisting technologies supported by the [70], i.e., up to 40 or 80 Gbit/s aggregated rates. An example of a PON with coexisting technologies current ITU-T standard series [71] is depicted in Figure 3. supported by the current ITU-T standard series [71] is depicted in Figure 3. Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 7 of 19 Appl. Sci. 2020, 10, x 7 of 19 Figure 3. Diagram describing a PON architecture with three coexisting technologies. Figure 3. Diagram describing a PON architecture with three coexisting technologies. New trends are emerging and triggering discussions in the fora, mostly focused on either an New trends are emerging and triggering discussions in the fora, mostly focused on either an architecture innovation, like the Super-PON, which is on the standardization path in IEEE and ITU-T, architecture innovation, like the Super-PON, which is on the standardization path in IEEE and ITU-T, or on the e orts to move to high-speed PON (HSP) towards higher data rate technologies, such as or on the efforts to move to high-speed PON (HSP) towards higher data rate technologies, such as 25 25 Gbit/s and 50 Gbit/s [72]. Gbit/s and 50 Gbit/s [72]. Current low-cost laser and receiver technologies face some challenges to deliver higher data rates Current low-cost laser and receiver technologies face some challenges to deliver higher data without increasing packaging or electronic costs. Namely, the current methods used for interconnecting rates without increasing packaging or electronic costs. Namely, the current methods used for devices with drivers and boards are typically based on wire bonding and flex printed circuit board interconnecting devices with drivers and boards are typically based on wire bonding and flex printed (f-PCB). The latter has limited high-frequency performance and tough mechanical design challenges to circuit board (f-PCB). The latter has limited high-frequency performance and tough mechanical meet the right soldering robustness, with an expected high impact on the electrical performance of design challenges to meet the right soldering robustness, with an expected high impact on the assemblies and sub-assemblies. electrical performance of assemblies and sub-assemblies. Among PON future technologies, high interest has been given to the research/development Among PON future technologies, high interest has been given to the research/development of of long-reach/high-speed transmission, where optical amplifiers, electrical domain digital signal long-reach/high-speed transmission, where optical amplifiers, electrical domain digital signal processing (DSP) to enhance the link budget, and/or transceiver technology are predicted to be key processing (DSP) to enhance the link budget, and/or transceiver technology are predicted to be key factors [73]. Generically, for N subscribers, a PON requires a single transceiver at the central oce, factors [73]. Generically, for N subscribers, a PON requires a single transceiver at the central office, which results in a total of N + 1 transceivers overall [67]. For NGPON2, the OLT transceiver should which results in a total of N + 1 transceivers overall [67]. For NGPON2, the OLT transceiver should contain four transmitters (Tx) and four receivers (Rx) with an internal wavelength mux/demux optical contain four transmitters (Tx) and four receivers (Rx) with an internal wavelength mux/demux module. In the ONU, a 10 Gbps transceiver with both tunable Tx and Rx is required [70]. By employing optical module. In the ONU, a 10 Gbps transceiver with both tunable Tx and Rx is required [70]. By wavelength-selective branching devices in ODN, losses can be diminished, nevertheless at the cost of employing wavelength-selective branching devices in ODN, losses can be diminished, nevertheless wavelength transparency waiving. Furthermore, by increasing the number of wavelengths, a high at the cost of wavelength transparency waiving. Furthermore, by increasing the number of number of transceivers at the OLT is expected, raising power consumption, port density, and cost [73]. wavelengths, a high number of transceivers at the OLT is expected, raising power consumption, port Similar to what happened with integrated circuits’ contribution to electronics development, PIC density, and cost [73]. Similar to what happened with integrated circuits’ contribution to electronics technology is one of the most attractive solutions to tackle the referred issues. Thus, integrated development, PIC technology is one of the most attractive solutions to tackle the referred issues. Thus, photonics can have a key role in the deployment of more flexible PON networks, as they can integrated photonics can have a key role in the deployment of more flexible PON networks, as they incorporate di erent optical components with various functions in a potentially cost-e ective way can incorporate different optical components with various functions in a potentially cost-effective without increasing the assembly process complexity [7,8]. way without increasing the assembly process complexity [7,8]. 4. PIC for Next-Generation PON 4. PIC for Next-Generation PON Photonic integration can provide advantageous solutions to PON by limiting the number of Photonic integration can provide advantageous solutions to PON by limiting the number of optical and electrical interconnections and thus overcoming some of the bulk packaging restrictions, optical and electrical interconnections and thus overcoming some of the bulk packaging restrictions, such as bandwidth, power dissipation, and cost [65,74]. Nevertheless, complexities can arise with such as bandwidth, power dissipation, and cost [65,74]. Nevertheless, complexities can arise with the the use of this technology, namely fiber interfacing diculties, number of electrical connections, use of this technology, namely fiber interfacing difficulties, number of electrical connections, and and possible high-density of components per device, which demands a high power dissipation possible high-density of components per device, which demands a high power dissipation Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 8 of 19 Appl. Sci. 2020, 10, x 8 of 19 management [70]. The development of PIC solutions for access networks has already been reported, management [70]. The development of PIC solutions for access networks has already been reported, e.g., with an InP monolithic transceiver PIC for NGPON2 applications [75], the proposed layout e.g., with an InP monolithic transceiver PIC for NGPON2 applications [75], the proposed layout has has the potential to be implemented as an OLT and with filter redesigning as an ONU. A photonic the potential to be implemented as an OLT and with filter redesigning as an ONU. A photonic integrated apparatus for tunable multi-wavelength transmission was patented in 2017 [76], the time and integrated apparatus for tunable multi-wavelength transmission was patented in 2017 [76], the time wavelength division multiplexing (TWDM)-PON transmitter system proposed is tailored to support and wavelength division multiplexing (TWDM)-PON transmitter system proposed is tailored to current and next-generation access technologies. Monolithically integrated dual electro-absorption support current and next-generation access technologies. Monolithically integrated dual electro- modulated laser (DEML) solutions with application in PON and claims of small footprint and low-cost absorption modulated laser (DEML) solutions with application in PON and claims of small footprint external-modulator-free Tx can likewise be found in the literature [46]. More recently, a theoretical and low-cost external-modulator-free Tx can likewise be found in the literature [46]. More recently, analysis of polarization-independent receiver (PI-Rx) based in a 3  3 symmetric coupler with a theoretical analysis of polarization-independent receiver (PI-Rx) based in a 3 × 3 symmetric coupler applications for access networks was reported [77]. An example of a BOSA transceiver solution with applications for access networks was reported [77]. An example of a BOSA transceiver