Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Magnetized Water and Proline to Boost the Growth, Productivity and Fruit Quality of ‘Taifi’ Pomegranate Subjected to Deficit Irrigation in Saline Clay Soils of Semi-Arid Egypt

Magnetized Water and Proline to Boost the Growth, Productivity and Fruit Quality of... Article  Magnetized Water and Proline to Boost the Growth,   Productivity and Fruit Quality of ‘Taifi’ Pomegranate   Subjected to Deficit Irrigation in Saline Clay Soils of   Semi‐Arid Egypt  1, 2,3 1 4 5, Sameh K. Okba  *, Yasser Mazrou  , Gehad B. Mikhael  , Mohamed E. H. Farag   and Shamel M. Alam‐Eldein  *    Deciduous Fruit Department, Horticulture Research Institute, Agricultural Research Center,   Giza 12619, Egypt; gehadboshramikhael@arc.sci.eg    Community College, King Khalid University, Abha 62217, Saudi Arabia; ymazrou@kku.edu.sa or  yasser.mazroua@agr.tanta.edu.eg    Department of Agricultural Economic, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt    Department of Olive and Semi‐Arid Region Fruits, Horticulture Research Institute, Agricultural Research  Center, Giza 12619, Egypt; m_h_2025@yahoo.com    Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt  *  Correspondence: samehhort@arc.sci.eg or bahshort@gmail.com (S.K.O.);   shamel.alameldein@agr.tanta.edu.eg or shamel@ufl.edu (S.M.A.‐E.); Tel.: +2‐040‐345‐5584 (S.M.A.‐E.)  Abstract: Water scarcity is becoming a global problem. The shift from traditional irrigation systems  to deficit irrigation increased soil salinity, particularly in clay soils. The use of magnetized water  Citation: Okba, S.K.; Mazrou, Y.;   (MW) and biostimulants can induce plant resistance to drought and salinity stress. To assess the  Mikhael, G.B.; Farag, M.E.H.;   role of MW and proline (P) on ‘Taifi’ pomegranate shrubs’ growth, productivity, and fruit quality  Alam‐Eldein, S.M.   under such conditions, a split‐plots experiment was conducted for two seasons using three irriga‐ Magnetized Water and Proline   tion levels (100%, 75%, and 50%), based on the crop water requirements (CWR), and four treatments  to Boost the Growth, Productivity   including foliar spray of tap water (control) and P, irrigation with MW, and MW + P. The most  and Fruit Quality of ‘Taifi’   pronounced effect was referred to MW + P at 75% CWR that improved shrubs’ chlorophyll content  Pomegranate Subjected to Deficit   Irrigation in Saline Clay Soils of   and nutritional status, reduced endogenous proline content, and enhanced vegetative growth with  Semi‐Arid Egypt. Horticulturae 2022,  minimum consumptive water use (CWU), optimum water use efficiency (WUE), maximum water  8, 564. https://doi.org/10.3390/  productivity (WP), utmost yield and average fruit weight, lowest percentage of fruit cracking, and  horticulturae8070564  fairly good total soluble solids (TSS), vitamin C and anthocyanin contents. Overall, MW + P at 75%  CWR improved the resistance mechanism of pomegranate shrubs in saline clay soils, plus improv‐ Academic Editors: Antonella  ing the growers’ net profit. MW generally reduced soil salinity, expressed as reduced pH, EC, Na ,  Castagna and Marco Santin  2+ and Ca  values.  Received: 24 May 2022  Accepted: 16 June 2022  Keywords: clay soils; deficit irrigation; magnetic water; osmoregulants; salinity; water relationships  Published: 21 June 2022  Publisher’s  Note:  MDPI  stays  neu‐ tral  with  regard  to  jurisdictional  claims in published maps and institu‐ 1. Introduction  tional affiliations.  The pomegranate (Punica granatum L.), belonging to the Lythraceae (formerly Puni‐ caceae) family, is a deciduous shrub or small tree that believed to be originated in Persia    (i.e., Iran), Afghanistan, Pakistan, and perhaps Northern India nearly 4000 years ago [1].  Due to the rapid increase in the cultivation and production of pomegranates, no current  Copyright: © 2022 by the authors. Li‐ reliable information is available about the global production, but it was estimated to be  censee  MDPI,  Basel,  Switzerland.  around 3.8 million tons in 2017. The top world producers are believed to be India, Iran,  This article  is an open access article  Turkey, China, United States of America, Palestine, Egypt, Spain, Afghanistan, Tunisia,  distributed under the terms and con‐ Azerbaijan, Morocco, Argentina, Brazil, Chile, Peru, South Africa, Australia, and Italy [2].  ditions of the Creative Commons At‐ tribution (CC BY) license (https://cre‐ Pomegranates grow well in mild‐temperate to tropical climates; however, the best  ativecommons.org/licenses/by/4.0/).  fruit quality is attained in Mediterranean climate (regions with cool winter and hot dry  Horticulturae 2022, 8, 564. https://doi.org/10.3390/horticulturae8070564  www.mdpi.com/journal/horticulturae  Horticulturae 2022, 8, 564  2  of  24  summer). Cultivars vary in frost tolerance, and some dormant shrubs are severely injured  at temperatures down to −11 °C. Shrubs perform well in deep loamy soils, but still grow  quite well in sandy and clay soils, and grow best in a soil pH range of 5.5–7.2. They also  prefer well‐drained soils, and can tolerate short periods of flooding stress. Shrubs are very  drought tolerant, and moderately tolerate salinity stress. Drip irrigation is the preferred  method, and shrubs can withstand irrigation with saline water up to electric conductivity  −1 (EC) = 2 dS∙m  [3,4].  The main obstacle of pomegranate cultivation under arid and semi‐arid conditions is  the abiotic stresses, particularly heat [2], drought, and salinity [5]. The effects of drought  and salinity, in particular, have increased in the last decades due to water scarcity [6].  Drought has an impact on plant morphology, physiology, and biochemistry. Under such  conditions,  xylem  vessels  become  susceptible  to  embolism  or  dysfunction,  leading  to  lower hydraulic conductance and carbon intake, which in turn affect plant growth char‐ acteristics and productivity [7]. Drought stress causes a reduction in root and vegetative  growth, number of leaves per branch, leaf area, leaf water content, and number of mal‐ formed flowers [8]. Salinity, in particular, is one of the major environmental stresses that  can develop through irrigation, and is considered as a limiting factor in agricultural sys‐ ‐ 2− 2+ tems [9]. High levels of salts, mainly chlorides (Cl ) and sulfates (SO4 ) of calcium (Ca ),  2+ + magnesium (Mg ), and sodium (Na ), cannot be tolerated by most of the plants [10]. Sa‐ linity induces cell damages and inhibits plant growth [11] through osmotic stress and ionic  stress [12]. Salinity causes leaf injury, as well as a reduction in chlorophyll content, carbon  assimilation, and nutrient uptake. It also induces the production of reactive oxygen spe‐ cies (ROS) that negatively affect plant metabolism through the oxidative damage of lipids,  proteins, and nucleic acids [13]. Moreover, it causes a reduction in plant height and leaf  area, and creates bearing problems with reduced fruit yield and quality [14].  Egypt is ranked the seventh among the top worldwide producers of pomegranates  [2]. Total cultivated area is about 31,987 hectares with total production of 382,587 tonnes,  and the export of almost 82,866 tonnes (21.6% of the total crop) in 2020; accordingly, Egypt  is ranked the fifth among the top world exporters [15]. Harvest season starts by mid‐Sep‐ tember to early November, and the most important cultivars are ‘Manfalouty’, ‘Wonder‐ ful’, ‘116’, and ‘Red Angel’ [16]. ‘Taifi’ cultivar originated in Saudi Arabia, and it is the  most popular cultivar there, particularly in the South West region [17]. It was introduced  to Egypt in 2016, but it is not so popular or widely cultivated yet due to fruit cracking,  poor outside and inside color, low sugar, and high acidity contents under the semi‐arid  conditions of Egypt (personal communications). Shrubs are generally medium in size. The  proportion of male to perfect flowers (sex ratio) is 35%. Flowers are orange‐reddish, and  fruits are spherical and large in size with green‐reddish peel, and large, soft, and red seeds.  Average fruit yield is about 200 fruits per shrub with an average weight of 250 g and  almost 63.2% juice per fruit. Fruit has a sweet–sour taste with minimum total sugars =  14.30%, total soluble solids (TSS) = 15.77 °Brix, acidity = 0.56%, and vitamin C = 8.34% [18].  Water scarcity is becoming a recent problem in Egypt, and may become a limiting  factor of the overall fruit industry in the future, due to limited water resources and scanty  rainfall. One of the major problems of drought is soil salinity [19]. Under such conditions,  there is a need to reduce agricultural water demand and increase the economic produc‐ tivity of water, particularly in the North Delta area where soil salinity is high. Improving  on‐farm management of agricultural water through the utilization of advanced irrigation  technology (e.g., deficit irrigation) and improved irrigation scheduling, offering the pro‐ spect of a significant increase in water productivity [20]. Deficit irrigation is a strategy  where the amount of applied water is less than the full water requirements of a crop, and  the resulting stress has minimal effects on crop yield. It effectively reduced water require‐ ments, and improved plant’s water use efficiency (WUE) [21] and fruit quality of various  deciduous fruit trees, including pomegranate, depending on the phenological stage when  water shortage was applied [22]. However, in salt‐affected clay soils, the shift from tradi‐ tional flood irrigation systems to the modern techniques such as deficit irrigation resulted    Horticulturae 2022, 8, 564  3  of  24  in increased soil salinity [23,24]. Therefore, the use of magnetized water (MW) under the  deficit irrigation system [25], as well as foliar application of some biostimulants can play  an important role in inducing plant resistance to drought and salinity stresses [26,27]. Bi‐ ostimulants are known to improve plant growth, yield, and fruit quality. They include  diverse substances like humic substances, compost tea, seaweed extracts, free amino acids  (e.g., proline), and plant extracts, as well as microorganisms like free‐living bacteria, fungi,  and arbuscular mycorrhizal fungi [28].  The flow of water through a magnetic field changes its physiochemical characteris‐ tics, and results in what so called “magnetized water”. The change or disintegrate of the  hydrogen bonds results in a decrease in the angle between hydrogen (H) and oxygen (O),  and hence the formation of a hexagonal configuration with reduced surface tension mak‐ ing the water more bioavailable and easily absorbed into root cells. In addition, magnetic  field also increases water pH, resulting in a more alkaline water [29] with lower viscosity,  + − EC and contents of Na  and Cl , but higher permeability and ability to dissolve slight‐ soluble salts and leach the excess. The application of magnetic field on water decreases  the hydration of salt ions and colloids, having a positive effect on salt solubility, acceler‐ ated coagulation, and salt crystallization [30]. Under magnetic field, the hydration number  of Cl  ions increases, and hence their mobility decreases, while the mean size of water  clusters decreases and their mobility increases [31]. Similarly, Na  level under MW irriga‐ tion was also lower than that under non‐MW irrigation conditions [32]. Therefore, MW  can be used as an effective method for soil desalinization [33]. These effects of MW re‐ mained for up to 200 h after the magnetic field was ceased. This is called “the memory  effect of water” [34]. Water subjected to a magnetic field has shown a modification in its  properties, as it became more energetic and able to flow, which can be considered as the  birth of a new science called ‘magneto biology’. In addition, MW prevents the uptake of  harmful metals such as lead (Pb) and nickel (Ni) by roots, and hence prevents them from  reaching the fruit [35].  The effect of MW technology on fruit trees is rarely documented and merits further  investigations to evaluate its impacts on the yield and fruit quality, particularly under  drought and salinity stress conditions. Few studies on different fruit species have shown  that MW enhanced soil nutrient availability and salt leaching [36], and therefore improved  leaf mineral contents, plant growth characteristics, fruit set, yield, and quality of ‘Valencia’  orange [37]. Furthermore, there is a relationship between irrigation with MW and photol‐ yase‐like blue light receptors, “cryptochromes” (CRY1 and CRY2), which have various  roles in plants such as guard cell development, stomata opening, photosynthesis, root de‐ velopment, vegetative growth, and fruit development [38] .  −1 As a proteinogenic amino acid, proline (C5H9NO2, 115.13 g.mol  mw) is the most  widely distributed osmoprotectant in higher plants that plays an essential role in the de‐ fense mechanism of stressed plants through changes in key anatomical features of roots  and leaves, the osmotic regulation of the cell sap, membrane and protein stability, enzyme  activity, and scavenging the free radicals [39,40]. Enhanced endogenous proline level im‐ proved leaf chlorophyll content, yield, and fruit weight, diameter and TSS of non‐stressed  pomegranate [41] and orange [42], as well as salt‐stressed mango [43] and tomato plants  [44].  