Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Optimization of Effective Throughput in NOMA-Based Cognitive UAV Short-Packet Communication

Optimization of Effective Throughput in NOMA-Based Cognitive UAV Short-Packet Communication Unmanned aerial vehicles (UAVs) are considered an important component of 6G wireless technology. However, there are many challenges to the employment of UAVs, one of which is spectrum scarcity. To address this challenge, non-orthogonal multiple access (NOMA) and cognitive radio (CR) techniques are employed in UAV short-packet communication systems. In this paper, we consider a NOMA-based cognitive UAV short-packet communication system. Firstly, a mathematical expression for the effective throughput of the secondary users is derived. Then, we aim to maximize the effective throughput of the far secondary user by optimizing the sensing time, power allocation, and information bits under the constraints of the transmission power and effective decoding error probability. A joint optimization algorithm is used to solve this problem, where the bisection method and the one-dimensional linear search algorithm are used to solve the subproblem. The simulation results show that the proposed algorithm has low complexity and similar performance compared to the exhaustive method. In addition, the necessity of joint optimization is shown in the simulation results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Sciences Multidisciplinary Digital Publishing Institute

Optimization of Effective Throughput in NOMA-Based Cognitive UAV Short-Packet Communication

Optimization of Effective Throughput in NOMA-Based Cognitive UAV Short-Packet Communication

Applied Sciences , Volume 13 (1) – Jan 1, 2023

Abstract

Unmanned aerial vehicles (UAVs) are considered an important component of 6G wireless technology. However, there are many challenges to the employment of UAVs, one of which is spectrum scarcity. To address this challenge, non-orthogonal multiple access (NOMA) and cognitive radio (CR) techniques are employed in UAV short-packet communication systems. In this paper, we consider a NOMA-based cognitive UAV short-packet communication system. Firstly, a mathematical expression for the effective throughput of the secondary users is derived. Then, we aim to maximize the effective throughput of the far secondary user by optimizing the sensing time, power allocation, and information bits under the constraints of the transmission power and effective decoding error probability. A joint optimization algorithm is used to solve this problem, where the bisection method and the one-dimensional linear search algorithm are used to solve the subproblem. The simulation results show that the proposed algorithm has low complexity and similar performance compared to the exhaustive method. In addition, the necessity of joint optimization is shown in the simulation results.

Loading next page...
 
/lp/multidisciplinary-digital-publishing-institute/optimization-of-effective-throughput-in-noma-based-cognitive-uav-short-Lw2DaPz9Mi

References (32)

Publisher
Multidisciplinary Digital Publishing Institute
Copyright
© 1996-2023 MDPI (Basel, Switzerland) unless otherwise stated Disclaimer Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. Terms and Conditions Privacy Policy
ISSN
2076-3417
DOI
10.3390/app13010599
Publisher site
See Article on Publisher Site

Abstract

Unmanned aerial vehicles (UAVs) are considered an important component of 6G wireless technology. However, there are many challenges to the employment of UAVs, one of which is spectrum scarcity. To address this challenge, non-orthogonal multiple access (NOMA) and cognitive radio (CR) techniques are employed in UAV short-packet communication systems. In this paper, we consider a NOMA-based cognitive UAV short-packet communication system. Firstly, a mathematical expression for the effective throughput of the secondary users is derived. Then, we aim to maximize the effective throughput of the far secondary user by optimizing the sensing time, power allocation, and information bits under the constraints of the transmission power and effective decoding error probability. A joint optimization algorithm is used to solve this problem, where the bisection method and the one-dimensional linear search algorithm are used to solve the subproblem. The simulation results show that the proposed algorithm has low complexity and similar performance compared to the exhaustive method. In addition, the necessity of joint optimization is shown in the simulation results.

Journal

Applied SciencesMultidisciplinary Digital Publishing Institute

Published: Jan 1, 2023

Keywords: UAV; short-packet communication; NOMA; spectrum sensing; effective throughput

There are no references for this article.