solution implemented in ONU side of a PON with a representation of a 10 Gbit small form-factor pluggable implemented in ONU side of a PON with a representation of a 10 Gbit small form-factor pluggable (XFP) evolution from discrete optical component to PIC technology is depicted in Figure 4. (XFP) evolution from discrete optical component to PIC technology is depicted in Figure 4. Figure 4. Diagram describing the evolution of photonic integrated circuits (PIC) for PON, specifically Figure 4. Diagram describing the evolution of photonic integrated circuits (PIC) for PON, specifically the implementation of a bi-directional optical sub assembly (BOSA) transceiver solution in PON the implementation of a bi-directional optical sub assembly (BOSA) transceiver solution in PON ONU ONU side, i.e., XFP with discrete optical component packaging (current PON products) and with PIC side, i.e., XFP with discrete optical component packaging (current PON products) and with PIC approach technology (next-generation products). approach technology (next-generation products). Several steps and guidelines for PIC implementation in PON are addressed in this section, along Several steps and guidelines for PIC implementation in PON are addressed in this section, along with the technology impact on reach (Section 4.1); the adopted band and wavelength selection criteria with the technology impact on reach (Section 4.1); the adopted band and wavelength selection criteria (Section 4.2); the integrated photonics packaging (Section 4.3); and the issues related with the control (Section 4.2); the integrated photonics packaging (Section 4.3); and the issues related with the control of complexity, power dissipation, and form factor (Section 4.4). of complexity, power dissipation, and form factor (Section 4.4). 4.1. Technology and Impact on Reach 4.1. Technology and Impact on Reach A major requirement for future PON technologies is the need for coexistence with current deployed A major requirement for future PON technologies is the need for coexistence with current PON systems [65,70]. For example, GEPON has already been deployed on a scale of millions, thus deployed PON systems [65,70]. For example, GEPON has already been deployed on a scale of any new PON technology must be capable of coexisting with this large base [65]. A PON framework millions, thus any new PON technology must be capable of coexisting with this large base [65]. A of three coexisting technologies, i.e., GPON, XGSPON, and NGPON2, is depicted in Figure 3 from PON framework of three coexisting technologies, i.e., GPON, XGSPON, and NGPON2, is depicted Section 3. Here, the same ODN conveys several technologies allowing the migration and evolution of in Figure 3 from Section 3. Here, the same ODN conveys several technologies allowing the migration the network without forcing clients to shift technology. This approach leads to reduced CAPEX and and evolution of the network without forcing clients to shift technology. This approach leads to supports pay-as-you-go approaches since it allows keeping using the legacy operating technologies reduced CAPEX and supports pay-as-you-go approaches since it allows keeping using the legacy untouched, opening an evolution path for other technologies to follow [7]. operating technologies untouched, opening an evolution path for other technologies to follow [7]. The longer the required reach, the more dicult it gets to find the laser technology able to support The longer the required reach, the more difficult it gets to find the laser technology able to the demanded distance. As an example, for a 10 Gbit/s with a short-reach like 10 km, almost all support the demanded distance. As an example, for a 10 Gbit/s with a short-reach like 10 km, almost standard laser technologies can be used. If addressing the 2.5 Gbit/s market, a medium-reach like all standard laser technologies can be used. If addressing the 2.5 Gbit/s market, a medium-reach like 40 km and further are still not a major limiting factor to the laser choice. However, if requiring a 40 km and further are still not a major limiting factor to the laser choice. However, if requiring a common GPON ODN which ranges 20 km including splitters and the handling of dispersion penalty, common GPON ODN which ranges 20 km including splitters and the handling of dispersion penalty, it poses challenges to most of the 10 Gbit/s solutions. To achieve that target, the laser must be designed it poses challenges to most of the 10 Gbit/s solutions. To achieve that target, the laser must be designed to perform a low penalty, typically bellow 1 dB to 2 dB, at the required distance. To meet those specs, to perform a low penalty, typically bellow 1 dB to 2 dB, at the required distance. To meet those specs, Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 9 of 19 Appl. Sci. 2020, 10, x 9 of 19 specially designed direct modulated lasers (DML) are required, or even the migration to external specially designed direct modulated lasers (DML) are required, or even the migration to external modulated laser (EML) technologies [7,8]. modulated laser (EML) technologies [7,8]. Furthermore, in most recent standards, ODN should support 128 users and a 20 km reach. These Furthermore, in most recent standards, ODN should support 128 users and a 20 km reach. These requirements have the penalty of a 21-dB attenuation stemming from splitting losses plus 4 dB due requirements have the penalty of a 21-dB attenuation stemming from splitting losses plus 4 dB due to fiber losses and around 3 dB insertion loss (IL) of co-existence elements, leading to an ODN total to fiber losses and around 3 dB insertion loss (IL) of co-existence elements, leading to an ODN total loss greater than 28 dB. If we target 10 Gbit/s with avalanche photodiode (APD) receivers allowing a loss greater than 28 dB. If we target 10 Gbit/s with avalanche photodiode (APD) receivers allowing −26 dBm to −30 dBm receiver sensitivity, it leads to a minimum laser output power of 4 dBm. A a 26 dBm to 30 dBm receiver sensitivity, it leads to a minimum laser output power of 4 dBm. possible alternative to overcome this requirement is to use an amplification stage in the path which A possible alternative to overcome this requirement is to use an amplification stage in the path which removes the passivity of the ODN, however, it reduces the potential usage of EML-based solutions removes the passivity of the ODN, however, it reduces the potential usage of EML-based solutions since its typical power does not exceed the 0 dBm. since its typical power does not exceed the 0 dBm. 4.2. Band and Wavelength Selection Criteria 4.2. Band and Wavelength Selection Criteria To improve reach, several techniques are available and many stem from the laser (e.g., low To improve reach, several techniques are available and many stem from the laser (e.g., low dynamic dynamic chirp or frequency modulation efficiency), laser driving (pre-chirping or equalization), and chirp or frequency modulation eciency), laser driving (pre-chirping or equalization), and wavelength wavelength selection (e.g., O-band instead of C and L bands) [2,70]. O-Band has been used for selection (e.g., O-band instead of C and L bands) [2,70]. O-Band has been used for supporting upstream supporting upstream and was adopted by some of the standards like GPON and XGSPON. O-band, and was adopted by some of the standards like GPON and XGSPON. O-band, besides presenting besides presenting low or null dispersion, only introduces slightly higher attenuation than C-band. low or null dispersion, only introduces slightly higher attenuation than C-band. These facts greatly These facts greatly reduce the pressure on the O-band components industry, impacting positively on reduce the pressure on the O-band components industry, impacting positively on the cost and yield. the cost and yield. The current spectral allocation from O to L-band is depicted in Figure 5. The current spectral allocation from O to L-band is depicted in Figure 5. Figure 5. Spectrum allocation in ITU-T based standards for PON and trends for channel