The aim of this research work was to improve the growth, productivity, and fruit  quality of ‘Taifi’ pomegranate shrubs, grown in saline clay soils and subjected to deficit  irrigation, with the utilization of MW and proline to mitigate the stress effects. To date,  few reports have used MW to alleviate salinity stress of fruit trees [36], and pomegranate  in particular [45]. In addition, most research on deficit irrigation has been performed in  sandy soils [26,27,43,45], but this is considered the first report using deficit irrigation with  MW to improve the growth and productivity of pomegranate grown in saline clay soils,  which require a lot of water for salt leaching.       Horticulturae 2022, 8, 564  4  of  24  2. Materials and Methods  2.1. Experimental Site  This research was performed on 9‐year‐old ‘Taifi’ pomegranate (Punica granatum L.)  grown  in  a  private  orchard  located  at  Al‐Riadh,  Kafr  Elsheikh,  Egypt  (31°23′68″  N,  30°94′54″ E) for two consecutive seasons (2019 and 2020). The climatic conditions of the  experimental site are semi‐arid without summer rains [46], as shown in Table 1. Soil and  water analysis were carried out according to Chapman and Pratt [47] and are displayed  in Table 2. All used chemicals in this experiment were imported from Sigma Aldrich, St.  Louis, MO, USA.  Table 1. Weather data of Al‐Riadh, kafr Elsheikh, Egypt during the 2019 and 2020 seasons.  Temperature  Humidity  Rainfall  Wind Speed  Cloud  Sun  UV  Season   −1 −1 −1 (°C)  (%)  (mm∙month )  (km∙h )  (%)  (days∙month )  Index  Winter  2019  16.0  61.7  23.0  13.8  19.3  30.0  4.3    2020  16.0  68.0  26.8  13.2  31.7  28.7  4.0  Spring  2019  23.0  57.3  15.7  14.0  13.3  30.0  6.0    2020  23.0  59.3  5.3  14.6  16.7  30.3  6.3  Summer  2019  30.7  63.0  1.2  13.0  4.7  30.7  8.0    2020  30.7  62.7  0.07  13.9  5.0  30.7  7.7  Fall  2019  26.7  63.7  6.03  11.9  10.0  30.0  6.3    2020  26.7  64.3  11.7  11.6  15.7  29.3  6.3  Table 2. Soil and water analysis of the experimental site.    Soil Analysis  Water Analysis  Depth (cm)  0–30  30–60  60–90  Sand (%)  25.2  22.7  25.5   Silt (%)  27.1  28.1  39.3   Clay (%)  47.7  49.2  35.1   Texture  Clay  Clay  Loamy clay   −3 Density (g∙cm )  1.29  1.36  1.42   Field capacity (%)  42.2  39.7  38.9   Permineant wilting point (%)  22.7  21.6  21.2   Available water (%)  73.6  76.6  78.1   Depth (cm)  0–60    −1 EC (ds∙m )   1.69     pH   8.2    7.3  Total dissolved salts (ppm)       400  CaCO3 (%)    8.54     3− −1 HCO  (meq∙L )    0.90   2.1  3− −1 CO  (meq∙L )    0.00     2− −1 So4  (meq∙L )    0.26    4.1  − −1 Cl  (meq∙L )    0.50    2.3  + −1 Na  (meq∙L )    0.45    2.7  + −1 K  (meq∙L )    0.21    0.2  2+ −1 Ca  (meq∙L )    0.80    3.1  2+ −1 Mg  (meq∙L )    0.20    2.5        Horticulturae 2022, 8, 564  5  of  24  2.2. Treatments  Seventy‐two shrubs, planted at 5 × 5 m in clay soil, similar in size and vigor with no  symptoms of nutrient deficiency, were selected for this experiment. Shrubs were subjected  to drip irrigation and the same cultural practices as the entire orchard. They were distrib‐ uted in a randomized complete block design (RCBD) as a split‐plot experiment, to mini‐ mize variations among the shrubs [48], of twelve treatments with three replicates each.  Two shrubs represented each replicate. Three irrigation levels were randomly assigned as  the main plots by varying the number drippers per shrub with each dripper delivering 4.0  −1 L.h , i.e., 100%, 75%, and 50% crop water requirements (CWR) were achieved with 16 (I1,  the control shrubs, based on the regular irrigation program used in the area), 12 (I2), and  8 (I3) drippers, respectively. Total amount of water per shrub throughout the season is  presented in Table 3.  Table 3. Quantity of the irrigation water applied during the 2019 and 2020 seasons.  −1 −1 ∙tree ∙season )  Irrigation Levels (L Dripper  Irrigation  I3 = 8  Irrigation  Discharge  Month  Frequency  I1 = 16 Drippers/Shrub  I2 = 12 Drippers/Shrub  Drippers/Shrub  Amount  Period (h)  Per Month  (Control = 100% CWR *)  (25% Less = 75% CWR)  (50% Less = 50%  −1 (L∙h )  CWR)  January  3  1  4  192  144  96  Febreuary  8  1  4  512  384  256  March  8  2  4  1024  768  512  April  14  2  4  1792  1344  896  May  14  2  4  1792  1344  896  June  15  2  4  1920  1440  960  July  15  3  4  2880  2160  1440  August  15  3  4  2880  2160  1440  September  10  2  4  1280  960  640  October  8  1.30  4  768  576  384  November  8  1  4  512  384  256  December  4  1  4  256  192  128  3 −1 −1 Total water (m .tree .season )  15.81  11.86  7.90  * CWR: crop water requirements.  Each main plot was divided into four sub‐plots that randomly received four different  treatments each. The first and second sub‐plots were subjected to foliar sprays of tap wa‐ −1 ter, the control shrubs (C), and proline (P) (200 mg.L ) twice at full bloom (19 and 22  March of 2019 and 2020 seasons, respectively) and 4 weeks after. Shrubs in the third sub‐ plot were irrigated with water subjected to a magnetic field, “magnetized water” (MW),  throughout the season using a magnetic field device (strength = 14,500 Gauss and diame‐ ter = 2 inch) (Thread connection, Delta Water Inc., Alexandria, Egypt) that was installed  on the main irrigation pipe after the water pump and before the fertilizers tank. The fourth  sub‐plot was representing a combined application of MW and P (MW + P). Treatments  were separated by two rows of buffer (border) trees. The layout of one block of the exper‐ iment is displayed in Figure 1.    Horticulturae 2022, 8, 564  6  of  24  Figure 1. Layout of one block of the experiment.  2.3. Leaf Analysis  Leaf samples were randomly collected from the four sides (N, E, S, W) of the shrub,  by mid‐June of each season, to evaluate total chlorophyll content (green color intensity, as  a SPAD value) in different sections at the middle of the leaf blade [49] using a portable  Minolta  chlorophyll  meter  Model  SPAD‐501  (Spectrum  Technologies,  Inc.,  Aurora,  IL,  USA).  −1 Leaf proline concentration (mg.100 g  fw) was determined by homogenizing fresh  leaf sample (0.2 g) with 3 mL sulphosalicylic acid (3% w/v) using a porcelain mortar and  pestle set (Fisher Scientific, Waltham, MA, USA), and then the mixture was centrifuged at  18,000× g for 15 min using a benchtop general purpose centrifuge Model Allegra V‐15R  (Beckman Coilter Life Sciences, Indianapolis, IN, USA). Afterwards, the supernatant (1  mL) was mixed with 2 mL glacial acetic acid and 2 mL freshly made acid ninhydrin rea‐ gent (1.25 g ninhydrin dissolved in 30 mL glacial acetic acid and 20 mL orthophosphate  TM (6 M)) in a test tube. The tubes were incubated in a ‘Precision  General Purpose’ water  bath (Thermo Fisher Scientific, Waltham, MA, USA) at 100 °C for 1 h, and then left to cool  at room temperature (≈22–23 °C) for 24 h. Subsequently, the solution was mixed with tol‐ uene (4 mL) using a Vortex‐Genie 1 mixer (Scientific Industries, Inc., Bohemia, NY, USA)  for 20 s. To allow the toluene and the aqueous phase to separate, the tubes were left in  upright position for at least 10 min, and then the toluene phase was carefully pipetted out  into a cuvette, and the absorbance was measured at 520 nm using a spectrophotometer  Model UV‐120‐20 (Shimadzu Corp., Kyoto, Japan). Eventually, a proline standard curve  was used to calculate the proline concentration [50].  To determine the content of macro and micronutrients, leaf samples were collected  and dried at 65 °C for 72 h until reaching a constant weight using a bench‐top Heratherm  GP oven (Thermo Fisher Scientific, Waltham, MA, USA). Dried leaves were then pulver‐ ized using the mortal and pistil set, and the powder was digested with concentrated sul‐ phuric acid (H2SO4) and hydrogen peroxide (H2O2) [51]. The produced solution was used    Horticulturae 2022, 8, 564  7  of  24  to determine total nitrogen (N) and phosphorus (P) colorimetrically using the spectropho‐ tometer [52,53]. Potassium (K) concentration was determined using a flame photometer  Model FP8400 (Kruss Optronic, Hamburg, Germany) [54]. The contents of Ca, Mg [55],  iron (Fe), zinc (Zn), and manganese (Mn) [56] were also determined using atomic absorp‐ tion  spectrometer  Model  AA990  (PG  Scientific,  Inc.,  Auburn,  CA,  USA).  All  values  of  −1 macro and micronutrients were expressed as a percentage and mg∙L  per dry weight of  leaves, respectively.  2.4. Vegetative Growth  By mid‐August of each season, one shoot on four sides (N, E, S, W) of each shrub per  replicate was randomly selected and tagged to measure shoot length (cm). Twelve mature  mid‐branch leaves were collected from each branch to determine leaf area (cm ) using a  leaf area meter Model Li 3100 (LI‐COR, Inc., Lincoln, NE, USA), as described [57].  2.5. Yield  Harvest season started by mid‐September (≈173–176 days from full bloom) with the  –1 harvest window extended for almost 12–15 days in both seasons. Fruit yield (kg∙shrub )  was  recorded  using  a  regular  digital  scale  (200  kg  capacity)  (VEVOR  Equipment  and  −1 Tools, Rancho Cucamonga, CA, USA), and then total yield (kg.ha ) was calculated.  2.6. Consumptive Water Use (CWU), WUE, and Water Productivity (WP)  Soil samples were collected at different depths (i.e., every 15 cm up to 60 cm) before  and after  each irrigation time, and then  weighted to determine CWU (cm) in the root  growth zone (≈50–60 cm), using the following equation [58]:  (1) CWU∑ θ 2θ 1/100 Dbl Di  where i = number of soil layers (4 layers); θ1 and θ2 = soil moisture (%) before irrigation  −2 and 48 h after, respectively; Dbl = soil bulk density (g∙cm ); and Di = soil layer depth (15  cm).  3 −1 Calculated CWU (cm) was used to calculate total CWU per total area (m ∙ha ). Ac‐ cordingly, WUE and WP were calculated [59]:  −3 WUE (kg∙m ) = Yield/CWU  (2) −3 WP (kg∙m ) = Yield/AIW  (3) −1 3 −1 3 −1 where, Yield = kg∙ha ; CWU = m ∙ha ; and AIW = applied irrigation water (m ∙ha ).  2.7. Fruit Physiochemical Characteristics  A sample of 15 ripe fruits was randomly selected from the four directions (N, E, S,  and W) and three levels (top, medium, and bottom) of each shrub to calculate average  fruit weight and volume, in addition to fruit length and diameter. Fruit weight (g) was  measured using a bench‐top digital scale Model PC‐500 (Doran scales, Inc., Batavia, IL,  USA). Average fruit volume (cm ) was determined using the water displacement method  in a one‐liter gradual cylinder (Fisher Scientific, Waltham, MA, USA). Fruit length (with‐ out calyx) (L) and diameter (the maximum width in the middle of the fruit) (D) (cm) were  measured using a digital caliper with 0.01 mm accuracy (Grizzly Industrial, Chicago, IL,  USA), and then fruit shape index (L/D), as an indicator of sphericity (roundness shape),  was calculated [60].  Total soluble solids (TSS) percentage was estimated at room temperature (≈22–23 °C)  using a hand‐held refractometer, Model RA‐130 (KEM Kyoto Electronics Manufacturing  −1 Co., Ltd., Tokyo, Japan). Total acidity as a percentage (g citric acid∙100 mL  juice) was  determined by the titration method of sodium hydroxide (NaOH) [0.1 N] with phenol‐ phthalein,  as  an  indicator,  and  then  TSS/acid  ratio  was  calculated.  Fruit  ascorbic  acid    Horticulturae 2022, 8, 564  8  of  24  −1 (vitamin C) content (mg∙100 mL  juice) was determined by titrating 5 mL of juice with  2,6‐Dichlorophenol indophenol, according to AOAC protocol [61]. Anthocyanins were ex‐ tracted and determined using the spectrophotometer at wavelength of 535 nm, and values  −1 were expressed as mg∙100 g  fw [62].  2.8. Fruit Physiological Disorders  The numbers of cracked and sunburned fruit per replicate were counted at harvest,  and then their percentages out of the total yield were calculated. The pattern of cracks on  fruit can be vertical cracks along the length of the fruit, horizontal cracks along the diam‐ eter of the fruit, and splitting fruit into different parts, including the stem end cracks at  the point where fruit is attached to the branch [63]. The sunburn (sunscald) appears on  the sun‐exposed side of the fruit as brown or bronze discoloration [64].  2.9. Soil Chemical Characteristics after the Experiment  By the end of the two seasons, soil samples were randomly collected at a depth of 0– 60 cm under the drippers to determine some soil chemical characteristics. A 2 mm stain‐ less‐steel test sieve (Fisher Scientific, Waltham, MA, USA) was used to filter the soil sam‐ ples, which were subsequently saturated with distilled water, and a saturated extract was  then obtained using a vacuum pump (12 cfm) (VEVOR Equipment and Tools, Rancho  Cucamonga, CA, USA). The EC and pH of the saturated extract were measured using a  portable  EC  meter  Model  DDB‐11A  (Anhui  Haochuang  Instrument  Co.,  Ltd.,  Wuhu,  China) and a benchtop pH meter Model STAR A111 (Thermo Fisher Scientific, Waltham,  MA, USA), respectively. Both Ca and Mg were evaluated in the saturated extract using a  complexometric  titration  analysis  in  the  presence  of  Ethylenediaminetetraacetic  acid  (EDTA), but the flame photometer was used to assess Na and K concentrations [32].  2.10. Feasibility Study  This study was performed to evaluate the economic value of the applied treatments  (i.e., MW, P and MW + P) during both seasons using the following inputs;  (1) Treatment cost ($500.31, $59.54, and $559.85, respectively) taking into account that  irrigation water is free.  −1 (2) Cost of the regular agricultural practices: electricity for irrigation = $298∙ha ; fertiliz‐ −1 −1 ers (N, P, K, Ca and micronutrients) = $745∙ha ; pesticides = $447∙ha ; and labor =  −1 $296.12∙ha .  −1 (3) Average fruit price (USD∙kg ) was determined per fruit weight; 200–299 g = $0.25,  300–399 g = $0.31, and ≥400 g = $0.34.  