spacing. Figure 5. Spectrum allocation in ITU-T based standards for PON and trends for channel spacing. If a certain technology is deployed in greenfield, a viable approach is to implement standards that If a certain technology is deployed in greenfield, a viable approach is to implement standards are not back-compatible, i.e., does not support legacy technologies. In this scenario, the use of O-band that are not back-compatible, i.e., does not support legacy technologies. In this scenario, the use of is an option for future PON. The drawback of this option is that the operator has to guarantee that the O-band is an option for future PON. The drawback of this option is that the operator has to guarantee PON evolution is on top of the new technology deployed. To cope with the maturity of the technology that the PON evolution is on top of the new technology deployed. To cope with the maturity of the and promote an easier and simplified entry into the market, initial PON technologies, like GPON, technology and promote an easier and simplified entry into the market, initial PON technologies, like were set in large bandwidths for better yield in laser choice with the upstream in the O-band [7,67]. GPON, were set in large bandwidths for better yield in laser choice with the upstream in the O-band The wavelength range of 20 nm to 30 nm per trac direction was reserved for this technology, which [7,67]. The wavelength range of 20 nm to 30 nm per traffic direction was reserved for this technology, allowed it to easily mature while still being competitive. This strategy proved to be solid since it which allowed it to easily mature while still being competitive. This strategy proved to be solid since resulted in the current GPON BOSA to sit in the few dollars range (as of today). it resulted in the current GPON BOSA to sit in the few dollars range (as of today). Furthermore, PON technology evolution can be achieved by data rate multiplication and more Furthermore, PON technology evolution can be achieved by data rate multiplication and more ecient use of the bands to promote further network evolution scenarios. Following this path, XGSPON efficient use of the bands to promote further network evolution scenarios. Following this path, Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 10 of 19 Appl. Sci. 2020, 10, x 10 of 19 standard was conceived with slightly smaller bandwidths for both upstream and downstream, which XGSPON standard was conceived with slightly smaller bandwidths for both upstream and resulted in a four-times higher bitrate than GPON [70,78]. downstream, which resulted in a four-times higher bitrate than GPON [70,78]. To further exploit the available bands (see Figure 5), dense wavelength division multiplexing To further exploit the available bands (see Figure 5), dense wavelength division multiplexing (DWDM) (DWDM) can can be a route t be a route tooexplor explore. Th e. Thee possibilit possibility y of of including including t tunability unability al allows lows network network active active transformation and management. Even considering the associated price to pay, it is an important transformation and management. Even considering the associated price to pay, it is an important solution solution under undethe r th re equir reqement uirement of tig of htly tigcontr htly cont olledrol lasers. led la Furthermor sers. Furthermore, w e, with this capability ith this cap , a pr abilit ojected y, a OPEX project re eduction d OPEX red is expected, uction is since expeclients cted, since can seamlessly clients can migrate seamles to sly any miof grat the e tavailable o any of t wavelengths he available while wavelen thegnetwork ths while gr the network grow ows smoothly and s s systematically moothly and .systematically. The The most most evident evident bar barrier rier for for the the spr spre ead ad of of this te this technology chnology i is s t the he laser laser and and rece receiver iver re requir quirement ements, s, which which sho should uld be at be attained tained un under der a pot a potential ential low cost low cost and sim and ult simultaneously aneously have a have high gr a high ade ograde f stabilit of y stability [7,8]. Figur [7,8 e]. 5 presents the Figure 5 presents bands for the bands the different for the dist eps o erent fsteps the netwo of thernet k evo work lution evolution, , i.e., from i.e., the from legacy the legacy technologies technologies wide bwide ands to the ne bands to xt ge the next neration t generation ighter bandw tighter bandwidths. idths. A A represent representation ation of of the the typi typical cal distribution distributi of on of lasers, lase stemming rs, stemmin fromga from a single wafer single wafe run, is depicted r run, is in depict Figur ed e 6in F A. Each igure of 6A the . E lasers ach of t collected he laser fr som colthe lectwafer ed from will thhave e waf its er emission will have wavelength its emission w anda thus velengt they h can and t behused us they in can be a more specific used in/ a more tighter wavelength specific/tight range. er waT velen o accomplish gth range. To this featur accom e,p alish t tuning his pr feat ocess ure, is a rtu equir ning pr ed, e.g., oces temperatur s is require, ed curr , e.g ent, ., te etc. mpe Each ratur wafer e, curr run ent, etc. E may present ach wafer di erent run statistics may present due to different material deposition statistics due to ma doping and terial prdeposi ocessing, tionsee doping Figurand e 6B. pr Nonetheless, ocessing, see the Figu wafer re 6B. unifor Nonetheless, th mity wavelength e wafer map uniformit is in general y wavelen scar gcely th ma reported p is in gene by the ral sc foundries, arcely re some ported by t works h suggest e foundr these ies, s claims ome works s [79,80].uT gge ight st contr these claims ol of the doping [79,80]. T process ight control of the doping may reduce this variation prand ocess m greatly ay r impr educe t ove h the is v yield ariat and ion temperatur and greatley contr improve the ol mechanisms. yield and te Themperature co finer the requir ntrol mechan ed tuning, isms. The fin the more complex er the requir the laser ed tuning selection , th pr e more ocess. The complex t qualification he laser of se a lect laser ion to proces operate s. The in a q certain ualific wavelength ation of a la range ser tor esults operatfr e om in a setting certain its wave maximum length allowed range res wavelength ults from set attiinitial ng its max temperatur imum al es.lowed The br wavelen oad requir gth at ements initia of l tthe emp technology eratures. Th ine broa termsd of req the uirclient ements of locations the technol may requir ogy in e terms of industrial the cl temperatur ient locat e ranges ions ma ( y req 40 to uir 85 e ind C),uwhich strial tbring emperextra ature rrange equisites s (−4to 0 tthe o 85 laser °C), whic wavelength h bring ext choice ra requ or thermal isites tocontr the lol asmechanisms. er wavelengthDir cho ectly ice or modulated thermal clasers ontrol have mecha good nisms. Directly optical output modula power ted la and sers areha easy ve good opti to drive and cal output modulate. power However and are ea , thesy to dri inherent ve high and wavelength modulate. Ho fluctuation wever, the in when herent high w modulatedaor velen theginher th fluctua ent chirp tion when modula can result in pr ted opagation or the inherent chi limitations. rp Laser can redesign sult in propagat /control e ion limitation orts are being s.made Laser to de minimize sign/control these effo e rts are bei ects and n curr g m ently ade to mi , thereni ar miz e alr e these eady some effectdevices s and cuin rrent the ly, market there are able alto ready cope so with me dev some ices of in the the m most arket stringent able to cope with some of standard requirements the most [81], e.g., stringent the NGPON2. standard re W quire ith an ments [81], e.g., the external cavity, EMLs NGPO result N2. Wi in a th much an externa lowerl ca chirp, vity, EMLs resul however, having t in a typically much lower a mor chirp, howeve e complex tunability r, having ty mechanism pically a more c when omplex t compar ued nab to ilit the y mechan simpleis curr m when com ent or thermal pared tuning to the si of mpl theeDML current or therma [7]. l tuning of the DML [7]. Figure 6. Representation of a generic statistical distribution of lasers over their initial wavelength () in Figure 6. Representation of a generic statistical distribution of lasers over their initial wavelength (λ) a set of three wafer runs. Di erent wafers may result in di erent central s. (A): distribution of initial in a set of three wafer runs. Different wafers may result in different central λs. (A): distribution of of wafer #2; (B): example of an initial s distribution for three di erent wafers. initial λ of wafer #2; (B): example of an initial λs distribution for three different wafers. Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 11 of 19 Appl. Sci. 2020, 10, x 11 of 19 4.3. Integrated Photonics Packaging 4.3. Integrated Photonics Packaging Photonic packaging technology has achieved a higher significance under optical communication Photonic packaging technology has achieved a higher significance under optical communication systems’ recent developments [82] by covering the optical and electronic connections in/out of the systems’ recent developments [82] by covering the optical and electronic connections in/out of the PIC. Packaging process developments are of great importance for the next generation of optical PIC. Packaging process developments are of great importance for the next generation of optical components [6]. Being one of the most complex segments of the integrated component viability, components [6]. Being one of the most complex segments of the integrated component viability, it it can pose several challenges, such as limitations in terms of volume, cost, RF performance, power can pose several challenges, such as limitations in terms of volume, cost, RF performance, power dissipation, and its high-volume manufacturing capability [83], which can highly impact the cost of dissipation, and its high-volume manufacturing capability [83], which can highly impact the cost of the solution. the solution. Currently, packaging is seen as one of the most significant bottlenecks in the development of Currently, packaging is seen as one of the most significant bottlenecks in the development of commercially relevant PIC devices [60,84]. The packaging design flow is divided into three main commercially relevant PIC devices [60,84]. The packaging design flow is divided into three main areas: the optical design, the electrical design, and the thermal management of the module. A first areas: the optical design, the electrical design, and the thermal management of the module. A first open-access PIC assembly and packaging pilot line of Europe’s leading industrial and research open-access PIC assembly and packaging pilot line of Europe’s leading industrial and research organization teams (i.e., PIXAPP) are dedicating e orts to the development of a photonic packaging organization teams (i.e., PIXAPP) are dedicating efforts to the development of a photonic packaging platform to gather state-of-the-art technologies and procedures [62]. This highly interdisciplinary platform to gather state-of-the-art technologies and procedures [62]. This highly interdisciplinary team provides single-point access to PIC assembly and packaging for users. The project key objectives team provides single-point access to PIC assembly and packaging for users. The project key objectives include: (i) custom solutions through standard packaging technologies; (ii) training and education as a include: (i) custom solutions through standard packaging technologies; (ii) training and education as future workforce; and (iii) link the PIC ecosystem through the development of packaging standards a future workforce; and (iii) link the PIC ecosystem through the development of packaging standards and roadmaps [17]. Considering the typical wavelength gain band of an active device, ranging from and roadmaps [17]. Considering the typical wavelength gain band of an active device, ranging from 20 nm to 30 nm for the O- to L-bands, and the technology wavelength map presented in Figure 7, 20 nm to 30 nm for the O- to L-bands, and the technology wavelength map presented in Figure 7, several approaches may be required to merge in a single device the upstream/downstream signals. several approaches may be required to merge in a single device the upstream/downstream signals. There are several network standards, like XGSPON, which require upstream/downstream wavelengths There are several network standards, like XGSPON, which require upstream/downstream spaced by more than 200 nm. A 200 nm spacing brings higher challenges and may require hybrid wavelengths spaced by more than 200 nm. A 200 nm spacing brings higher challenges and may integration, which poses additional packaging challenges [7]. require hybrid integration, which poses additional packaging challenges [7]. Figure 7. Diagram describing transmitter and receiver technologies with potential use in access Figure 7. Diagram describing transmitter and receiver technologies with potential use in access networks. Typical gain and lasing media profiles are presented, with 20 nm to 60 nm bandwidths for networks. Typical gain and lasing media profiles are presented, with 20 nm to 60 nm bandwidths for common current materials, PINs with di erent doping materials, and APDs. (A): transmitter/(pre-) common current materials, PINs with different doping materials, and APDs. (A): transmitter/(pre-) amplification side; (B): receiver side. amplification side; (B): receiver side. Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 12 of 19 In the same technological space, NGPON2 requires only 60 nm between the upstream and downstream, thus a fully monolithic approach may be achievable by changing slightly the doping or applying regrowth. Figure 7 provides a representation of the gain curve for a generic material doping, the abstraction of a laser for the transmitter side, and three types of available receiver techniques/devices. On the transmitter side tunability limitation of a laser is depicted and corroborated by the limited gain media in which the laser light is generated, see Figure 7A. This constraint results in 20 nm to 30 nm tunability range, considering laser operation with significant output power. Simple tuning based on thermal e ects usually results in an available tuning range of 3 nm to 4 nm. A combination of a tunable device with an external cavity supported by a convenient control mechanism results in a wider tuning range. On the receiver side several techniques are described, such as a positive-intrinsic-negative photodiode (PIN), APD, and coherent [7,8], see Figure 7B. The PIN is one of the cheapest and simplest detecting techniques presenting a wide light wavelength detection range. Its profile can be changed by the type of materials and doping used. PINs can be easily integrated into e.g., InP PIC, which is already available for bandwidths exceeding >35 GHz and operational wavelength ranges covering the common fiber telecommunication bands [33,60,85]. APDs are tougher to integrate, however, from the system point of view, they result in improved sensitivity due to their intrinsic avalanche gain. The referred receiving technologies are wide wavelength band, however, with a coherent detection scheme tunable reception can be achieved. Depending on the arrangement, a di erent number of associated PINs (from dual-polarization di erential with 8 PINs to quasi-coherent single photodetector) simultaneous gain and filtering (stemming from the local oscillator beating with the signal) can be implemented [7,77,86]. To achieve the optical interface between the PIC and the fiber, there are several challenges to be surpassed, such as the mode adaptation between the WG in the PIC and the cylinder-shaped fiber core [87]. Spot size convert (SSC) modules in the PIC, lensed fibers connected through V-grooves, holders, and other techniques are used to achieve consistent solutions. The PIC packaging interfacing of the electrical connections between the PIC and the PCB is usually carried out by wire-bonding [34]. As bandwidth grows, the trend is to replace the bonding wires by flip-chip solutions to reach higher thermal and electrical performance. Furthermore, packaging should be a gateway to solve power dissipation, which is expected to increase significantly with density [7]. Packaging solutions based on holders with high thermal conductivity and inherent thermal monitoring is an attractive solution to overcome this constraint. 