2.11. Statistical Analysis  Data were first analyzed for numerical normality and homogeneity of variance using  Shapiro–Wilk’s and Levene’s tests, respectively. Data were then statistically analyzed, and  the analysis of variance (ANOVA) was performed using CoStat software package (version  6.303,  Monterey,  CA,  USA).  Means  were  compared  using  Duncan’s  multiple  rage  test  (DMRT) and the least significant difference (LSD) at p ≤ 0.05 [48].  3. Results  3.1. Leaf Chlorophyll and Proline Contents  Chlorophyll concentration (expressed as a SPAD value) was generally related to the  level of soil moisture. The highest values were recorded in shrubs subjected to 100% CWR  during both seasons (Figure 2). The application of MW, P, and MW + P effectively im‐ proved chlorophyll content compared to the stressed, non‐treated shrubs at both deficit  irrigation levels (the control at 75% and 50% CWR), but the difference was insignificant.  The difference was also insignificant in comparison to the non‐stressed non‐treated shrubs  (the control at 100% CWR) during both seasons. The application of MW + P significantly    Horticulturae 2022, 8, 564  9  of  24  improved chlorophyll content of the non‐stressed plants compared with the sole applica‐ tion of each treatment and the control in both seasons.  Figure 2 also shows that the higher the irrigation level, the lower the endogenous  proline content in ‘Taifi’ pomegranate leaves during both seasons. The application of MW,  P, and MW + P significantly reduced proline content compared with the control at all ir‐ rigation levels. The application of MW + P effectively mitigated the stress effect, expressed  as reduced proline content at both 75% and 50% CWR, but the most pronounced effect  was recorded at 75% CWR in both seasons.  Figure 2. Effect of magnetized water (MW), foliarly sprayed proline (P), and their combination  (MW + P) on leaf chlorophyll (A) and proline (B) contents of “Taifi” pomegranate shrubs grown  under different irrigation regimes (I1, I2, and I3), based on cop water requirements (CWR) during  the 2019 and 2020 seasons. Values are the means ± standard deviation (SD). Duncan’s multiple  range test (DMRT) was used for mean comparisons at p ≤ 0.05.  3.2. Leaf Macro and Micronutrient Contents  The concentrations of macro and micronutrients showed a positive response to the  level of soil moisture content with the highest values recorded at 100% CWR, as indicated  in Tables 4 and 5, respectively. However, there were no significant differences between  concentrations at 100% and 75% CWR, except for the difference in phosphorus (P) con‐ centration during both seasons (Table 4). On the other hand, the applied treatments to  mitigate salinity effects were also effective improving nutrient levels in stressed plants,  with the most pronounced effect recorded for MW + P, followed by MW, and then P in  both seasons, which confirm the effective role of MW.  Accordingly, the best interaction values were recorded for MW + P at 100% CWR,  followed by those at 75% CWR, and the lowest nutrient concentrations were recorded at  50%  CWR  during  both  seasons.  Interestingly,  the  effect  of  MW  +  P  on  macro  and    Horticulturae 2022, 8, 564  10  of  24  micronutrients was insignificant between the stressed plants (75% CWR) and the non‐ stressed ones (100% CWR), except for phosphorus (P) (Table 4), and Zn (Table 5) during  the 2020 and 2019 seasons, respectively.  Table 4. Effect of MW, P, and MW + P on leaf macronutrient contents (%) of “Taifi” pomegranate  shrubs grown under different irrigation regimes (I1, I2, and I3), based on CWR, during the 2019 and  2020 seasons.  N  P  K  Ca  Mg  Treatment  2019  2020  2019  2020  2019  2020  2019  2020  2019  2020  Irrigation levels  I1: 100% CWR (control)  1.86  1.84  0.23  0.23  0.98  0.95  0.13  0.13  1.25  1.29  I2: 75% CWR  1.82  1.81  0.21  0.21  0.94  0.94  0.13  0.13  1.26  1.22  I3: 50% CWR  1.74  1.72  0.19  0.19  0.82  0.82  0.13  0.13  0.82  0.87  LSD (p ≤ 0.05)  0.062  0.066  0.014  0.008  0.072  0.032  ns  ns  0.126  0.123  Salinity‐mitigating treatments  C: tap water (control)  1.68  1.64  0.18  0.18  0.78  0.80  0.05  0.05  0.86  0.88  MW: magnitized water  1.83  1.83  0.22  0.22  0.95  0.96  0.14  0.15  1.20  1.21  P: proline  1.75  1.72  0.20  0.20  0.90  0.86  0.11  0.11  1.02  1.07  MW + P  1.97  1.96  0.23  0.23  1.02  1.00  0.17  0.18  1.36  1.34  LSD (p ≤ 0.05)  0.037  0.043  0.007  0.005  0.035  0.032  0.011  0.014  0.091  0.080  Interaction  I1 + C (control)  1.75  1.72  0.20  0.19  0.78  0.87  0.09  0.09  0.95  0.99  I1 + MW  1.86  1.94  0.23  0.24  1.04  1.01  0.14  0.14  1.32  1.41  I1 + P  1.82  1.75  0.22  0.22  1.00  0.86  0.10  0.11  1.19  1.22  I1 + MW + P  2.01  1.95  0.26  0.25  1.08  1.06  0.18  0.19  1.54  1.54  I2 + C (75% CWR)  1.72  1.64  0.18  0.18  0.85  0.81  0.08  0.08  0.95  0.91  I2 + MW  1.82  1.85  0.22  0.22  0.96  1.01  0.15  0.15  1.43  1.33  I2 + P  1.77  1.73  0.21  0.20  0.89  0.91  0.11  0.12  1.09  1.15  I2 + MW + P  1.98  2.01  0.24  0.24  1.04  1.02  0.18  0.18  1.57  1.48  I3 + C (50% CWR)  1.56  1.55  0.17  0.17  0.71  0.71  0.11  0.11  0.67  0.73  I3 + MW  1.82  1.72  0.20  0.20  0.84  0.84  0.13  0.16  0.84  0.90  I3 + P  1.67  1.68  0.18  0.18  0.80  0.81  0.13  0.11  0.77  0.84  I3 + MW + P  1.92  1.91  0.21  0.21  0.93  0.90  0.15  0.16  0.98  0.99  LSD (p ≤ 0.05)  0.064  0.075  ns  0.009  0.061  0.055  0.018  0.024  0.158  0.139  LSD: Least significant difference used for mean comparisons, ns: non significant.  −1 Table 5. Effect of MW, P, and MW + P on leaf micronutrient contents (mg∙L  dw) of “Taifi” pome‐ granate shrubs grown under different irrigation regimes (I1, I2, and I3), based on CWR, during the  2019 and 2020 seasons.  Fe  Zn  Mn  Treatment  2019  2020  2019  2020  2019  2020  Irrigation levels  I1: 100% CWR (control)  126.1  123.2  115.7  104.4  114.5  115.9  I2: 75% CWR  125.4  124.1  101.1  103.2  111.3  111.1  I3: 50% CWR  101.2  102.0  75.1  71.6  85.8  84.6  LSD (p ≤ 0.05)  9.75  12.87  9.65  19.11  5.79  9.02  Salinity‐mitigating treatements  C: tap water (control)  99.0  99.1  74.6  74.4  80.5  83.9  MW: magnitized water  123.8  122.7  103.8  98.6  113.8  109.2  P: proline  110.6  110.8  97.7  8.3  96.2  98.4  MW + P  136.7  133.1  113.1  111.0  124.9  124.0    Horticulturae 2022, 8, 564  11  of  24  LSD (p ≤ 0.05)  8.63  5.25  6.43  8.27  8.00  6.45  Interaction  I1 + C (control)  102.0  104.2  89.5  89.6  91.4  92.8  I1 + MW  133.8  129.2  123.7  109.0  122.8  122.5  I1 + P  120.4  120.8  113.2  90.4  106.7  108.0  I1 + MW + P  148.1  138.7  136.4  128.7  136.9  140.5  I2 + C (75% CWR)  102.6  101.2  90.4  90.6  86.7  86.0  I2 + MW  132.3  131.8  102.5  106.6  124.0  120.4  I2 + P  115.5  116.4  98.6  100.1  101.3  103.6  I2 + MW + P  151.3  147.0  112.9  115.6  133.0  134.3  I3 + C (50% CWR)  92.5  91.9  43.9  43.1  63.4  72.8  I3 + MW  105.4  107.0  85.2  80.2  94.6  85.0  I3 + P  96.2  95.3  81.1  74.5  80.9  83.6  I3 + MW + P  110.8  113.7  90.0  88.6  104.7  97.1  LSD (p ≤ 0.05)  ns  9.09  11.14  14.33  ns  11.16  3.3. Shoot Length and Leaf Area  Results indicated that the lower the soil moisture content, the smaller the shoot length  and leaf area, but the application of MW, P, or MW + P significantly improved both pa‐ rameters  in  comparison  with  the  control  at  all  three  irrigation  levels,  except  for  shoot  length during the first season (Figure 3). The most pronounced effect was recorded with  MW + P, followed by MW, and then P, which confirms the role of MW, at 100% or 75%  CWR. All three treatments at 75% CWR significantly improved the shoot length (second  season only) and leaf area (both seasons) compared with the non‐stressed non‐treated  shrubs (the control at 100% CWR), with the most pronounced effect recorded for MW + P.    Horticulturae 2022, 8, 564  12  of  24  Figure 3. Effect of MW, P, and MW + P on shoot length (A) and leaf area (B) of “Taifi” pomegranate  shrubs grown under different irrigation regimes (I1, I2, and I3), based on CWR, during the 2019 and  2020 seasons. Values are the means ± SD. DMRT was used for mean comparisons at p ≤ 0.05.  3.4. Plant/Water Relationships  The CWU of pomegranate shrubs was the highest at 100% CWR compared with other  deficit irrigation treatments during both seasons (Figure 4A). The foliar applications of  MW or MW + P were the most effective treatments reducing the CWU compared with the  stressed non‐treated shrubs (the control at 75% and 50% CWR), as well as the non‐stressed  non‐treated shrubs (the control at 100% CWR) during both seasons. Although MW + P  obtained lower CWU values, the difference was insignificant compared to MW during  both seasons.  Accordingly, the shrubs’ WUE was the lowest at 100% CWR compared with deficit  irrigation treatments (75% or 50% CWR); however, the difference was only significant in  the 2020 season (Figure 4B). At both deficit irrigation levels, the applications of MW, P, or  MW + P significantly improved WUE compared with the control of the stressed and non‐ stressed shrubs, and the most pronounced effect was recorded with MW + P, followed by  MW, and then P, which confirms the vital role of MW.  Likewise, Shrubs’ WP was the lowest at 100% CWR, and significantly improved with  the reduction in soil moisture content (Figure 4C). Overall, the salinity‐mitigating treat‐ ments positively improved WP compared with the control at all three levels of CWR, but  the most pronounced effect was noticed with the application of MW + P at 75% CWR,  which was insignificantly different from MW + P and MW at 50% CWR during both sea‐ sons.    Horticulturae 2022, 8, 564  13  of  24  Figure 4. Effect of MW, P, and MW + P on consumptive water use (CWU) (A), water use efficiency  (WUE) (B), and water productivity (WP) (C) of “Taifi” pomegranate shrubs grown under different  irrigation regimes (I1, I2, and I3), based on CWR, during the 2019 and 2020 seasons. Values are the  means ± SD. DMRT was used for mean comparisons at p ≤ 0.05.  3.5. Yield and Fruit Physiochemical Characteristics  Results in Table 6 revealed that deficit irrigation at 75% CWR was the best at improv‐ ing total yield, but the application of 50% CWR resulted in the lowest yield during both  seasons. Meanwhile, all three salinity‐mitigating treatments positively improved the total  yield, compared with the control shrubs, with the highest yield recorded for MW + P,  followed by MW, and then P. However, the difference between MW + P and MW was  insignificant during the second season. Overall, the best yield was recorded with the ap‐ plication of MW + P at 75% CWR.    Horticulturae 2022, 8, 564  14  of  24  The highest fruit weight and volume was recorded at 100% CWR, but the difference  was insignificant compared to 75% CWR. In addition, MW, P, and MW + P significantly  improved both fruit weight and volume with the most conspicuous effect with the appli‐ cation of MW + P in both seasons. In regards to fruit shape, there were no significant dif‐ ferences among all three levels of soil moisture, but the lowest values were recorded with  75%  CWR  during  both  seasons.  Moreover,  the  application  of  salinity‐mitigating  treat‐ ments increased, but decreased the fruit shape index compared with the control during  the 2019 and 2020 seasons, respectively. The interaction effect has shown the best values  of fruit weight and volume with the application of MW + P at 100% CWR, followed by  MW + P at 75% CWR; however, the difference between both treatments was insignificant  during both seasons.  Table 6. Effect of MW, P, and MW + P on yield and fruit physical characteristics of “Taifi” pome‐ granate shrubs grown under different irrigation regimes (I1, I2, and I3), based on CWR, during the  2019 and 2020 seasons.  Fruit Shape Index   Yield  Fruit Weight  Fruit Volume  (Sphericity)   −1 3 Treatment  (Kg∙shrub )  (g)  (cm )  −1 (length∙diameter )  2019  2020  2019  2020  2019  2020  2019  2020  Irrigation levels  I1: 100% CWR (control)  71.2  68.1  416.7  416.6  454.6  447.1  0.88  0.91  I2: 75% CWR  73.8  76.6  408.2  406.7  417.4  427.2  0.86  0.88  I3: 50% CWR  52.1  54.3  266.5  266.05  245.4  239.5  0.86  0.91  LSD (p ≤ 0.05)  1.51  3.34  8.53  16.83  62.15  32.47  ns  ns  Salinity‐mitigating treatments  C: tap water (control)  52.3  52.9  316.7  317.8  288.7  292.3  0.80  0.94  MW: magnitized water  70.2  71.6  383.2  365.3  405.1  404.8  0.84  0.87  P: proline  62.4  63.6  346.9  357.0  344.7  339.2  0.90  0.93  MW + P  77.9  77.3  408.4  412.4  451.3  448.7  0.88  0.87  LSD (p ≤ 0.05)  5.27  7.10  14.90  17.53  29.07  30.54  0.020  0.030  Interaction  I1 + C (control)  59.8  55.9  379.9  358.0  359.7  356.7  0.77  1.02  I1 + MW  75.3  75.8  434.4  433.8  523.3  484.3  0.83  0.80  I1 + P  68.9  67.9  393.3  398.0  398.0  401.0  0.86  0.98  I1 + MW + P  80.7  73.0  459.3  476.5  537.3  546.3  0.87  0.87  I2 + C (75% CWR)  53.9  56.3  340.9  366.2  325.3  327.7  0.78  0.91  I2 + MW  77.6  80.1  429.3  384.0  421.2  464.4  0.83  0.91  I2 + P  69.7  71.5  392.6  408.3  394.3  389.0  0.96  0.90  I2 + MW + P  94.7  98.4  470.2  468.3  528.9  527.7  0.89  0.81  I3 + C (50% CWR)  43.0  46.5  229.3  229.2  181.2  192.6  0.85  0.89  I3 + MW  57.8  58.9  285.8  278.0  270.7  265.7  0.85  0.90  I3 + P  49.1  51.3  254.8  264.7  241.8  227.7  0.89  0.90  I3 + MW + P  58.4  60.6  295.8  292.3  287.7  272.2  0.86  0.95  LSD (p ≤ 0.05)  9.14  12.29  25.81  30.36  50.35  52.89  0.042  0.051  Fruit TSS significantly increased with the reduction in CWR during both seasons, but  the best effect on juice acidity was recorded with 75% CWR, compared with the control  during the second season only. Accordingly, TSS/acid ratio differed from one season to  another (Table 7). The effect of soil moisture was not noticeable on vitamin C, but the  highest anthocyanin values were recorded with 75% and 50% CWR in the 2019 and 2020  seasons,  respectively,  although  the  difference  was  insignificant  between  50%  and  75%  CWR  during the 2020 season.  