4.4. Control Complexity, Power Dissipation and Form Factor The di erent PON standards and technologies have their own requirements in terms of complexity control, especially for tunable devices. When wavelength control is not essential, simpler actuation systems with lower power are required [88]. Nonetheless, once the wavelength spectrum becomes more crowded, the options have to be restricted and the requirements for more complex control increase [7]. A summary of the technology and expected power for its optoelectronic interfaces versus the complexity and requirements for a certain interface is depicted in Figure 8. A general sweep, from low data rate with large wavelength range and short-reach to higher data rate with tighter wavelength range and longer reaches, are also presented in the Figure 8. Additionally, the technologies with an approximate relative power requirement classification (from low to high power) are also identified. The x-axis represents the optical requirements, ranging from low data rate and short-reach to long-reach DWDM and high data rate. The red arrows describe the complexity steps from the system requirements. Appl. Sci. 2020, 10, 4024 13 of 19 Appl. Sci. 2020, 10, x 13 of 19 Figure 8. Diagram of requirements in terms of control, complexity, and power for different Figure 8. Diagram of requirements in terms of control, complexity, and power for di erent technologies. technologies. Potential form factor solutions able to cope with the required power dissipation are also presented in thePotenti far right al f oform f Figuraector 8. Technology solutions a evolution ble to cope wi poses incr th the requi easing challenges red power dissi in the contr patol ion a complexity re also and presented in t required power he far right of Fig . As the demanded ure 8. Tec power hnology ev grows,o alchange ution poses in the in form creasing ch factor is allenges needed. in the control Form factors have complexity and two major characteristics: required power. As minimum the dem volume anded and pmaximum ower grow dissipated s, a change power in th[e form 89]. factor is needed. An appr Form oximate factors have two major chart of the average char pricing acteri for stics: minimum GPON, XGSPON, volume and a NGPON2 nd maximum dissip evolution versus ated power [89]. time is presented in Figure 9. GPON faced a strong price drop with its increased manufacturability, An approximate chart of the average pricing for GPON, XGSPON, and NGPON2 evolution pushed by the worldwide broad adoption of the technology by the operators. XGSPON is following versus time is presented in Figure 9. GPON faced a strong price drop with its increased the same steps, which for the user can be the motto to have 10 Gbit solutions sooner. Technically, manufacturability, pushed by the worldwide broad adoption of the technology by the operators. XGSPON generically adopted the physical layer characteristics of IEEE 802.3av 10GEPON systems, XGSPON is following the same steps, which for the user can be the motto to have 10 Gbit solutions e.g., di ering in the burst mode timing requirements [70,78]. Moreover, to jump-start the market, sooner. Technically, XGSPON generically adopted the physical layer characteristics of IEEE 802.3av initial implementations of XGSPON systems relaxed the timing requirements to fully adopt 10GEPON 10GEPON systems, e.g., differing in the burst mode timing requirements [70,78]. Moreover, to jump- standards [70]. With this rapid price erosion model, the profit margins in the supply chain depreciate start the market, initial implementations of XGSPON systems relaxed the timing requirements to very fast. As NGPON2 is based on the limited tunability of DWDM lasers and receivers, it poses fully adopt 10GEPON standards [70]. With this rapid price erosion model, the profit margins in the some challenges for its adoption by manufacturers, vendors, and operators. This fact has delayed its supply chain depreciate very fast. As NGPON2 is based on the limited tunability of DWDM lasers deployment process. NGPON2 technology di ers from the traditional model since it goes out of the and receivers, it poses some challenges for its adoption by manufacturers, vendors, and operators. O-band, making the laser control and manufacturability more stringent. Thus, it results in a potentially This fact has delayed its deployment process. NGPON2 technology differs from the traditional model slower cost reduction and more sustainability from the supply chain point of view [7]. since it goes out of the O-band, making the laser control and manufacturability more stringent. Thus, it results in a potentially slower cost reduction and more sustainability from the supply chain point of view [7]. Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 14 of 19 Appl. Sci. 2020, 10, x 14 of 19 Figure 9. Representation of average price evolution of PON technology for GPON, XGSPON, Figure 9. Representation of average price evolution of PON technology for GPON, XGSPON, and and NGPON2 bulk type BOSA (not PIC based). Pricing was empirically collected along the years from NGPON2 bulk type BOSA (not PIC based). Pricing was empirically collected along the years from several providers and averaged in the graph. several providers and averaged in the graph. The indicative pricing evolution of the traditional bulk type BOSA for the three technologies is The indicative pricing evolution of the traditional bulk type BOSA for the three technologies is depicted in Figure 9. Early, broad and late adoption notes refer to perception and predictions estimated depicted in Figure 9. Early, broad and late adoption notes refer to perception and predictions by the authors given the present standing of the technology. Pricing is indicative and may not represent estimated by the authors given the present standing of the technology. Pricing is indicative and may all realities/contexts, and is based on, per vendor and per order, 100 pieces at the early adoption stage, not represent all realities/contexts, and is based on, per vendor and per order, 100 pieces at the early 100k pieces at broad adoption, and 1M pieces at late adoption stages, see Figure 9. adoption stage, 100k pieces at broad adoption, and 1M pieces at late adoption stages, see Figure 9. A reduction in physical volume, number of sub-assemblies, and calibration steps are expected A reduction in physical volume, number of sub-assemblies, and calibration steps are expected with the migration to PICs. These steps may greatly reduce the price of the subassemblies based on PICs with the migration to PICs. These steps may greatly reduce the price of the subassemblies based on when compared with traditional bulk BOSA [7,8]. As identified above, by having upstream/downstream PICs when compared with traditional bulk BOSA [7,8]. As identified above, by having on approximately the same wavelength band, NGPON2 can be a great applicant for monolithic PIC. upstream/downstream on approximately the same wavelength band, NGPON2 can be a great In such a case, ONU and OLT can coexist in the same PIC platform without further processing. applicant for monolithic PIC. In such a case, ONU and OLT can coexist in the same PIC platform XGSPON, besides being already stressed in price, may require O-band and L-band integration, which without further processing. XGSPON, besides being already stressed in price, may require O-band can entail extra processing and packaging steps, thus increasing the limitations of PIC viability in this and L-band integration, which can entail extra processing and packaging steps, thus increasing the wavelength range. DWDM is also included in the wavelength plan of NGPON2 and is already an limitations of PIC viability in this wavelength range. DWDM is also included in the wavelength plan ITU-T standard being used for implementing several telecommunication systems, which also poses a of NGPON2 and is already an ITU-T standard being used for implementing several good opportunity for the use of the PIC technology. telecommunication systems, which also poses a good opportunity for the use of the PIC technology. 5. Conclusions 5. Conclusions PICs are a promising technology with great potential in several fields including telecom, sensing, PICs are a promising technology with great potential in several fields including telecom, sensing, and bio-photonics. In this work, we have reviewed the PON technology standards and evaluated the and bio-photonics. In this work, we have reviewed the PON technology standards and evaluated the challenges and benefits of meeting its requirements with the prospective usage of PIC. Depending challenges and benefits of meeting its requirements with the prospective usage of PIC. Depending on on the requirements, the type of materials, and components, a tailored approach has to be carefully the requirements, the type of materials, and components, a tailored approach has to be carefully specified. The di erent materials used in the available solutions for implementing PIC result in di erent specified. The different materials used in the available solutions for implementing PIC result in behaviors, steps, processes, and capabilities. The main constraint of PIC is still the limited gain band different behaviors, steps, processes, and capabilities. The main constraint of PIC is still the limited of the active devices which are in its core. This may imply advanced processing and/or packaging gain band of the active devices which are in its core. This may imply advanced processing and/or packaging techniques to be able to cope with the existing standards, e.g., regrowth and hybrid Appl. Sci. 2020, 10, x; doi: www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 4024 15 of 19 techniques to be able to cope with the existing standards, e.g., regrowth and hybrid packaging. After carefully choosing the standard to be followed and the packaging approach, its control complexity also has to be cautiously considered to guarantee that the solution is feasible and adapted. Specifically, for PON the most stringent requirements are the cost and robustness of the proposed solution. We have discussed several of the challenges to be considered when equating the introduction of PIC in the next-generation PONs, like productization, wideband wavelength range (O, C, and L-bands), laser control, and tunability mechanisms. PON standards have di erent flavors that result in quite di erent requirements, especially regarding the wavelength ranges to be covered by the two trac directions, i.e., the upstream and downstream. For instance, GPON and XGSPON have specifications of >200 nm spacing between upstream and downstream, while NGPON2 requires around 60 nm for the same parameter. Due to technological inherent limitations of some technologies, hybrid integration may be required, e.g., XGSPON and GPON. Smaller bands will ease this process and therefore potentiate monolithic PIC implementation, simplifying packaging and deployment, e.g., NGPON2. PICs have typically two major interfaces, electrical and optical, each with di erent requirements, techniques, and available materials to be used. Packaging and technical considerations such as size, power, RF compliance, and sealing are relevant. In a nutshell, the manufacturability is anticipated to be one of the most critical steps for the technology to be successful, especially in PON. In our vision, the use of PICs in PON and other subsystems is very close to being an e ective reality with prospective advantages. Author Contributions: This is a review paper, each author contributed to all chapters. C.P. and A.T. prepared the manuscript, i.e., writing, review and editing. All authors have read and agreed to the published version of the manuscript. Funding: This work is supported by the European Regional Development Fund (FEDER), through the Competitiveness and Internationalization Operational Programme (COMPETE 2020) of the Portugal 2020 framework [Project Virtual Fiber Box with Nr. 033910 (POCI-01-0247-FEDER-033910)]; plugPON (POCI-01-0247-FEDER-047221); FEDER through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework [Project HeatIT with Nr. 017942 (CENTRO-01-0247-FEDER-017942)]; and IT (UID/EEA/50008/2019). Conflicts of Interest: The authors declare no conflict of interest. References 1. Teixeira, A.; Shahpari, A.; Ferreira, R.; Guiomar, F.P.; Reis, J.D. Coherent Access. In Proceedings of the OFC 2016—Optical Fiber Communication Conference, Anaheim, CA, USA, 20–24 March 2016; p. M3C.5. 2. Shahpari, A.; Ferreira, R.M.; Luis, R.S.; Vujicic, Z.; Guiomar, F.P.; Reis, J.D.; Teixeira, A.L. Coherent Access: A Review. J. Lightwave Technol. 2017, 35, 1050–1058. [CrossRef] 3. Micolta, J.C.V. Next Generation Optical Access Networks and Coexistence with Legacy PONs. Ph.D. Thesis, Unversitat Politecnica de Catalunya, Barcelona, Spain, 2019. 4. Grand View Research. Photonic Integrated Circuit (IC) Market Size Report. 2016. Available online: http://www.grandviewresearch.com/industry-analysis/photonic-integrated-circuit-ic-market (accessed on 12 February 2020). 5. Chovan, J.; Uherek, F. Photonic Integrated Circuits for Communication Systems. Radio Eng. 2018, 27, 357–363. [CrossRef] 6. Latkowski, S.; Pustakhod, D.; Chatzimichailidis, M.; Yao, W.; Leijtens, X.J.M. Open Standards for Automation of Testing of Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2019, 25. [CrossRef] 7. Teixeira, A. Photonic Integrated Circuits for NG-PON2 ONU Transceivers. In Proceedings of the OFC 2019—Optical Fiber Communications Conference, San Diego, CA, USA, 3–7 March 2019; p. M4G.4 1–34. 8. Teixeira, A. NG-PON2 direct modulation-based optics status and evolution path, Broadband Forum Broadband Acceleration Seminar: NG-PON2 Roadmap and Evolution—A Universal Platform for Residential, Business, and Wireless/5G? In Proceedings of the OFC 2019—Optical Fiber Communications Conference, San Diego, CA, USA, 3–7 March 2019; pp. 8–10. Appl. Sci. 2020, 10, 4024 16 of 19 9. Smit, M.; Williams, K.; van der Tol, J. Past, present, and future of InP-based photonic integration. APL Photonics 2019, 4, 1–10. [CrossRef] 10. Desurvire, E.; Kazmierski, C.; Lelarge, F.; Marcadet, X.; Scavennec, A.; Kish, F.A.; Welch, D.F.; Nagarajan, R.; Joyner, C.H.; Schneider, R.P.; et al. Science and technology challenges in XXIst century optical communications. Comptes Rendus Phys. 2011, 12, 387–416. [CrossRef] 11. Pinho, C.; Tavares, A.; Cabral, G.; Morgado, T.; Shahpari, A.; Lima, M.; Teixeira, A. Design and Characterization of an Optical Chip for Data Compression based on Haar Wavelet Transform. In Proceedings of the OFC 2017—Optical Fiber Communication Conference, Los Angeles, CA, USA, 19–23 March 2017; p. Th2A.9(3). 12. Pinho, C.; Neto, B.; Morgado, T.M.; Neto, H.; Lima, M.; Teixeira, A. InP AAC for Data Compression Applications. IET Optoelectron. Spec. Issue 2019, 13, 67–71. [CrossRef] 13. Pinho, C.; Micó, G.; Lima, M.; Muñoz, P.; Teixeira, A. Optimized Design of Si3N4 Structures for Photonic Integrated Data Compression Applications. In Proceedings of the IMOC 2019—International Microwave and Optoelectronics Conference, Aveiro, Portugal, 10–14 November 2019; pp. 1–3. 14. Pinho, C.; Morgado, T.; Neto, B.; Lima, M.; Teixeira, A. Implementation and Optimization of a Cost-E ective 2D Haar Transform Network for Image Compression. In Proceedings of the FIO+LS 2018—OSA Frontiers in Optics and Laser Science Conference, Washington, DC, USA, 16–20 September 2018; p. JTu3A.88(2). 15. Brodnik, G.M.; Pinho, C.; Chang, F.; Blumenthal, D.J. Extended Reach 40km Transmission of C-Band Real-Time 53.125 Gbps PAM-4 Enabled with a Photonic Integrated Tunable Lattice Filter Dispersion Compensator. In Proceedings of the OFC 2018—Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; p. W2A.30(3). 