The application  of MW,  P, or MW + P has significantly    Horticulturae 2022, 8, 564  15  of  24  improved all parameters of fruit chemical characteristics with the most prominent effect  recorded for MW + P during both seasons. However, the difference between MW + P and  MW was insignificant on TSS during both seasons, as well as on anthocyanins during the  second season only.  The interaction effect of the irrigation levels and salinity‐mitigating treatments was  significant on fruit acidity, TSS/Acid ratio, and vitamin C during both seasons, whereas  this effect on TSS and anthocyanins was only significant during the second season (Table  7). Overall, it can be mentioned that the application of MW + P at 75% CWR was the most  effective treatment on fruit chemical characteristics, but the difference was insignificant  on TSS and anthocyanins when compared to MW + P at 50% CWR. Similarly, insignificant  differences were noticed between MW + P at 75% CWR and MW + P at 100% CWR on  acidity, TSS/Acid ratio, and anthocyanins.  Table 7. Effect of MW, P, and MW + P on fruit chemical characteristics of “Taifi” pomegranate  shrubs grown under different irrigation regimes (I1, I2, and I3), based on CWR, during the 2019 and  2020 seasons.  Vitamin C  Anthocyanins   TSS  Acidity  Tss/Acid   −1 −1 Treatment  (%)  (%)  Ratio  (mg∙100 mL )  (mg∙100 g )  2019  2020  2019  2020  2019  2020  2019  2020  2019  2020  Irrigation levels   I1: 100% CWR (control)  12.5  12.2  1.3  2.4  9.3  5.2  8.0  8.1  14.2  13.7  I2: 75% CWR  13.1  12.9  1.5  1.9  8.9  6.8  9.8  8.7  15.1  14.5  I3: 50% CWR  13.5  13.4  1.5  2.1  9.2  6.5  7.7  9.4  14.5  14.9  LSD (p ≤ 0.05)  0.51  0.32  ns  0.32  0.31  0.70  ns  ns  0.53  0.86  Salinity‐mitigating treatments   C: tap water (control)  11.9  11.4  1.5  3.2  7.9  3.6  5.9  5.4  11.9  11.4  MW: magnitized water  13.6  13.5  1.2  2.1  11.0  6.3  8.2  9.6  15.3  15.3  P: proline  12.9  12.9  2.0  1.9  6.4  6.8  8.8  9.4  14.9  14.7  MW + P  13.6  13.6  0.9  1.2  14.5  11.2  11.0  10.6  16.3  16.0  LSD (p ≤ 0.05)  0.31  0.30  0.50  0.21  1.79  0.67  0.76  0.94  0.68  0.76  Interaction  I1 + C (control)  11.3  10.3  2.3  3.1  4.8  3.4  4.1  3.5  11.0  8.9  I1 + MW  13.3  13.3  1.1  2.2  11.6  6.1  8.2  9.0  15.1  15.2  I1 + P  12.5  12.5  1.1  3.1  10.8  4.0  9.1  9.0  14.1  14.5  I1 + MW + P  12.9  12.7  0.7  1.0  16.8  12.2  10.5  11.0  16.6  16.2  I2 + C (75% CWR)  11.8  11.5  1.1  2.8  10.3  4.1  7.7  5.6  12.7  12.3  I2 + MW  13.5  13.30  1.9  2.4  7.0  5.4  9.0  9.4  16.0  15.2  I2 + P  12.8  12.7  1.9  1.2  6.7  11.0  9.7  9.0  15.4  14.9  I2 + MW + P  14.1  13.9  0.9  1.2  15.7  11.9  12.6  10.9  16.3  15.6  I3 + C (50% CWR)  12.6  12.5  1.0  3.7  12.3  3.4  5.9  7.1  11.9  13.1  I3 + MW  14.1  14.0  0.6  1.8  22.0  7.8  7.3  10.3  14.9  15.6  I3 + P  13.5  13.3  3.03  1.4  4.4  9.4  7.7  10.1  15.2  14.8  I3 + MW + P  13.8  14.0  1.15  1.4  12.0  9.9  9.8  10.0  16.0  16.3  LSD (p ≤ 0.05)  ns  0.52  0.87  0.36  3.10  1.16  1.32  1.62  ns  1.31  3.6. Fruit Physiological Disorders  It is obvious that higher irrigation levels positively increased fruit cracking, whereas  they decreased fruit sunburn percentages (Figure 5). However, the lowest percentage of  fruit sunburn was recorded for 75% CWR in 2020 season.  The application  of MW + P  showed the lowest percentages of fruit cracking at 75% CWR compared with the stressed  non‐treated shrubs (the control at 75% CWR) and the non‐stressed non‐treated shrubs (the  control at 100% CWR) during the second season, although the difference was insignificant    Horticulturae 2022, 8, 564  16  of  24  compared to MW and P treatments at 75% CWR, and MW, MW + P and the control at 50%  CWR (Figure 5A).  Meanwhile,  all  three  treatments  showed  a  reduction  in  fruit  sunburn  percentage  compared with the non‐treated plants at all soil moisture levels. The most distinct effect  was noticed with the application of MW + P at 100% CWR, followed by MW + P at 75%  CWR, compared with the non‐stressed non‐treated shrubs (the control at 100% CWR) in  both seasons (Figure 5B).  Figure 5. Effect of MW, P, and MW + P on fruit cracking (A) and sunburn (B) of “Taifi” pomegran‐ ate shrubs grown under different irrigation regimes (I1, I2, and I3), based on CWR, during the 2019  and 2020 seasons. Values are the means ± SD. DMRT was used for mean comparisons at p ≤ 0.05.  3.7. Soil Chemical Characteristics after the Experiment  It is obvious that soil‐applied treatment (i.e., MW) should affect soil chemical charac‐ teristics, but foliarly sprayed treatment (i.e., P) has nothing to do with soil characteristics.  However, all of the used treatments were statistically analyzed together since it is hard to  separate these parameters in such an RCBD experiment. By the end of the second season,  soil pH was not significantly affected by the irrigation levels or the interaction with salin‐ ity‐mitigating treatments, whereas the effect of salinity‐mitigating treatments on pH was  significant (Table 8). Both MW and MW + P treatments similarly decreased soil pH, but  no significant difference was recorded for the P treatment, compared to the control, which  confirms the role of MW (but not P) affecting soil characteristics.  Soil EC was not also affected by the interaction of irrigation levels and salinity‐miti‐ gating treatments, but each factor was significantly effective by itself (Table 8). It could be  noticed that the higher the soil moisture content, the lower the EC value with no signifi‐ cant difference between 100% and 75% CWR. Additionally, the application of MW or MW    Horticulturae 2022, 8, 564  17  of  24  + P effectively reduced soil EC, which also confirms the role of MW affecting soil EC. In  this regard, the difference between MW and MW + P was insignificant.  +2 + +2 The irrigation levels significantly affected soil Mg , Na , and Ca  with the highest  values recorded at 50% CWR, but no significant effect was noticed on K  (Table 8). The  + +2 application of MW or MW + P markedly decreased soil contents of Na  and Ca , but no  significant effect was recorded for the P treatment, which confirms the role of MW affect‐ ing soil nutrient contents. The interaction effect indicated that the best treatment that re‐ + +2 duced soil Na  and Ca  was MW + P at 100% CWR. No significant difference was noticed  on Ca  in response to MW + P and MW at 100% CWR, which confirms the role of MW.  Both MW and MW + P improved K  levels at 100% CWR, albeit the difference was insig‐ nificant compared to the control. Interestingly, the interaction effect has also shown that  the application of 75% CWR insignificantly increased soil K  level compared with the con‐ −1 trol (0.33 vs. 0.28 meq/L ); however, this treatment saved 25% of the used water.  Table 8. Effect of MW, P, and MW + P on post‐experiment soil chemical characteristics under dif‐ ferent irrigation regimes (I1, I2, and I3), based on CWR, during the 2019 and 2020 seasons.  −1 EC   Soluble Cations (meq∙L )  Treatment  pH  −1 + 2+ + 2+ (dS∙m )  K   Mg   Na   Ca   Irrigation levels   I1: 100% CWR (control)  8.16  1.59  0.33  0.17  0.33  0.52  12: 75% CWR  8.17  1.60  0.27  0.32  0.36  0.60  13: 50% CWR  8.39  1.67  0.27  0.39  0.43  0.66  LSD (p ≤ 0.05)  ns  0.039  ns  0.052  0.043  0.035  Salinity‐mitigating treatments   C: tap water (control)  8.36  1.65  0.28  0.27  0.42  0.64  MW: magnitized water  8.18  1.61  0.30  0.28  0.34  0.54  P: proline   8.27  1.67  0.29  0.30  0.39  0.63  MW + P   8.15  1.58  0.29  0.32  0.35  0.56  LSD (p ≤ 0.05)  0.140  0.034  ns  ns  0.032  0.049  Interaction  I1 + C (control)  8.24  1.58  0.28  0.14  0.36  0.57  I1 + MW  8.13  1.60  0.34  0.16  0.32  0.46  I1 + P  8.16  1.65  0.35  0.19  0.40  0.58  I1 + MW + P  8.12  1.65  0.34  0.20  0.26  0.46  I2 + C (75% CWR)  8.26  1.65  0.33  0.28  0.39  0.59  I2 + MW  8.15  1.59  0.29  0.30  0.31  0.50  I2 + P  8.16  1.64  0.24  0.32  0.36  0.66  I2 + MW + P  8.12  1.52  0.23  0.38  0.39  0.63  I3 + C (50% CWR)  8.59  1.71  0.21  0.39  0.50  0.76  I3 + MW  8.26  1.63  0.28  0.39  0.40  0.66  I3 + P  8.50  1.71  0.28  0.38  0.41  0.65  I3 + MW + P  8.23  1.66  0.31  0.38  0.39  0.58  LSD (p ≤ 0.05)  ns  ns  0.060  ns  0.050  0.080  3.8. Feasiability Study  The above‐mentioned results showed the positive role of MW + P application at 75%  CWR on plant growth and productivity. Therefore, the highest yield was recorded for this  treatment,  compared  with  other  treatments  and  the  control  during  both  seasons,  and  hence this was the most profitable treatment for the growers (Table 9).       Horticulturae 2022, 8, 564  18  of  24  Table 9. The feasibility study of the applied treatments.  (4)   (5 = 4 × ℗)   (6 = 5 − 3)  (3 = 1 + 2)  (1) Treatment  (2)  Total Yield  Total Return   Net Profit   Fixed Cost  Total Cost  Treatment  Cost  −1 −1 −1 (t∙ha )  (USD∙ha )  (USD∙ha )  −1 −1 −1 (USD∙ha )  (USD∙ha )  (USD∙ha )  2019  2020  2019  2020  2019  2020  I1 (100% CWR) + C  ‐  1786.12  1786.12  23.91  22.29  7476.22  6970.82  5690.10  5184.7  (tap water) [control]  I1 + MW (magnitized  500.31  1786.12  2286.43  30.12  30.94  10,358.88 10,642.28  8072.45  8355.85  water)  I1 + P (proline)  59.54  1786.12  1845.66  27.55  26.81  8876.33  8980.20  7030.67  7134.54  I1 + MW + P  559.85  1786.12  2345.97  32.29  29.43  11,105.75 10,123.81  8759.78  7777.84  I2 (75% CWR) + C ‐  1786.12  1786.12  21.57  22.53  6745.08  7045.24  4958.96  5259.12  I2 + MW  500.31  1786.12  2286.43  31.04  32.53  10,675.58 10,170.94  8389.15  7884.51  I2 + P  59.54  1786.12  1845.66  27.65  28.56  9222.38  9253.08  7376.72  7407.42  I2 + MW + P  559.85  1786.12  2345.97  37.86  39.67  13,021.84 13,643.94  10,675.87  11,297.97 I3 (50% CWR) + C ‐  1786.12  1786.12  17.21  18.56  4305.32  4643.90  2519.20  2857.78  I3 + MW  500.31  1786.12  2286.43  21.37  21.66  5346.90  5346.90  3060.47  3060.47  I3 + P  59.54  1786.12  1845.66  21.38  22.13  5348.91  5536.96  3503.25  3691.30  I3 + MW + P  559.85  1786.12  2345.97  23.35  24.2  6299.15  6299.15  3953.18  3953.18  −1 ℗: average fruit price (USD∙kg ) was determined per fruit weight; 200–299 g = $0.25, 300–399 g =  $0.31 and ≥400 g = $0.34.  4. Discussion  As water scarcity has recently become a global problem [19], water deficit regimes  have been used to reduce agricultural water demand and increase economic productivity  [21]. However, using deficit irrigation particularly under saline soil conditions is very crit‐ ical, since it results in increased soil salinity [23,24]. Therefore, the use of some modern  techniques such as MW [25], as well as foliar application of plant bio‐regulators (i.e., pro‐ line) can play an important role in inducing the plant’s ability to withstand adverse stress  conditions, thereby improving plant growth, productivity, and fruit quality [28,39]. The  results of the present study addressed the positive role of MW and proline on the vegeta‐ tive growth (Figure 3) and nutrient contents (Tables 4 and 5) of stressed (i.e., 75% CWR)  and  non‐stressed  (i.e.,  100%  CWR)  ‘Taifi’  pomegranate  shrubs.  Improved  vegetative  growth could be attributed to the increase in leaf chlorophyll content (Figure 2), associated  with improved photosynthesis and accumulation of more assimilates [65]. Irrigation with  MW, characterized by lower viscosity and surface tension, resulted in reduced soil pH,  stimulated carbon deposition, enhanced levels of phosphorus (P) and K in soil solution,  and increased activity of soil microbes [32]. It was reported that MW altered the permea‐ bility and transport capability of the cellular membrane, and improved nutrient accumu‐ lation in plant cells [66,67]. The results of the present study are in accordance with previ‐ ous findings on the role of MW enhancing the vegetative growth and nutritional status of  ‘Valencia’ orange [37]. Furthermore, proline plays an important role as antioxidant that  stimulates the stress responsive genes, adjusts the cytoplasmic osmotic pressure, protects  cells against ROS (that negatively affect plant metabolism through the oxidative damage  of lipids, protein and nucleic acids), stabilizes the cellular membrane and proteins [68,69],  and eventually improves the shoot length and leaf area of ‘Manfalouty’ and ‘Wonderful’  pomegranate shrubs [41,70].  The results of the current study are in accordance with the previous findings indicat‐ ing that the higher the soil moisture levels, the higher the chlorophyll content and the  lower the proline accumulation in the plant [71]. The increase in leaf chlorophyll, associ‐ ated with the decrease in proline contents of MW + P‐treated ‘Taifi’ pomegranate shrubs  subjected to 100% and 75% CWR, compared with those received no MW or proline at 50%    Horticulturae 2022, 8, 564  19  of  24  CWR (Figure 2), suggested a positive role of MW and proline mitigating the deleterious  effects of salinity and drought stress. Khoshravesh et al. [72] stated that MW had less hy‐ drophobicity due to the reaction with released ions in soil solution, which increased the  binding of water molecules to soil particles. Thereby, soil moisture level was higher in  plots irrigated with MW than the control, and led to improved absorption of macro and  micronutrients (Tables 4 and 5). The combined application of MW + P resulted in reduced  leaf proline content, as previously reported on ‘Wonderful’ pomegranate [70].  