16. Gundavarapu, S.; Brodnik, G.M.; Puckett, M.; Hu man, T.; Bose, D.; Behunin, R.; Wu, J.; Qiu, T.; Pinho, C.; Chauhan, N.; et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photonics 2019, 13, 60–67. [CrossRef] 17. Hu man, T.A.; Brodnik, G.M.; Pinho, C.; Gundavarapu, S.; Baney, D.; Blumenthal, D.J. Integrated Resonators in an Ultralow Loss Si3N4/SiO2 Platform for Multifunction Applications. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–9. [CrossRef] 18. Gundavarapu, S.; Puckett, M.; Hu man, T.; Behunin, R.; Wu, J.; Qiu, T.; Brodnik, G.M.; Pinho, C.; Bose, D.; Rakich, P.T.; et al. Integrated Waveguide Brillouin Laser. In Physics Archive (Physics-arXiv); Cornell University Library: New York, USA, 2017; pp. 1–15. 19. Pinho, C.; Gordon, G.S.D.; Neto, B.; Morgado, T.M.; Rodrigues, F.; Tavares, A.; Lima, M.; Wilkinson, T.D.; Teixeira, A. Flexible Spatial Light Modulator Based Coupling Platform for Photonic Integrated Processors. Int. J. Adv. Telecommun. 2018, 11, 20–31. 20. Pinho, C.; Rodrigues, F.; Tavares, A.; Gordon, G.S.D.; Shahpari, A.; Lima, M.M.; Wilkinson, T.D.; Teixeira, A.A. Flexible Platform for Feeding Photonic Integrated Processors. In Proceedings of the AICT 2017—Advanced International Conference on Telecommunications, Venice, Italy, 25–19 June 2017; pp. 1–4. 21. Pashkova, T.; O’Brien, P. Development of silicon grating-to-grating coupling technology and demonstration of fan-in/fan-out for multi-core fiber applications. In Proceedings of the EPTC 2019—IEEE 21st Electronics Packaging Technology Conference, Singapore, 4–6 December 2019; pp. 582–585. 22. González, A.B.; Pozo, J. The Biophotonics Revolution in Healthcare. Opt. Photonik 2017, 12, 16–17. 23. Wang, R.; Vasiliev, A.; Muneeb, M.; Malik, A.; Sprengel, S.; Boehm, G.; Amann, M.-C.; Šimonyte, I.; Vizbaras, A.; Vizbaras, K.; et al. III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 m Wavelength Range. Sensors 2017, 17, 1788. [CrossRef] [PubMed] 24. Duarte, V.C.; Prata, J.G.; Ribeiro, C.F.; Nogueira, R.N.; Winzer, G.; Zimmermann, L.; Walker, R.; Clements, S.; Filipowicz, M.; Napierala, M.; et al. Modular coherent photonic-aided payload receiver for communications satellites. Nat. Commun. 2019, 10, 1–9. [CrossRef] [PubMed] 25. Smit, M.; van der Tol, J.; Hill, M. Moore’s law in photonics. Laser Photonics Rev. 2012, 6, 1–13. [CrossRef] 26. Bardeen, J.; Brattain, W.H. Three-Electrode Circuit Element Utilizing Semiconductive Materials. U.S. Patent 2,524,035, 17 June 1948. 27. William, S. Circuit Element Utilizing Semiconductive Material. U.S. Patent 2,569,347, 26 June 1948. 28. Alferov, M.K.; Andreev, Z.I.; Portnoi, V.M.; Trukan, E.L. AlAs-GaAs Heterojunction injection lasers with a low room-temperature threshold. Fizika i Tekhnika Poluprovodnikov Soviet Physics Semiconductors 1969, 3, 1328–1332. 29. Kilby, J.S. Miniaturized Electronic Circuits. U.S. Patent 3,138,743, 6 February 1959. Appl. Sci. 2020, 10, 4024 17 of 19 30. Wanlass, F.M.; Sah, C.T. Nanowatt logic using field-e ect metal-oxide semiconductor triodes. In Proceedings of the IEEE International Solid-State Circuits Conference, Philadelphia, PA, USA, 20–22 February 1963; Volume VI, pp. 32–33. 31. Suzuki, M.; Noda, Y.; Tanaka, H.; Akiba, S.; Kushiro, Y.; Isshiki, H. Monolithic integration of InGaAsP/InP distributed feedback laser and electroabsorption modulator by vapor phase epitaxy. J. Lightwave Technol. 1987, 5, 1277–1285. [CrossRef] 32. Moore, G.E. Moore’s law at 40. In Understanding Moore’s Law: Four Decades of Innovation; Brock, D.C., Ed.; Chemical Heritage Foundation: Philadelphia, PA, USA, 2006; pp. 67–84. 33. JePPIX—Joint European Platform for Photonic Integration of Components and Circuits. JePPIX Roadmap 2018. May 2018. Available online: http://www.jeppix.eu/introduction-to-roadmaps (accessed on 22 November 2019). 34. AIM Photonics. MIT Microphotonics Center, and International Electronics Manufacturing Initiative (iNEMI). 2017 Integrated Photonic Systems Roadmap (IPSR). 2018. Available online: https://aimphotonics.academy/ roadmap/ipsr-roadmap (accessed on 20 December 2019). 35. JePPIX. JePPIX—Joint European Platform for Photonic Integration of Components and Circuits. 2019. Available online: http://www.jeppix.eu/ (accessed on 22 November 2019). 36. Heideman, R.G.; Leinse, A.; Hoekman, M.; Schreuder, F.; Falke, F.H. TriPleX: The low loss passive photonics platform, Industrial applications through Multi Project Wafer runs. In Proceedings of the 2014 IEEE Photonics Conference, San Diego, CA, USA, 12–16 October 2014; pp. 224–225. 37. EPIXfab. ePIXfab-European Silicon Photonics Alliance. 2019. Available online: http://epixfab.eu/ (accessed on 6 January 2020). 38. Fahrenkopf, N.M.; McDonough, C.; Leake, G.L.; Su, Z.; Timurdogan, E.; Coolbaugh, D.D. The AIM Photonics MPW: A Highly Accessible Cutting Edge Technology for Rapid Prototyping of Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–6. [CrossRef] 39. Schmitt, A.; Wilkinson, S. OFC 2019—The Future of Optical Networking and Communications—Post-Show Report, An Overview of the Market; Cignal AI-Active Insight: San Diego, CA, USA, 2019. 40. Carey, E.; Lidholm, S. Millimeter-Wave Integrated Circuits; Springer: New York, NY, USA, 2005. 41. Tien, P.K. Integrated optics and new wave phenomena in optical waveguides. Rev. Mod. Phys. 1977, 49, 361–420. [CrossRef] 42. Lim, A.E.-J.; Song, J.; Fang, Q.; Li, C.; Tu, X.; Duan, N.; Chen, K.K.; Tern, R.P.-C.; Tsung-Yang, L. Review of Silicon Photonics Foundry E orts. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 405–416. [CrossRef] 43. Coldren, L.A.; Corzine, S.W.; Mašanovic, ´ M.L. Diode Lasers and Photonic Integrated Circuits, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. 44. Bowers, J.E.; Park, H.; Kuo, Y.h.; Fang, A.W.; Jones, R.; Paniccia, M.J.; Cohen, O.; Raday, O. Integrated optical amplifiers on silicon waveguides. In Proceedings of the OSA IPNRA 2007—Integrated Photonics and Nanophotonics Research and Applications, Salt Lake City, UT, USA, 8–11 July 2007; p. ITuG1-3. 45. Matsui, Y.; Eriksson, U.; Wesstrom, J.O.; Liu, Y.; Hammerfeldt, S.; Hassler, M.; Stoltz, B.; Carlsson, N.; Siraj, S.; Goobar, E. Narrow linewidth tunable semiconductor laser. In Proceedings of the 2016 Compound Semiconductor Week, CSW 2016—Includes 28th International Conference on Indium Phosphide and Related Materials, IPRM and 43rd International Symposium on Compound Semiconductors, ISCS 2016, Toyama, Japan, 26–30 June 2016. 46. Velásquez, J.C.; Tabares, J.; Prat, J. Di erential 8-APSK monolithically integrated dual-EML transmitter for flexible coherent PONs. Opt. Lett. 2019, 44, 2760. [CrossRef] 47. Connelly, M.J. Semiconductor by Optical Amplifiers; Kluwer Academic: Boston, MA, USA, 2002. 48. Muñoz, P.; Micó, G.; Bru, L.A.; Pastor, D.; Pérez, D.; Doménech, J.D.; Fernández, J.; Baños, R.; Gargallo, B.; Alemany, R.; et al. Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications. Sensors 2017, 17, 2088. [CrossRef] [PubMed] 49. Bowers, J.E.; Komljenovic, T.; Davenport, M.; Hulme, J.; Liu, A.Y.; Santis, C.T.; Spott, A.; Srinivasan, S.; Stanton, E.J.; Zhang, C. Recent advances in silicon photonic integrated circuits. In Proceedings of the Next-Generation Optical Communication: Components, Sub-Systems, and Systems, San Francisco, CA, USA, 16–18 February 2016; Volume 977402, pp. 1–18. 50. Helkey, R.; Saleh, A.A.M.; Buckwalter, J.; Bowers, J.E. High-performance photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron. 2019, 25. [CrossRef] Appl. Sci. 2020, 10, 4024 18 of 19 51. Nagarajan, R.; Kato, M.; Pleumeekers, J.; Evans, P.; Corzine, S.; Hurtt, S.; Dentai, A.; Murthy, S.; Missey, M.; Muthiah, R.; et al. InP Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1113–1125. [CrossRef] 52. Ławniczuk, K.; Augustin, L.M.; Grote, N.; Wale, M.J.; Smit, M.K.; Williams, K.A. Open access to technology platforms for InP-based photonic integrated circuits. Adv. Opt. Technol. 2015, 4, 157–165. [CrossRef] 53. Soares, F.M.; Baier, M.; Gaertner, T.; Feyer, M.; Möhrle, M.; Grote, N.; Schell, M. High-Performance InP PIC Technology Development based on a Generic Photonic Integration Foundry. In Proceedings of the OFC 2018—Optical Fiber Communications Conference, San Diego, CA, USA, 11–15 March 2018; p. M3F.3(3). 54. Stroganov, A.; Geiselmann, M. Silicon Nitride PICS Platform Development From a Foundry Perspective: From Concepts to Real Applications. In Proceedings of the ECIO 2019-European Conference on Integrated Optics, Ghent, Belgium, 24–26 April 2019; pp. 1–3. 55. John, D.D.; Brodnik, G.; Gundavarapu, S.; Moreira, R.L.; Belt, M.; Hu man, T.; Blumenthal, D.J. Low-Loss Photonic Integration: Applications in Datacenters. In Datacenter Connectivity Technologies: Principles and Practice; Chang, F., Ed.; River Publishers Series in Optics and Photonics: Gistrup, Denmark, 2018; pp. 431–480. 56. Augustin, L.; Smit, M.; Grote, N.; Wale, M.; Visser, R. Standardized process could revolutionize photonic integration. Euro Photonics 2013, 18, 30–34. 57. Pinho, C. Optimized Photonic Integrated Solutions for Next Generation Optical Systems. Ph.D. Thesis, University of Aveiro, Averio, Portugal, 2019. 58. Bauters, J.F.; Heck, M.J.R.; John, D.D.; Barton, J.S.; Bruinink, C.M.; Leinse, A.; Heideman, R.G.; Blumenthal, D.J.; Bowers, J.E. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 2011, 19, 24090–24101. [CrossRef] [PubMed] 59. Belt, M.; Blumenthal, D.J. Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform. Opt. Express 2014, 22, 10655–10660. [CrossRef] [PubMed] 60. Liehr, M.; Baier, M.; Hoefler, G.; Fahrenkopf, N.M.; Bowers, J.; Gladhill, R.; O’Brien, P.; Timurdogan, E.; Su, Z.; Kish, F. Foundry capabilities for photonic integrated circuits. In Optical Fiber Telecommunications VII.; Elsevier: London, UK; Academic Press: London, UK, 2019; pp. 143–193. 61. Ramirez, J.M.; Elfaiki, H.; Verolet, T.; Besancon, C.; Gallet, A.; Néel, D.; Hassan, K.; Olivier, S.; Jany, C.; Malhouitre, S.; et al. III-V-on-Silicon Integration: From Hybrid Devices to Heterogeneous Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2020, 26. [CrossRef] 62. PIXAPP—H2020-EU.2.1.1. Report Summary-Photonic Integrated Circuits Assembly and Packaging Pilot line (PIXAPP), H2020-EC, CORDIS, European Commission. 2019. Available online: https://cordis.europa.eu/ project/rcn/206352/factsheet/en (accessed on 17 November 2019). 63. Photonics 21—Public Private Partnership. PIXAPP—Photonic Integrated Circuits Assembly and Packaging Pilot Line. 2017. Available online: https://pixapp.eu/ (accessed on 17 November 2019). 64. Stern, J.R.; Ballance, J.W.; Faulkner, D.W.; Hornung, S.; Payne, D.B.; Oakley, K. Passive Optical Local Networks for Telephony Applications And Beyond. Electron. Lett. 1987, 23, 1255–1256. [CrossRef] 65. E enberger, F. PONs: State of the Art and Standardized. In Optical Fiber Telecommunications—Systems and Networks, 6th ed.; Elsevier: Orlando, FL, USA; Academic Press: Orlando, FL, USA, 2013; pp. 1314–1363. 66. Point Topic Global Broadband Statistics. Point Topic—World Broadband Statistics (Q4 2017). In Point Topic; 2017; Available online: http://point-topic.com/free-analysis/world-broadband-statistics-q4-2017/ (accessed on 17 November 2019). 67. Wong, E. Next-generation broadband access networks and technologies. J. Lightwave Technol. 2012, 30, 597–608. [CrossRef] 68. ITU-T Recommendation G. 989.2. 40-Gigabit-Capable Passive Optical Networks 2 (NG-PON2): Physical Media Dependent (PMD) Layer Specification. 2014. Available online: https://www.itu.int/rec/T-REC-G.989. 2-201412-I/en (accessed on 6 February 2020). 69. IEEE P802.3av Task Force, “10Gb/s Ethernet Passive Optical Network. 2009. Available online: http: //www.ieee802.org/3/av/ (accessed on 6 February 2020). 70. Lam, C.F.; Yin, S. Evolution of fiber access networks. In Optical Fiber Telecommunications VII; Elsevier: Amsterdam, The Netherlands, 2020; pp. 827–865. 71. ITU-T Recommendation G. 989.2, “G.989.2: 40-Gigabit-Capable Passive Optical Networks 2 (NG-PON2): Physical Media Dependent (PMD) Layer Specification. Sep. 2019. Available online: https://www.itu.int/rec/ T-REC-G.989.2 (accessed on 6 February 2020). Appl. Sci. 2020, 10, 4024 19 of 19 72. Kim, K.; Doo, K.-H.; Lee, H.H.; Kim, S.; Park, H.; Oh, J.-Y.; Chung, H.S. High Speed and Low Latency Passive Optical Network for 5G Wireless Systems. J. Lightwave Technol. 2019, 37, 2873–2882. [CrossRef] 73. O’Byrne, V.; Lee, C.H.; Kim, Y.; Zhao, Z. FTTX Worldwide Deployment. In Optical Fiber Telecommunications—Systems and Networks; Elsevier: Orlando, FL, USA; Academic Press: Orlando, FL, USA, 2013; pp. 1448–1525. 74. Alimi, I.; Tavares, A.; Pinho, C.; Abdalla, A.M.; Monteiro, P.; Teixeira, A. Enabling optical wired and wireless technologies for 5G and beyond networks. In Telecommunication Systems; IntechOpen: London, UK, 2019; pp. 1–31. 75. Tavares, A.; Lopes, A.; Rodrigues, C.; Mãocheia, P.; Mendes, T.; Brandão, S.; Rodrigues, F.; Ferreira, R.; Teixeira, A. Photonic integrated transmitter and receiver for NG-PON2. In Proceedings of the AOP 2014—International Conference on Applications of Optics and Photonics, Aveiro, Portugal, 26–30 May 2014; Volume 9286, p. 928605(4). 76. Teixeira, A.; Tavares, A.; Lopes, A.P.S.; Rodrigues, C.E. Photonic Integrated Tunable Multi-Wavelength Transmitter Circuit. U.S. Patent 10,326,529, 18 June 2019. 77. Ciaramella, E. Assessment of a Polarization-Independent DSP-Free Coherent Receiver for Intensity-Modulated Signals. J. Lightwave Technol. 2020, 38, 676–683. [CrossRef] 78. ITU-T G.9807.1, “10-Gigabit-Capable Symmetric Passive Optical Network (XGS-PON). 2016. Available online: https://www.itu.int/rec/T-REC-G.9807.1-201606-I/en (accessed on 6 February 2020). 79. Muhammetgulyyev, A.; Kinaci, B.; Aho, A.; Yalcin, Y.; Cetinkaya, C.; Kuruoglu, F.; Guina, M.; Erol, A. V-groove etched 1-eV-GaInNAs nipi solar cell. Appl. Phys. A Mater. Sci. Process. 2019, 125, 1–7. [CrossRef] 80. Wetzel, C.; Detchprohm, T. Development of high power green light emitting diode chips. MRS Internet J. Nitride Semicond. Res. 2005, 10, 1–38. [CrossRef] 81. PICadvanced. XFP NG-PON2 ONU Class 3|PICadvanced. 2020. Available online: https://www.picadvanced. store/product-page/xfp-ng-pon2-onu-class-3 (accessed on 12 October 2019). 82. Fischer-Hirchert, U.H.P. Photonic Packaging Sourcebook: Fiber-Chip Coupling for Optical Components, Basic Calculations, Modules; Springer: Berlin/Heidelberg, Germany, 2015. 83. Pavarelli, N.; Lee, J.S.; O’Brien, P.A. Packaging challenges for integrated silicon photonic circuits. In Proceedings of the Silicon Photonics and Photonic Integrated Circuits IV, Brussels, Belgium, 1 May 2014; Volume 9133, p. 91330F-1–9. 84. Carroll, L.; Lee, J.-S.; Scarcella, C.; Gradkowski, K.; Duperron, M.; Lu, H.; Zhao, Y.; Eason, C.; Morrissey, P.; Rensing, M.; et al. Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Appl. Sci. 2016, 6, 426. [CrossRef] 85. HHI, “Fraunhofer Heinrich-Hertz-Institut–Fraunhofer HHI. 2020. Available online: https://www.hhi. fraunhofer.de/ (accessed on 6 February 2020). 86. Cano, I.N.; Velasquez, J.C.; Prat, J. 7.5 Gb/s direct DFB phase modulation with 8-DPSK for 6.25 GHz spaced coherent UDWDM-PONs. In Proceedings of the OFC 2016-Optical Fiber Communications Conference and Exhibition, Anaheim, CA, USA, 20–24 March 2016; p. M3C.4(1–3). 87. O’Brien, P. Scaling of Integrated Photonic Packaging for Volume Manufacture. In Proceedings of the International Conference on Optical MEMS and Nanophotonics, Lausanne, Switzerland, 29 July–2 August 2018; Volume INV-3, pp. 30–31. 88. Lam, C.F. PON Architectures Review. In Passive Optical Networks; Lam, C.F., Ed.; Elsevier: Burlington, MA, USA; Academic Press: Burlington, MA, USA, 2007; pp. 19–86. 89. Mack, B.; Graham, T. Pluggable Optics Modules-Thermal Specifications. In Electronics Cooling; 2016; Available online: https://www.electronics-cooling.com/2016/07/pluggable-optics-modules-thermal-specifications-part- 1 (accessed on 3 November 2019). © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Journal

Applied SciencesMultidisciplinary Digital Publishing Institute

Published: Jun 10, 2020

There are no references for this article.