Total fruit yield was also the highest with the application of MW + P at 75% CWR  (Table 6). It was reported that MW may alleviate the impacts of salinity stress either by  reducing Na  absorption through plant roots [73] or improving the capacity of nutrient  and water uptakes, and hence improves plant root and vegetative growth, which in turn  increases fruit yield [74]. A positive effect of exogenous proline application on orange fruit  has been reported [42], particularly when combined with MW under salinity stress con‐ ditions [37]. The reduction in fruit yield of non‐MW treated shrubs, compared with the  MW‐treated ones, could be related to the unbalanced effect on the plant’s nutritional sta‐ tus and vegetative growth [72].  The application of MW + P resulted in the lowest CWU at 50% CWR, but the highest  WUE at 75% CWR, and WP at both 75% and 50% CWR (Figure 4). The improvement in  WUE and WP may be attributed to the increase in fruit yield (Table 6), while the reduction  in CWU may be due to the lower hydrophobicity of MW. Therefore, soil moisture levels  should be higher in MW‐irrigated plots compared with the control ones [72]. A previous  report on ‘Manfalouty’ pomegranate stated that the maximum WUE was found in mod‐ erate irrigation levels, while it was decreased with higher or lower amounts of water [45].  The improvement in fruit weight and volume (Table 6) with MW + P treatment at 100%  or 75% CWR could be owing to the role of MW altering the permeability of the cell mem‐ brane, causing changes in cell metabolism with improved water and nutrient uptakes [45].  For instance, K  adjusts the osmotic pressure of the cell, and leads to cell enlargement [75].  Proline also plays an important role under stressful conditions by balancing the osmotic  pressure of the cytosol and the vacuole with that of the external environment, resulting in  improved water and nutrient uptakes [42]. The improvement in nutrient uptake (Tables 4  and 5) confirms the previous findings. Furthermore, the positive effect of irrigation at 75%  CWR, compared with 100% CWR (non significant) and 50% CWR (significant), on fruit  weight (Table 6) may be due to the balanced effect on vegetative growth, as previously  reported [71,72,76].  The positive effect of MW + P treatment on TSS, TSS/acid ratio, vitamin C, and an‐ thocyanins at 75% or 50% CWR, as well as the role of MW on TSS at 50% CWR (Table 7)  confirmed the previous findings on orange fruit characteristics [37,76], which could be  owing to the role of MW on cryptochromes (CRY1 and CRY2), which are considered as  photolyase‐like blue light receptors that have various roles on plant growth such as the  functional role of guard cells in stomatal opening, photosynthesis, root development, and  the subsequent roles on fruit growth, development, and the translocation of assimilates  from leaves to fruit (source/sink relationship) that governs overall fruit growth and qual‐ ity [38]. It could also be mentioned that the survival of ‘Taifi’ pomegranate shrubs under  reduced irrigation levels, particularly with MW application, could be related to the im‐ proved biosynthesis rate of anthocyanins under such conditions (Table 7). Anthocyanins  are the prominent phenolic compounds, which contribute to the plant antioxidant capac‐ ity more than other phenolic compounds [77], in addition to their role in fruit color [78],  which was also enhanced at reduced CWR compared with the control during both sea‐ sons. The improvement in fruit color, associated with increased TSS and reduced acidity  under such conditions (Table 7), is in accordance with the previous reports [79–84]. In  addition, the application of MW + P with reduced CWR also effectively reduced the per‐ centage of fruit cracking at 75% or 50% CWR (Figure 5). A previous finding confirmed a  reduction in fruit cracking of ‘Wonderful’ pomegranate under moderate water deficit con‐ ditions [70]. It could be noticed that higher fruit weight and volume (both seasons), as    Horticulturae 2022, 8, 564  20  of  24  indicators of fruit size [85], and lower shape index (second season) were associated with  a reduction in fruit cracking percentage, compared with the control, particularly in the  second season (Figure 5A). This means that bigger and more spherical fruit are less sus‐ ceptible to fruit cracking. Small size fruit were reported to be more susceptible to fruit  cracking [60]. It was found that fruit shape index ranged between 0.80 and 0.97, meaning  closer to a round shape [86], and values could reach up to 1.61, suggesting a slenderer  shape of the fruit [87]. The less rounded fruit at harvest indicated a steady decline in sphe‐ ricity with fruit development [60], and this change in fruit shape with development might  coincide with the onset of physical defects that are related to fruit growth stress such as  cracking and splitting [88] due to the reduction in epidermal cell density, thus further  weakening the skin [87]. However, it was reported that in pomegranate, the relationship  between skin thickness or fruit volume and resistance to cracking was not significant [89].  On the other hand, the reduction in fruit sunburn was noticed with increased CWR to be  the minimum at 100% CWR (Figure 5). A linear reduction in the incidence and severity of  apple fruit sunburn with increased soil water levels was recorded [90].  Soil characteristics after the application of 100% and 75% CWR indicated a significant  +2 + +2 reduction in soil pH, EC, and the concentration of Mg , Na , and Ca , in comparison with  50% CWR, and the lowest values were recorded with MW application. Simultaneously,  there was an insignificant increase in K  level (Table 8). The application of MW at 100%  + +2 CWR might promote salt leaching and lower Na  and Ca  concentrations in the soil, and  consequently reduce soil pH and EC. This could be attributed to the water molecules of  MW that are more linked to soil particles than ions, easily penetrate into soil particle micro  spaces, and do not go deeper into the soil, and hence become more available for plant  absorption [32]. Overall, the use of MW at 100% CWR was very helpful to reduce soil  salinity and enhance soil characteristics (Table 8). However, the combined application of  MW and proline (MP + P) at 75% CWR was the best treatment, in terms of the total yield  (Table 6), fruit quality (Tables 6 and 7), and grower’s net profit (Table 9).  5. Conclusions  To improve the growth and productivity of ‘Taifi’ pomegranate shrubs grown in sa‐ line clay soils with reduced amounts of irrigation water, a sustainable, eco‐friendly, and  easily  available  approach  was  used  via  a  combined  application  of  MW  and  foliarly  −1 3 −1 −1 sprayed proline (200 mg∙L ) at 75% CWR (11.86 m ∙tree ∙season ). This approach effec‐ tively compensated for the reduction in normal CWR and mitigated the deleterious effect  of drought and salinity stresses with enhanced soil characteristics and improved shrub’s  growth, WUE, WP, yield, and fruit quality, in addition to grower’s profit. Future research  could incorporate the long‐term effects of using MW on saline soil characteristics, plant  productivity, and fruit quality under the semi‐arid conditions. Future prospective studies  could also include the molecular basis of pomegranate defense mechanism, which cur‐ rently has no reported findings. In addition, the role of MW on reducing Ca  in the soil  could be a focal point for further research to reduce its level in calcareous soils around the  world.  Author  Contributions:  Conceptualization,  S.K.O.  and  G.B.M.;  methodology,  S.K.O.,  G.B.M.  and  M.E.H.F.; software, S.K.O., G.B.M. and M.E.H.F.; validation, S.K.O., M.E.H.F. and S.M.A.‐E.; formal  analysis, Y.M., G.B.M., M.E.H.F. and S.M.A.‐E.; investigation, Y.M., G.B.M. and M.E.H.F.; resources,  S.K.O.,  G.B.M.  and  Y.M.;  data  curation,  S.K.O.,  M.E.H.F.  and  S.M.A.‐E.;  writing—original  draft  preparation, S.K.O. and G.B.M.; writing—review and editing, S.K.O. and S.M.A.‐E.; visualization,  S.K.O., Y.M. and S.M.A.‐E.; supervision, S.K.O., G.B.M. and M.E.H.F.; funding acquisition, Y.M. and  S.M.A.‐E. All authors have read and agreed to the published version of the manuscript.  Funding:  The  Deanship  of  Scientific  Research  at  King  Khaled  University  funded  this  research  through the Program of Research Groups under grant number RGP2/67/43.  Institutional Review Board Statement: Not applicable.    Horticulturae 2022, 8, 564  21  of  24  Informed Consent Statement: Not applicable.  Acknowledgments: The authors would like to thank the Deanship of Scientific Research at King  Khaled University for funding this research under grant number RGP2/67/43. The authors would  also like to extend their appreciation to the staff of the Horticultural Research Institute for their  technical assistance.  Conflicts of Interest: The authors declare no conflict of interest.  References  1. Still, D.W. Pomegranates: A botanical perspective. In Pomegranates: Ancient Roots to Modern Medicine; Seeram, N., Schulman, R.,  Heber, D., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 199–209.  2. Kahramanoglu, I. Trends in pomegranate sector: Production, postharvesthandling and marketing. Int. J. Agric. For. Life Sci. 2019,  3, 239–246.  3. Sheets, M.D.; Du Bois, M.L.; Williamson, J.G. The Pomegranate; University of Florida IFAS Extension Publication # HS44: Gaines‐ ville, FL, USA, 1994.  4. Bhantana, P.; Lazarovitch, N. Evapotranspiration, crop coefficient and growth of two young pomegranate (Punica granatum L.)  varieties under salt stress. Agric. Water Manag. 2010, 97, 715–722.  5. Tavousi, M.; Kaveh, F.; Alizadeh, A.; Babazadeh, H.; Tehranifar, A. Effects of drought and salinity on yield and water use  efficiency in pomegranate tree. J. Mater. Environ. Sci. 2015, 6, 1975–1980.  6. Pandey, P.; Ramegowda, V.; Senthil‐Kumar, M. Shared and unique responses of plants to multiple individual stresses and stress  combinations: Physiological and molecular mechanisms. Front. Plant Sci. 2015, 6, 723.  7. Saiki, S.T.; Ishida, A.; Yoshimura, K.; Yazaki, K. Physiological mechanisms of drought‐induced tree die‐off in relation to carbon,  hydraulic and respiratory stress in a drought‐tolerant woody plants. Sci. Rep. 2017, 7, 2995.  8. Yamaguchi, T.; Blumwald, E. Developing salt‐tolerant crop plants: Challenges and opportunities. Trends Plant Sci. 2005, 10, 615– 620.  9. Li, J.; Pu, L.; Zhu, M.; Zhang, R. The present situation and hot issues in the salt‐affected soil research. Acta Geogr. Sin. 2012, 67,  1233–1245.  10. Grieve, C.M.; Grattan, S.R.; Maas, E.V. Plant Salt Tolerance. In ASCE Manual and Reports on Engineering Practice No. 71: Agricul‐ tural  Salinity  Assessment  and  Management,  2nd ed.;  Wallender,  W.W., Tanji, K.K.,  Eds.;  American Society of  Civil Engineers  (ASCE) Library: Reston, VA, USA, 2012; Chapter 13, pp. 405–459.  11. Zhu, J.K. Plant salt stress. In Encyclopedia of Life Science; 2nd ed.; O’Daly, A., Ed.; John and Wiley & Sons, Ltd.: Chichester, UK,  2007; pp. 1–3.  12. Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963.  13. Sun, Y.; Niu, G.; Masabni, J.G.; Ganjegunte, G. Relative salt tolerance of 22 pomegranate (Punica granatum) cultivars. HortScience  2018, 53, 1513–1519.  14. Borochov‐Neori, H.; Judeinstein, S.; Tripler, E.; Holland, D.; Lazarovitch, N. Salinity effects on colour and health traits in the  pomegranate (Punica granatum L.) fruit peel. Int. J. Postharvest Technol. Innov. 2014, 4, 54–68.  15. Agricultural Statistics of Egypt, Ministry of Agriculture and Land Reclamation. In Agricultural Economics Annual Report #781;  Agricultural Statistics of Egypt, Ministry of Agriculture and Land Reclamation: Cairo, Egypt, 2020.  16. El‐Desouky, M.I.; Abd El‐Hamied, S.A. Improving Growth and Productivity of Pomegranate Fruit Trees Planted on Sandy  Slopes at Baloza District (N. Sinai) using Dfferent Methods of Drip Irrigation, Organic Fertilization and Soil Mulching. IOSR J.  Agric. Vet. Sci. 2014, 7, 86–97.  17. Naser, T.A. Evergreen and Deciduus Fruits Production and Important Cultivars in the Arab World, 1st ed.; Dar Alma’arif Publishing  Inc.: Cairo, Egypt, 1983.  18. Al Shawish, F.; Hamed, F.; Al‐Aisa, I. Evaluation of some qualitative and chemical characteristics for most important pome‐ granate (Punica granatum) accessions in Yemen. J. Agric Sci. Damascus Univ. Fac. Agric. Damascus Univ. 2006, 22, 117–241.  19. Agricultural Statistics of Egypt. Water Scarcity in Egypt: The Urgent Need for Regional Cooperation among the Nile Basin Countries;  Report of the Ministry of Water Resources and Irrigation, Government of Egypt: Cairo, Egypt, 2014; p. 5.  20. Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res.  2015, 51, 4823–4839.  21. Costa, J.M.; Ortuno, M.F.; Chaves, M.M. Deficit irrigation as a strategy to save water: Physiology and potential application to  horticulture. J. Integr. Plant Biol. 2007, 49, 1421–1434.  22. Laribi, A.I.; Palou, L.; Intrigliolo, D.S.; Nortes, P.A.; Rojas‐Argudo, C.; Taberner, V.; Bartual, J.; Perez‐Gago, M.B. Effect of sus‐ tained and regulated deficit irrigation on fruit quality of pomegranate cv.ʹMollar de Elcheʹ at harvest and during cold storage.  Agric. Water Manag. 2013, 125, 61–70.  23. Shafqat, W.; Mazrou, Y.S.A.; Nehela, Y.; Ikram, S.; Bibi, S.; Naqvi, S.A.; Hameed, M.; Jaskani, M.J. Effect of Three Water Regimes  on the Physiological and Anatomical Structure of Stem and Leaves of Different Citrus Rootstocks with Distinct Degrees of  Tolerance to Drought Stress. Horticulture 2021, 7, 554.    Horticulturae 2022, 8, 564  22  of  24  24. Tarantino, A.; Frabboni, L.; Disciglio, G. Water‐yield relationship and vegetative growth of wonderful young pomegranate trees  under deficit irrigation conditions in southeastern italy. Horticulturae 2021, 7, 79.  25. El‐Hamied, A.; Sheren, A.; Ghieth, W.M. Use of magnetized water and compost tea to improve peach productivity under salin‐ ity stress of North Sinai conditions, Egypt. Egypt J. Desert Res. 2017, 67, 231–254.  26. Van Oosten, M.J.; Pepe, O.; Pascale, S.D.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic  stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5.  27. Ennab, H.; Alam‐Eldein, S.M. Biostimulants Foliar Application to Improve Growth, Yield, and Fruit Quality of ‘Valencia’ Or‐ ange Trees under Deficit Irrigation Conditions. J. Amer. Pomological. Soc. 2020, 74, 118–134.  28. Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41.  Amiri, M.C.; Dadkhah, A.A. On reduction in the surface tension of water due to magnetic treatment. Colloids Surfaces A Phys‐ icochem. Eng. Asp. 2006, 278, 252–255.  30. Holysz, L.; Szczes, A.; Chibowski, E. Effects of a static magnetic field on water and electrolyte solutions. J. Colloid Interface Sci.  2007, 316, 996–1002.  31. Han, H.B.; Guo, B.; Chai, F. Influence of Magnetic Field on Aqueous NaCl Solutions: A Foundational Research on the Desalina‐ tion Method Based on the Rotating Electromagnetic Effect. Adv. Mat. Res. 2012, 591–593, 2607–2611.  32. Mostafazadeh‐Fard, B.; Khoshravesh, M.; Mousavi, S.F.; Kiani, A.R. Effects of magnetized water on soil chemical components  underneathtrickle irrigation. J. Irrig. Drain. Eng. 2012, 138, 1075–1081.  33. Hillal, M.H.; Hillal, M.M. Application of magnetic technologies in desert agriculture. 1. seed germination and seedling emer‐ gence of some crop in a saline calcareous soil. Egypt. J. Soil Sci. 40, 413–421.  34. Coey, J.M.D.; Cass, S. Magnetic water treatment. J. Magn. Magn. Mater. 2000, 209, 71–74.  35. Tai, C.Y.; Wu, C.K.; Chang, M.C. Effects of magnetic field on the crystallization of CaCo3 using permanent magnets. J. Chem.  Eng. Sci. 2008, 63, 5606–5612.  36. Al‐Ghamdi, A.A.M. The Effect of Magnetic Water on Soil Characteristics and Raphanus sativus L. Growth 2014, 9, 16–20.  37. Aly, M.A.; Thanaa, M.E.; Osman, S.M.; Abdelhamed, A.A. Effect of magnetic irrigation water and some anti‐salinity substances  on the growth and production of Valencia orange. Middle East J. Agric. Res. 2015, 4, 88–98.  38. Yu, X.; Liu, H.; Klejnot, J.; Lin, C. The Cryptochrome Blue Light Receptors. Arab. Book Am. Soc. Plant Biol. 2010, 8, 1–27. ISBN  1543‐8120 (Electronic).  39. Ghafoor, R.; Akram, N.A.; Rashid, M.; Ashraf, M.; Iqbal, M.; Lixin, Z. Exogenously applied proline induced changes in key  anatomical features and physio‐biochemical attributes in water stressed oat (Avena sativa L.) plants. Physiol. Mol. Biol. Plants  2019, 25, 1121–1135.  40. Meister, A. Biochemistry of the Amino Acids, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2012; ISBN 0323161472.  41. El Sayed, O.M.; El Gammal, O.H.M.; Salama, A.S.M. Effect of proline and tryptophan amino acids on yield and fruit quality of  Manfalouty pomegranate variety. Sci. Hortic. 2014, 169, 1–5.  42. Caronia, A.; Gugliuzza, G.; Inglese, P. Influence of L‐proline on Citrus sinensis (L.)[’New Hall’and’Tarocco Scire’] fruit quality.  In Proceedings of the XI International Symposium on Plant Bioregulators in Fruit Production. Acta Hortic. 2010, 884, 423–426.  43. Elsheery, N.I.; Helaly, M.N.; El‐Hoseiny, H.M.; Alam‐Eldein, S.M. Zinc Oxide and Silicone Nanoparticles to Improve the Re‐ sistance Mechanism and Annual Productivity of Salt‐Stressed Mango Trees. Agronomy 2020, 10, 558.  44. Kahlaoui, B.; Hachicha, M.; Misle, E.; Fidalgo, F.; Teixeira, J. Physiological and biochemical responses to the exogenous appli‐ cation of proline of tomato plants irrigated with saline water. J. Saudi Soc. Agric. Sci. 2018, 17, 17–23.  45. Ezz, T.M.; Aly, M.A.M.; Nassem, M.G.; Abou Taleb, S.A.; Farag, M.E.H. Alleviation of salinity effect in irrigation water and soil  on Manfalouty pomegranate trees using magnetic water, bio‐fertilizer and some soil amendments. Egypt. J. Agric. Res. 2017, 95,  805–820.  46. Worldweatheronline.  Kafr  El‐Sheikh,  Egypt  Historical  Weather.  2020.  Available  online:  https://www.worldweather‐ online.com/kafr‐ash‐shaykh‐weather‐averages/kafr‐ash‐shaykh/eg.aspx (accessed on 3 June 2021).  47. Chapman, H.D.; Pratt, F.P. Methods of Analysis for Soils, Plants and Waters, 1st ed.; University of California, Division of Agricul‐ tural Sciences: Davis, CA, USA, 1961; p. 309.  48. Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; Iowa State University Press: Ames, IA, USA, 1990.  49. Murquard, R.D.; Timpton, J.L. Relationship between extractable chlorophyll and the method to estimate leaf green. Hort. Sci.  1987, 22, 1327.  50. Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water‐stress studies. Plant Soil 1973, 39, 205–207.  51. Wolf, B. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal.  1982, 13, 1035–1059.  52. Evenhuis, B.; Dewaard, P.W. Nitrogen Determination; Department of Agriculture Research, Royal Tropical Institute: Amsterdam,  The Netherlands, 1976.  53. Jones, J.B.; Wolf, B.; Mills, H.A. Plant Analysis Handbook. A Practical Sampling, Preparation, Analysis, and Interpretation Guide; Mi‐ cro‐Macro Publishing, Inc.: Athens, GA, USA, 1991; p. 212.  54. Tendon, H.L.S. Analysis of Soils, Plants, Waters and Fertilizers; Fertiliser Development and Consultation Organisation: New Delhi,  India, 2005.  55. Chang, K.L.; Bray, R.H. Determination of calcium and magnesium in soil and plant material. Soil Sci. 1951, 72, 449–458.    Horticulturae 2022, 8, 564  23  of  24  56. Rashid, A. Mapping Zinc Fertility of Soil Using Indicator Plant and Soil Analysis. Ph.D. Thesis, University of Hawaii, Manoa,  HI, USA, 1986.  57. Li‐COR Inc. Li‐3000A Portable Leaf Area Meter, Instruction Manual; Li‐ COR: Lincoln, NE, USA, 1987.  58. Hansen, V.W.; Israelsen, D.W.; Stringharm, D.E. Irrigation Principle and Practices, 4th ed.; Johns Willey & Sons: New York, NY,  USA, 1979.  59. Ali, M.H.; Hoque, M.R.; Hassan, A.A.; Khair, A. Effects of deficit irrigation on yield, water productivity, and economic returns  of wheat. Agric. Water Manag. 2007, 92, 151–161.  60. Al‐Yahyai, R.; Al‐Said, F.; Opara, L. Fruit growth characteristics of four pomegranate cultivars from northern Oman. Fruits 2009,  64, 335–341.  61. AOAC. Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemist: Washington, DC, USA, 2000; pp:  16–20.  62. Hsia, C.L.; Luh, B.S.; Chichester, C.O. Anthocyanin in Freestone Peaches. J. Food Sci. 1965, 30, 5–12.  63. Ikram, S.; Shafqat, W.; Qureshi, M.A.; ud Din, S.; ur‐Rehman, S.; Mehmood, A.; Sajjad, Y.; Nafees, M. Causes and control of fruit  cracking in pomegranate: A review. J. Glob. Imov. Agric. Soc. Sci. 2020, 8, 183–190.  64. Agehara, S.; Wang, W.; Sarkhosh, A. Guidelines for Pomegranate Nutrient Management in Florida; Horticultural Sciences Depart‐ ment, UF/IFAS Extension Publication # HS1347: Gainesville, FL, USA, 2019; p. 5.  65. Grotjohann, I.; Jolley, C.; Fromme, P. Evolution of photosynthesis and oxygen evolution: Implications from the structural com‐ parison of photosystem I and II. Phys. Chem. Chem. Phys. 2004, 6, 4743–4753.  66. Ratushnyak, A.A.; Andreeva, M.G.; Morozova, O.V.; Morozov, G.A.; Trushin, M.V. Effect of extremely high frequency Electro‐ magnetic fields on the microbiological community in rhizosphere of plants. Int. Agrophysics 2008, 22, 71–74.  67. Azharonok, V.V.; Goncharik, S.V.; Filatova, I.I.; Shik, A.S.; Antonyuk, A.S. The effect of the high frequency electromagnetic  treatment of the sowing material for legumes on their sowing quality and productivity. Surf. Eng. Appl. Electrochem. 2009, 45,  318–328.  68. Kishor, P.B.K.; Sangam, S.; Amrutha, R.N.; Laxmi, P.S.; Naidu, K.R.; Rao, K.R.S.S.; Rao, S.; Reddy, K.J.; Theriappan, P.; Sreeni‐ vasulu, N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant  growth and abiotic stress tolerance. Curr. Sci. 2005, 88, 424–438.  69. Vendruscolo, E.C.G.; Schuster, I.; Pileggi, M.; Scapim, C.A.; Molinari, H.B.C.; Marur, C.J.; Vieira, L.G.E. Stress‐induced synthesis  of proline confers tolerance to water deficit in transgenic wheat. J. Plant Physiol. 2007, 164, 1367–1376.  70. Abo‐Ogiala, A. Managing crop production of pomegranate cv. Wonderful via foliar application of ascorbic acid, proline and  glycinbetaine under environmental stresses. Int. J. Environ. 2018, 7, 95–103.  71. Khattab, M.M.; Shaban, A.E.; El‐shrief, A.H.; Mohamed, A.S.E. Growth and productivity of pomegranate trees under different  irrigation levels. III: Leaf pigments, proline and mineral content. J. Hortic. Sci. Ornam. Plants 2011, 3, 265–269.  72. Khoshravesh, M.; Mostafazadeh‐Fard, B.; Mousavi, S.F.; Kiani, A.R. Effects of magnetized water on the distribution pattern of  soil water with respect to time in trickle irrigation. Soil Use Manag. 2011, 27, 515–522.  73. Maheshwari, B.L.; Grewal, H.S. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productiv‐ ity. Agric. Water Manag. 2009, 96, 1229–1236.  74. De Souza, A.; García, D.; Sueiro, L.; Licea, L.; Porras, E. Pre‐sowing magnetic treatment of tomato seeds: Effects on the growth  and yield of plants cultivated late in the season. Span. J. Agric. Res. 2005, 3, 113–122.  75. Okba, S.K.; Mazrou, Y.; Elmenofy, H.M.; Ezzat, A.; Salama, A.‐M. New Insights of Potassium Sources Impacts as Foliar Appli‐ cation on ‘Canino’Apricot Fruit Yield, Fruit Anatomy, Quality and Storability. Plants 2021, 10, 1163.  76. Mahmoud, T.A.; Youssef, E.A.; El‐Harouny, S.B.; Abo Eid, M.A.M. Effect of irrigation with magnetic water on nitrogen fertili‐ zation efficiency of navel orange trees. Plant Arch. 2019, 19, 966–975.  77. Kristl, J.; Slekovec, M.; Tojnko, S.; Unuk, T. Extractable antioxidants and non‐extractable phenolics in the total antioxidant ac‐ tivity of selected plum cultivars (Prunus domestica L.): Evolution during on‐tree ripening. Food Chem. 2011, 125, 29–34.  78. Alesiani, D.; Canini, A.; D’Abroca, B.; DellaGreca, M.; Fiorentino, A.; Mastellone, C.; Monaco, P.; Pacifico, S. Antioxidant and  antiproliferative activities of phytochemicals from Quince (Cydonia vulgaris) peels. Food Chem. 2010, 118, 199–207.  79. Hassan, I.F.; Gaballah, M.S.; El‐Hoseiny, H.M.; El‐Sharnouby, M.E.; Alam‐Eldein, S.M. Deficit irrigation to enhance fruit quality  of the ’African Rose’ plum under the Egyptian semi‐arid conditions. Agronoy 2021, 11, 1405.  80. Maatallah, S.; Guizani, M.; Hjlaoui, H.; Boughattas, N.E.H.; Lopez‐Lauri, F.; Ennajeh, M. Improvement of fruit quality by mod‐ erate water deficit in three plum cultivars (Prunus salicina L.) cultivated in a semi‐arid region. Fruits 2015, 70, 325–332.  81. Hamayat, N.; Hafiz, I.A.; Ahmad, T.; Ali, I.; Qureshi, A.A. Biochemical and physiological responses of peach rootstocks against  drought stress. J. Pure Appl. Agric. 2020, 5, 82–89.  82. Zhao, Z.; Wang, W.; Wu, Y.; Xu, M.; Huang, X.; Ma, Y.; Ren, D. Leaf physiological responses of mature pear trees to regulated  deficit irrigation in field conditions under desert climate. Sci. Hortic. 2015, 187, 122–130.  83. Blanco, V.; Blaya‐Ros, P.J.; Torres‐Sánchez, R.; Domingo, R. Influence of regulated deficit irrigation and environmental condi‐ tions on reproductive response of sweet cherry trees. Plants 2020, 9, 94.   W.; Conesa, M.R.; Dominguez, A.; Pardo, J.J.; Léllis,  84. Fernández‐García, I.; Lecina, S.; Ruiz‐Sánchez, M.C.; Vera, J.; Conejero, B.C.; Montesinos, P. Trends and challenges in irrigation scheduling in the semi‐arid area of Spain. Water 2020, 12, 785.  85. Wetzstein,  H.Y.;  Zhang,  Z.;  Ravid,  N.;  Wetzstein,  M.E.  Characterization  of  attributes  related  to  fruit  size  in  pomegranate.  Hortscience 2011, 46, 908–912.    Horticulturae 2022, 8, 564  24  of  24  86. Chen, Y.‐H.; Gao, H.‐F.; Wang, S.; Liu, X.‐Y.; Hu, Q.‐X.; Jian, Z.H.; Wan, R.; Song, J.‐H.; Shi, J.‐L. Comperhensive evaluation of  20 pomegranate (Punica granatum) cultivars in China. J. Integ. Agric. 2022, 21, 434–445.  87. Tehranifar, A.; Zarei, M.; Nemati, Z.; Esfandiyari, B.; Vazifeshenas, M.R. Investigation of physio‐chemical properities and anti‐ oxidant activity of twenty Irania pomegranate (Punica granataum) cultivars. Sci. Hortic. 2010, 126, 180–185.  88. Hepaksoy, S.; Aksoy, U.; Can, H.Z.; Ui, M.A. Determination of relationship between fruit cracking and some physiological  responses, leaf characteristics and nutritional status of some pomegranate varieties. Options Mediterr. 2000, 42, 87–92.  89. Saei, H.; Sharifani, M.M.; Dehghani, A.; Seifi, E.; Akbarpour, V. Description of biochemical forces and physiological parameters  of fruit cracking in pomegranate. Sci. Hortic. 2014, 178, 224–230.  90. Makeredza, B.; Schmeisser, M.; Lötze, E.; Steyn, W.J. Water stress increases sunburn in “Cripps” Pink’ apple. HortScience 2013,  48, 444–447.  http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Horticulturae Multidisciplinary Digital Publishing Institute

Magnetized Water and Proline to Boost the Growth, Productivity and Fruit Quality of ‘Taifi’ Pomegranate Subjected to Deficit Irrigation in Saline Clay Soils of Semi-Arid Egypt

Loading next page...
 
/lp/multidisciplinary-digital-publishing-institute/magnetized-water-and-proline-to-boost-the-growth-productivity-and-wmTxn7zLkx

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Multidisciplinary Digital Publishing Institute
Copyright
© 1996-2022 MDPI (Basel, Switzerland) unless otherwise stated Disclaimer The statements, opinions and data contained in the journals are solely those of the individual authors and contributors and not of the publisher and the editor(s). MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Terms and Conditions Privacy Policy
ISSN
2311-7524
DOI
10.3390/horticulturae8070564
Publisher site
See Article on Publisher Site

Abstract

Article  Magnetized Water and Proline to Boost the Growth,   Productivity and Fruit Quality of ‘Taifi’ Pomegranate   Subjected to Deficit Irrigation in Saline Clay Soils of   Semi‐Arid Egypt  1, 2,3 1 4 5, Sameh K. Okba  *, Yasser Mazrou  , Gehad B. Mikhael  , Mohamed E. H. Farag   and Shamel M. Alam‐Eldein  *    Deciduous Fruit Department, Horticulture Research Institute, Agricultural Research Center,   Giza 12619, Egypt; gehadboshramikhael@arc.sci.eg    Community College, King Khalid University, Abha 62217, Saudi Arabia; ymazrou@kku.edu.sa or  yasser.mazroua@agr.tanta.edu.eg    Department of Agricultural Economic, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt    Department of Olive and Semi‐Arid Region Fruits, Horticulture Research Institute, Agricultural Research  Center, Giza 12619, Egypt; m_h_2025@yahoo.com    Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt  *  Correspondence: samehhort@arc.sci.eg or bahshort@gmail.com (S.K.O.);   shamel.alameldein@agr.tanta.edu.eg or shamel@ufl.edu (S.M.A.‐E.); Tel.: +2‐040‐345‐5584 (S.M.A.‐E.)  Abstract: Water scarcity is becoming a global problem. The shift from traditional irrigation systems  to deficit irrigation increased soil salinity, particularly in clay soils. The use of magnetized water  Citation: Okba, S.K.; Mazrou, Y.;   (MW) and biostimulants can induce plant resistance to drought and salinity stress. To assess the  Mikhael, G.B.; Farag, M.E.H.;   role of MW and proline (P) on ‘Taifi’ pomegranate shrubs’ growth, productivity, and fruit quality  Alam‐Eldein, S.M.   under such conditions, a split‐plots experiment was conducted for two seasons using three irriga‐ Magnetized Water and Proline   tion levels (100%, 75%, and 50%), based on the crop water requirements (CWR), and four treatments  to Boost the Growth, Productivity   including foliar spray of tap water (control) and P, irrigation with MW, and MW + P. The most  and Fruit Quality of ‘Taifi’   pronounced effect was referred to MW + P at 75% CWR that improved shrubs’ chlorophyll content  Pomegranate Subjected to Deficit   Irrigation in Saline Clay Soils of   and nutritional status, reduced endogenous proline content, and enhanced vegetative growth with  Semi‐Arid Egypt. Horticulturae 2022,  minimum consumptive water use (CWU), optimum water use efficiency (WUE), maximum water  8, 564. https://doi.org/10.3390/  productivity (WP), utmost yield and average fruit weight, lowest percentage of fruit cracking, and  horticulturae8070564  fairly good total soluble solids (TSS), vitamin C and anthocyanin contents. Overall, MW + P at 75%  CWR improved the resistance mechanism of pomegranate shrubs in saline clay soils, plus improv‐ Academic Editors: Antonella  ing the growers’ net profit. MW generally reduced soil salinity, expressed as reduced pH, EC, Na ,  Castagna and Marco Santin  2+ and Ca  values.  Received: 24 May 2022  Accepted: 16 June 2022  Keywords: clay soils; deficit irrigation; magnetic water; osmoregulants; salinity; water relationships  Published: 21 June 2022  Publisher’s  Note:  MDPI  stays  neu‐ tral  with  regard  to  jurisdictional  claims in published maps and institu‐ 1. Introduction  tional affiliations.  The pomegranate (Punica granatum L.), belonging to the Lythraceae (formerly Puni‐ caceae) family, is a deciduous shrub or small tree that believed to be originated in Persia    (i.e., Iran), Afghanistan, Pakistan, and perhaps Northern India nearly 4000 years ago [1].  Due to the rapid increase in the cultivation and production of pomegranates, no current  Copyright: © 2022 by the authors. Li‐ reliable information is available about the global production, but it was estimated to be  censee  MDPI,  Basel,  Switzerland.  around 3.8 million tons in 2017. The top world producers are believed to be India, Iran,  This article  is an open access article  Turkey, China, United States of America, Palestine, Egypt, Spain, Afghanistan, Tunisia,  distributed under the terms and con‐ Azerbaijan, Morocco, Argentina, Brazil, Chile, Peru, South Africa, Australia, and Italy [2].  ditions of the Creative Commons At‐ tribution (CC BY) license (https://cre‐ Pomegranates grow well in mild‐temperate to tropical climates; however, the best  ativecommons.org/licenses/by/4.0/).  fruit quality is attained in Mediterranean climate (regions with cool winter and hot dry  Horticulturae 2022, 8, 564. https://doi.org/10.3390/horticulturae8070564  www.mdpi.com/journal/horticulturae  Horticulturae 2022, 8, 564  2  of  24  summer). Cultivars vary in frost tolerance, and some dormant shrubs are severely injured  at temperatures down to −11 °C. Shrubs perform well in deep loamy soils, but still grow  quite well in sandy and clay soils, and grow best in a soil pH range of 5.5–7.2. They also  prefer well‐drained soils, and can tolerate short periods of flooding stress. Shrubs are very  drought tolerant, and moderately tolerate salinity stress. Drip irrigation is the preferred  method, and shrubs can withstand irrigation with saline water up to electric conductivity  −1 (EC) = 2 dS∙m  [3,4].  The main obstacle of pomegranate cultivation under arid and semi‐arid conditions is  the abiotic stresses, particularly heat [2], drought, and salinity [5]. The effects of drought  and salinity, in particular, have increased in the last decades due to water scarcity [6].  Drought has an impact on plant morphology, physiology, and biochemistry. Under such  conditions,  xylem  vessels  become  susceptible  to  embolism  or  dysfunction,  leading  to  lower hydraulic conductance and carbon intake, which in turn affect plant growth char‐ acteristics and productivity [7]. Drought stress causes a reduction in root and vegetative  growth, number of leaves per branch, leaf area, leaf water content, and number of mal‐ formed flowers [8]. Salinity, in particular, is one of the major environmental stresses that  can develop through irrigation, and is considered as a limiting factor in agricultural sys‐ ‐ 2− 2+ tems [9]. High levels of salts, mainly chlorides (Cl ) and sulfates (SO4 ) of calcium (Ca ),  2+ + magnesium (Mg ), and sodium (Na ), cannot be tolerated by most of the plants [10]. Sa‐ linity induces cell damages and inhibits plant growth [11] through osmotic stress and ionic  stress [12]. Salinity causes leaf injury, as well as a reduction in chlorophyll content, carbon  assimilation, and nutrient uptake. It also induces the production of reactive oxygen spe‐ cies (ROS) that negatively affect plant metabolism through the oxidative damage of lipids,  proteins, and nucleic acids [13]. Moreover, it causes a reduction in plant height and leaf  area, and creates bearing problems with reduced fruit yield and quality [14].  Egypt is ranked the seventh among the top worldwide producers of pomegranates  [2]. Total cultivated area is about 31,987 hectares with total production of 382,587 tonnes,  and the export of almost 82,866 tonnes (21.6% of the total crop) in 2020; accordingly, Egypt  is ranked the fifth among the top world exporters [15]. Harvest season starts by mid‐Sep‐ tember to early November, and the most important cultivars are ‘Manfalouty’, ‘Wonder‐ ful’, ‘116’, and ‘Red Angel’ [16]. ‘Taifi’ cultivar originated in Saudi Arabia, and it is the  most popular cultivar there, particularly in the South West region [17]. It was introduced  to Egypt in 2016, but it is not so popular or widely cultivated yet due to fruit cracking,  poor outside and inside color, low sugar, and high acidity contents under the semi‐arid  conditions of Egypt (personal communications). Shrubs are generally medium in size. The  proportion of male to perfect flowers (sex ratio) is 35%. Flowers are orange‐reddish, and  fruits are spherical and large in size with green‐reddish peel, and large, soft, and red seeds.  Average fruit yield is about 200 fruits per shrub with an average weight of 250 g and  almost 63.2% juice per fruit. Fruit has a sweet–sour taste with minimum total sugars =  14.30%, total soluble solids (TSS) = 15.77 °Brix, acidity = 0.56%, and vitamin C = 8.34% [18].  Water scarcity is becoming a recent problem in Egypt, and may become a limiting  factor of the overall fruit industry in the future, due to limited water resources and scanty  rainfall. One of the major problems of drought is soil salinity [19]. Under such conditions,  there is a need to reduce agricultural water demand and increase the economic produc‐ tivity of water, particularly in the North Delta area where soil salinity is high. Improving  on‐farm management of agricultural water through the utilization of advanced irrigation  technology (e.g., deficit irrigation) and improved irrigation scheduling, offering the pro‐ spect of a significant increase in water productivity [20]. Deficit irrigation is a strategy  where the amount of applied water is less than the full water requirements of a crop, and  the resulting stress has minimal effects on crop yield. It effectively reduced water require‐ ments, and improved plant’s water use efficiency (WUE) [21] and fruit quality of various  deciduous fruit trees, including pomegranate, depending on the phenological stage when  water shortage was applied [22]. However, in salt‐affected clay soils, the shift from tradi‐ tional flood irrigation systems to the modern techniques such as deficit irrigation resulted    Horticulturae 2022, 8, 564  3  of  24  in increased soil salinity [23,24]. Therefore, the use of magnetized water (MW) under the  deficit irrigation system [25], as well as foliar application of some biostimulants can play  an important role in inducing plant resistance to drought and salinity stresses [26,27]. Bi‐ ostimulants are known to improve plant growth, yield, and fruit quality. They include  diverse substances like humic substances, compost tea, seaweed extracts, free amino acids  (e.g., proline), and plant extracts, as well as microorganisms like free‐living bacteria, fungi,  and arbuscular mycorrhizal fungi [28].  The flow of water through a magnetic field changes its physiochemical characteris‐ tics, and results in what so called “magnetized water”. The change or disintegrate of the  hydrogen bonds results in a decrease in the angle between hydrogen (H) and oxygen (O),  and hence the formation of a hexagonal configuration with reduced surface tension mak‐ ing the water more bioavailable and easily absorbed into root cells. In addition, magnetic  field also increases water pH, resulting in a more alkaline water [29] with lower viscosity,  + − EC and contents of Na  and Cl , but higher permeability and ability to dissolve slight‐ soluble salts and leach the excess. The application of magnetic field on water decreases  the hydration of salt ions and colloids, having a positive effect on salt solubility, acceler‐ ated coagulation, and salt crystallization [30]. Under magnetic field, the hydration number  of Cl  ions increases, and hence their mobility decreases, while the mean size of water  clusters decreases and their mobility increases [31]. Similarly, Na  level under MW irriga‐ tion was also lower than that under non‐MW irrigation conditions [32]. Therefore, MW  can be used as an effective method for soil desalinization [33]. These effects of MW re‐ mained for up to 200 h after the magnetic field was ceased. This is called “the memory  effect of water” [34]. Water subjected to a magnetic field has shown a modification in its  properties, as it became more energetic and able to flow, which can be considered as the  birth of a new science called ‘magneto biology’. In addition, MW prevents the uptake of  harmful metals such as lead (Pb) and nickel (Ni) by roots, and hence prevents them from  reaching the fruit [35].  The effect of MW technology on fruit trees is rarely documented and merits further  investigations to evaluate its impacts on the yield and fruit quality, particularly under  drought and salinity stress conditions. Few studies on different fruit species have shown  that MW enhanced soil nutrient availability and salt leaching [36], and therefore improved  leaf mineral contents, plant growth characteristics, fruit set, yield, and quality of ‘Valencia’  orange [37]. Furthermore, there is a relationship between irrigation with MW and photol‐ yase‐like blue light receptors, “cryptochromes” (CRY1 and CRY2), which have various  roles in plants such as guard cell development, stomata opening, photosynthesis, root de‐ velopment, vegetative growth, and fruit development [38] .  −1 As a proteinogenic amino acid, proline (C5H9NO2, 115.13 g.mol  mw) is the most  widely distributed osmoprotectant in higher plants that plays an essential role in the de‐ fense mechanism of stressed plants through changes in key anatomical features of roots  and leaves, the osmotic regulation of the cell sap, membrane and protein stability, enzyme  activity, and scavenging the free radicals [39,40]. Enhanced endogenous proline level im‐ proved leaf chlorophyll content, yield, and fruit weight, diameter and TSS of non‐stressed  pomegranate [41] and orange [42], as well as salt‐stressed mango [43] and tomato plants  [44].  The aim of this research work was to improve the growth, productivity, and fruit  quality of ‘Taifi’ pomegranate shrubs, grown in saline clay soils and subjected to deficit  irrigation, with the utilization of MW and proline to mitigate the stress effects. To date,  few reports have used MW to alleviate salinity stress of fruit trees [36], and pomegranate  in particular [45]. In addition, most research on deficit irrigation has been performed in  sandy soils [26,27,43,45], but this is considered the first report using deficit irrigation with  MW to improve the growth and productivity of pomegranate grown in saline clay soils,  which require a lot of water for salt leaching.       Horticulturae 2022, 8, 564  4  of  24  2. Materials and Methods  2.1. Experimental Site  This research was performed on 9‐year‐old ‘Taifi’ pomegranate (Punica granatum L.)  grown  in  a  private  orchard  located  at  Al‐Riadh,  Kafr  Elsheikh,  Egypt  (31°23′68″  N,  30°94′54″ E) for two consecutive seasons (2019 and 2020). The climatic conditions of the  experimental site are semi‐arid without summer rains [46], as shown in Table 1. Soil and  water analysis were carried out according to Chapman and Pratt [47] and are displayed  in Table 2. All used chemicals in this experiment were imported from Sigma Aldrich, St.  Louis, MO, USA.  Table 1. Weather data of Al‐Riadh, kafr Elsheikh, Egypt during the 2019 and 2020 seasons.  Temperature  Humidity  Rainfall  Wind Speed  Cloud  Sun  UV  Season   −1 −1 −1 (°C)  (%)  (mm∙month )  (km∙h )  (%)  (days∙month )  Index  Winter  2019  16.0  61.7  23.0  13.8  19.3  30.0  4.3    2020  16.0  68.0  26.8  13.2  31.7  28.7  4.0  Spring  2019  23.0  57.3  15.7  14.0  13.3  30.0  6.0    2020  23.0  59.3  5.3  14.6  16.7  30.3  6.3  Summer  2019  30.7  63.0  1.2  13.0  4.7  30.7  8.0    2020  30.7  62.7  0.07  13.9  5.0  30.7  7.7  Fall  2019  26.7  63.7  6.03  11.9  10.0  30.0  6.3    2020  26.7  64.3  11.7  11.6  15.7  29.3  6.3  Table 2. Soil and water analysis of the experimental site.    Soil Analysis  Water Analysis  Depth (cm)  0–30  30–60  60–90  Sand (%)  25.2  22.7  25.5   Silt (%)  27.1  28.1  39.3   Clay (%)  47.7  49.2  35.1   Texture  Clay  Clay  Loamy clay   −3 Density (g∙cm )  1.29  1.36  1.42   Field capacity (%)  42.2  39.7  38.9   Permineant wilting point (%)  22.7  21.6  21.2   Available water (%)  73.6  76.6  78.1   Depth (cm)  0–60    −1 EC (ds∙m )   1.69     pH   8.2    7.3  Total dissolved salts (ppm)       400  CaCO3 (%)    8.54     3− −1 HCO  (meq∙L )    0.90   2.1  3− −1 CO  (meq∙L )    0.00     2− −1 So4  (meq∙L )    0.26    4.1  − −1 Cl  (meq∙L )    0.50    2.3  + −1 Na  (meq∙L )    0.45    2.7  + −1 K  (meq∙L )    0.21    0.2  2+ −1 Ca  (meq∙L )    0.80    3.1  2+ −1 Mg  (meq∙L )    0.20    2.5        Horticulturae 2022, 8, 564  5  of  24  2.2. Treatments  Seventy‐two shrubs, planted at 5 × 5 m in clay soil, similar in size and vigor with no  symptoms of nutrient deficiency, were selected for this experiment. Shrubs were subjected  to drip irrigation and the same cultural practices as the entire orchard. They were distrib‐ uted in a randomized complete block design (RCBD) as a split‐plot experiment, to mini‐ mize variations among the shrubs [48], of twelve treatments with three replicates each.  Two shrubs represented each replicate. Three irrigation levels were randomly assigned as  the main plots by varying the number drippers per shrub with each dripper delivering 4.0  −1 L.h , i.e., 100%, 75%, and 50% crop water requirements (CWR) were achieved with 16 (I1,  the control shrubs, based on the regular irrigation program used in the area), 12 (I2), and  8 (I3) drippers, respectively. Total amount of water per shrub throughout the season is  presented in Table 3.  Table 3. Quantity of the irrigation water applied during the 2019 and 2020 seasons.  −1 −1 ∙tree ∙season )  Irrigation Levels (L Dripper  Irrigation  I3 = 8  Irrigation  Discharge  Month  Frequency  I1 = 16 Drippers/Shrub  I2 = 12 Drippers/Shrub  Drippers/Shrub  Amount  Period (h)  Per Month  (Control = 100% CWR *)  (25% Less = 75% CWR)  (50% Less = 50%  −1 (L∙h )  CWR)  January  3  1  4  192  144  96  Febreuary  8  1  4  512  384  256  March  8  2  4  1024  768  512  April  14  2  4  1792  1344  896  May  14  2  4  1792  1344  896  June  15  2  4  1920  1440  960  July  15  3  4  2880  2160  1440  August  15  3  4  2880  2160  1440  September  10  2  4  1280  960  640  October  8  1.30  4  768  576  384  November  8  1  4  512  384  256  December  4  1  4  256  192  128  3 −1 −1 Total water (m .tree .season )  15.81  11.86  7.90  * CWR: crop water requirements.  Each main plot was divided into four sub‐plots that randomly received four different  treatments each. The first and second sub‐plots were subjected to foliar sprays of tap wa‐ −1 ter, the control shrubs (C), and proline (P) (200 mg.L ) twice at full bloom (19 and 22  March of 2019 and 2020 seasons, respectively) and 4 weeks after. Shrubs in the third sub‐ plot were irrigated with water subjected to a magnetic field, “magnetized water” (MW),  throughout the season using a magnetic field device (strength = 14,500 Gauss and diame‐ ter = 2 inch) (Thread connection, Delta Water Inc., Alexandria, Egypt) that was installed  on the main irrigation pipe after the water pump and before the fertilizers tank. The fourth  sub‐plot was representing a combined application of MW and P (MW + P). Treatments  were separated by two rows of buffer (border) trees. The layout of one block of the exper‐ iment is displayed in Figure 1.    Horticulturae 2022, 8, 564  6  of  24  Figure 1. Layout of one block of the experiment.  2.3. Leaf Analysis  Leaf samples were randomly collected from the four sides (N, E, S, W) of the shrub,  by mid‐June of each season, to evaluate total chlorophyll content (green color intensity, as  a SPAD value) in different sections at the middle of the leaf blade [49] using a portable  Minolta  chlorophyll  meter  Model  SPAD‐501  (Spectrum  Technologies,  Inc.,  Aurora,  IL,  USA).  −1 Leaf proline concentration (mg.100 g  fw) was determined by homogenizing fresh  leaf sample (0.2 g) with 3 mL sulphosalicylic acid (3% w/v) using a porcelain mortar and  pestle set (Fisher Scientific, Waltham, MA, USA), and then the mixture was centrifuged at  18,000× g for 15 min using a benchtop general purpose centrifuge Model Allegra V‐15R  (Beckman Coilter Life Sciences, Indianapolis, IN, USA). Afterwards, the supernatant (1  mL) was mixed with 2 mL glacial acetic acid and 2 mL freshly made acid ninhydrin rea‐ gent (1.25 g ninhydrin dissolved in 30 mL glacial acetic acid and 20 mL orthophosphate  TM (6 M)) in a test tube. The tubes were incubated in a ‘Precision  General Purpose’ water  bath (Thermo Fisher Scientific, Waltham, MA, USA) at 100 °C for 1 h, and then left to cool  at room temperature (≈22–23 °C) for 24 h. Subsequently, the solution was mixed with tol‐ uene (4 mL) using a Vortex‐Genie 1 mixer (Scientific Industries, Inc., Bohemia, NY, USA)  for 20 s. To allow the toluene and the aqueous phase to separate, the tubes were left in  upright position for at least 10 min, and then the toluene phase was carefully pipetted out  into a cuvette, and the absorbance was measured at 520 nm using a spectrophotometer  Model UV‐120‐20 (Shimadzu Corp., Kyoto, Japan). Eventually, a proline standard curve  was used to calculate the proline concentration [50].  To determine the content of macro and micronutrients, leaf samples were collected  and dried at 65 °C for 72 h until reaching a constant weight using a bench‐top Heratherm  GP oven (Thermo Fisher Scientific, Waltham, MA, USA). Dried leaves were then pulver‐ ized using the mortal and pistil set, and the powder was digested with concentrated sul‐ phuric acid (H2SO4) and hydrogen peroxide (H2O2) [51]. The produced solution was used    Horticulturae 2022, 8, 564  7  of  24  to determine total nitrogen (N) and phosphorus (P) colorimetrically using the spectropho‐ tometer [52,53]. Potassium (K) concentration was determined using a flame photometer  Model FP8400 (Kruss Optronic, Hamburg, Germany) [54]. The contents of Ca, Mg [55],  iron (Fe), zinc (Zn), and manganese (Mn) [56] were also determined using atomic absorp‐ tion  spectrometer  Model  AA990  (PG  Scientific,  Inc.,  Auburn,  CA,  USA).  All  values  of  −1 macro and micronutrients were expressed as a percentage and mg∙L  per dry weight of  leaves, respectively.  2.4. Vegetative Growth  By mid‐August of each season, one shoot on four sides (N, E, S, W) of each shrub per  replicate was randomly selected and tagged to measure shoot length (cm). Twelve mature  mid‐branch leaves were collected from each branch to determine leaf area (cm ) using a  leaf area meter Model Li 3100 (LI‐COR, Inc., Lincoln, NE, USA), as described [57].  2.5. Yield  Harvest season started by mid‐September (≈173–176 days from full bloom) with the  –1 harvest window extended for almost 12–15 days in both seasons. Fruit yield (kg∙shrub )  was  recorded  using  a  regular  digital  scale  (200  kg  capacity)  (VEVOR  Equipment  and  −1 Tools, Rancho Cucamonga, CA, USA), and then total yield (kg.ha ) was calculated.  2.6. Consumptive Water Use (CWU), WUE, and Water Productivity (WP)  Soil samples were collected at different depths (i.e., every 15 cm up to 60 cm) before  and after  each irrigation time, and then  weighted to determine CWU (cm) in the root  growth zone (≈50–60 cm), using the following equation [58]:  (1) CWU∑ θ 2θ 1/100 Dbl Di  where i = number of soil layers (4 layers); θ1 and θ2 = soil moisture (%) before irrigation  −2 and 48 h after, respectively; Dbl = soil bulk density (g∙cm ); and Di = soil layer depth (15  cm).  3 −1 Calculated CWU (cm) was used to calculate total CWU per total area (m ∙ha ). Ac‐ cordingly, WUE and WP were calculated [59]:  −3 WUE (kg∙m ) = Yield/CWU  (2) −3 WP (kg∙m ) = Yield/AIW  (3) −1 3 −1 3 −1 where, Yield = kg∙ha ; CWU = m ∙ha ; and AIW = applied irrigation water (m ∙ha ).  2.7. Fruit Physiochemical Characteristics  A sample of 15 ripe fruits was randomly selected from the four directions (N, E, S,  and W) and three levels (top, medium, and bottom) of each shrub to calculate average  fruit weight and volume, in addition to fruit length and diameter. Fruit weight (g) was  measured using a bench‐top digital scale Model PC‐500 (Doran scales, Inc., Batavia, IL,  USA). Average fruit volume (cm ) was determined using the water displacement method  in a one‐liter gradual cylinder (Fisher Scientific, Waltham, MA, USA). Fruit length (with‐ out calyx) (L) and diameter (the maximum width in the middle of the fruit) (D) (cm) were  measured using a digital caliper with 0.01 mm accuracy (Grizzly Industrial, Chicago, IL,  USA), and then fruit shape index (L/D), as an indicator of sphericity (roundness shape),  was calculated [60].  Total soluble solids (TSS) percentage was estimated at room temperature (≈22–23 °C)  using a hand‐held refractometer, Model RA‐130 (KEM Kyoto Electronics Manufacturing  −1 Co., Ltd., Tokyo, Japan). Total acidity as a percentage (g citric acid∙100 mL  juice) was  determined by the titration method of sodium hydroxide (NaOH) [0.1 N] with phenol‐ phthalein,  as  an  indicator,  and  then  TSS/acid  ratio  was  calculated.  Fruit  ascorbic  acid    Horticulturae 2022, 8, 564  8  of  24  −1 (vitamin C) content (mg∙100 mL  juice) was determined by titrating 5 mL of juice with  2,6‐Dichlorophenol indophenol, according to AOAC protocol [61]. Anthocyanins were ex‐ tracted and determined using the spectrophotometer at wavelength of 535 nm, and values  −1 were expressed as mg∙100 g  fw [62].  2.8. Fruit Physiological Disorders  The numbers of cracked and sunburned fruit per replicate were counted at harvest,  and then their percentages out of the total yield were calculated. The pattern of cracks on  fruit can be vertical cracks along the length of the fruit, horizontal cracks along the diam‐ eter of the fruit, and splitting fruit into different parts, including the stem end cracks at  the point where fruit is attached to the branch [63]. The sunburn (sunscald) appears on  the sun‐exposed side of the fruit as brown or bronze discoloration [64].  2.9. Soil Chemical Characteristics after the Experiment  By the end of the two seasons, soil samples were randomly collected at a depth of 0– 60 cm under the drippers to determine some soil chemical characteristics. A 2 mm stain‐ less‐steel test sieve (Fisher Scientific, Waltham, MA, USA) was used to filter the soil sam‐ ples, which were subsequently saturated with distilled water, and a saturated extract was  then obtained using a vacuum pump (12 cfm) (VEVOR Equipment and Tools, Rancho  Cucamonga, CA, USA). The EC and pH of the saturated extract were measured using a  portable  EC  meter  Model  DDB‐11A  (Anhui  Haochuang  Instrument  Co.,  Ltd.,  Wuhu,  China) and a benchtop pH meter Model STAR A111 (Thermo Fisher Scientific, Waltham,  MA, USA), respectively. Both Ca and Mg were evaluated in the saturated extract using a  complexometric  titration  analysis  in  the  presence  of  Ethylenediaminetetraacetic  acid  (EDTA), but the flame photometer was used to assess Na and K concentrations [32].  2.10. Feasibility Study  This study was performed to evaluate the economic value of the applied treatments  (i.e., MW, P and MW + P) during both seasons using the following inputs;  (1) Treatment cost ($500.31, $59.54, and $559.85, respectively) taking into account that  irrigation water is free.  −1 (2) Cost of the regular agricultural practices: electricity for irrigation = $298∙ha ; fertiliz‐ −1 −1 ers (N, P, K, Ca and micronutrients) = $745∙ha ; pesticides = $447∙ha ; and labor =  −1 $296.12∙ha .  −1 (3) Average fruit price (USD∙kg ) was determined per fruit weight; 200–299 g = $0.25,  300–399 g = $0.31, and ≥400 g = $0.34.  2.11. Statistical Analysis  Data were first analyzed for numerical normality and homogeneity of variance using  Shapiro–Wilk’s and Levene’s tests, respectively. Data were then statistically analyzed, and  the analysis of variance (ANOVA) was performed using CoStat software package (version  6.303,  Monterey,  CA,  USA).  Means  were  compared  using  Duncan’s  multiple  rage  test  (DMRT) and the least significant difference (LSD) at p ≤ 0.05 [48].  3. Results  3.1. Leaf Chlorophyll and Proline Contents  Chlorophyll concentration (expressed as a SPAD value) was generally related to the  level of soil moisture. The highest values were recorded in shrubs subjected to 100% CWR  during both seasons (Figure 2). The application of MW, P, and MW + P effectively im‐ proved chlorophyll content compared to the stressed, non‐treated shrubs at both deficit  irrigation levels (the control at 75% and 50% CWR), but the difference was insignificant.  The difference was also insignificant in comparison to the non‐stressed non‐treated shrubs  (the control at 100% CWR) during both seasons. The application of MW + P significantly    Horticulturae 2022, 8, 564  9  of  24  improved chlorophyll content of the non‐stressed plants compared with the sole applica‐ tion of each treatment and the control in both seasons.  Figure 2 also shows that the higher the irrigation level, the lower the endogenous  proline content in ‘Taifi’ pomegranate leaves during both seasons. The application of MW,  P, and MW + P significantly reduced proline content compared with the control at all ir‐ rigation levels. The application of MW + P effectively mitigated the stress effect, expressed  as reduced proline content at both 75% and 50% CWR, but the most pronounced effect  was recorded at 75% CWR in both seasons.  Figure 2. Effect of magnetized water (MW), foliarly sprayed proline (P), and their combination  (MW + P) on leaf chlorophyll (A) and proline (B) contents of “Taifi” pomegranate shrubs grown  under different irrigation regimes (I1, I2, and I3), based on cop water requirements (CWR) during  the 2019 and 2020 seasons. Values are the means ± standard deviation (SD). Duncan’s multiple  range test (DMRT) was used for mean comparisons at p ≤ 0.05.  3.2. Leaf Macro and Micronutrient Contents  The concentrations of macro and micronutrients showed a positive response to the  level of soil moisture content with the highest values recorded at 100% CWR, as indicated  in Tables 4 and 5, respectively. However, there were no significant differences between  concentrations at 100% and 75% CWR, except for the difference in phosphorus (P) con‐ centration during both seasons (Table 4). On the other hand, the applied treatments to  mitigate salinity effects were also effective improving nutrient levels in stressed plants,  with the most pronounced effect recorded for MW + P, followed by MW, and then P in  both seasons, which confirm the effective role of MW.  Accordingly, the best interaction values were recorded for MW + P at 100% CWR,  followed by those at 75% CWR, and the lowest nutrient concentrations were recorded at  50%  CWR  during  both  seasons.  Interestingly,  the  effect  of  MW  +  P  on  macro  and    Horticulturae 2022, 8, 564  10  of  24  micronutrients was insignificant between the stressed plants (75% CWR) and the non‐ stressed ones (100% CWR), except for phosphorus (P) (Table 4), and Zn (Table 5) during  the 2020 and 2019 seasons, respectively.  Table 4. Effect of MW, P, and MW + P on leaf macronutrient contents (%) of “Taifi” pomegranate  shrubs grown under different irrigation regimes (I1, I2, and I3), based on CWR, during the 2019 and  2020 seasons.  N  P  K  Ca  Mg  Treatment  2019  2020  2019  2020  2019  2020  2019  2020  2019  2020  Irrigation levels  I1: 100% CWR (control)  1.86  1.84  0.23  0.23  0.98  0.95  0.13  0.13  1.25  1.29  I2: 75% CWR  1.82  1.81  0.21  0.21  0.94  0.94  0.13  0.13  1.26  1.22  I3: 50% CWR  1.74  1.72  0.19  0.19  0.82  0.82  0.13  0.13  0.82  0.87  LSD (p ≤ 0.05)  0.062  0.066  0.014  0.008  0.072  0.032  ns  ns  0.126  0.123  Salinity‐mitigating treatments  C: tap water (control)  1.68  1.64  0.18  0.18  0.78  0.80  0.05  0.05  0.86  0.88  MW: magnitized water  1.83  1.83  0.22  0.22  0.95  0.96  0.14  0.15  1.20  1.21  P: proline  1.75  1.72  0.20  0.20  0.90  0.86  0.11  0.11  1.02  1.07  MW + P  1.97  1.96  0.23  0.23  1.02  1.00  0.17  0.18  1.36  1.34  LSD (p ≤ 0.05)  0.037  0.043  0.007  0.005  0.035  0.032  0.011  0.014  0.091  0.080  Interaction  I1 + C (control)  1.75  1.72  0.20  0.19  0.78  0.87  0.09  0.09  0.95  0.99  I1 + MW  1.86  1.94  0.23  0.24  1.04  1.01  0.14  0.14  1.32  1.41  I1 + P  1.82  1.75  0.22  0.22  1.00  0.86  0.10  0.11  1.19  1.22  I1 + MW + P  2.01  1.95  0.26  0.25  1.08  1.06  0.18  0.19  1.54  1.54  I2 + C (75% CWR)  1.72  1.64  0.18  0.18  0.85  0.81  0.08  0.08  0.95  0.91  I2 + MW  1.82  1.85  0.22  0.22  0.96  1.01  0.15  0.15  1.43  1.33  I2 + P  1.77  1.73  0.21  0.20  0.89  0.91  0.11  0.12  1.09  1.15  I2 + MW + P  1.98  2.01  0.24  0.24  1.04  1.02  0.18  0.18  1.57  1.48  I3 + C (50% CWR)  1.56  1.55  0.17  0.17  0.71  0.71  0.11  0.11  0.67  0.73  I3 + MW  1.82  1.72  0.20  0.20  0.84  0.84  0.13  0.16  0.84  0.90  I3 + P  1.67  1.68  0.18  0.18  0.80  0.81  0.13  0.11  0.77  0.84  I3 + MW + P  1.92  1.91  0.21  0.21  0.93  0.90  0.15  0.16  0.98  0.99  LSD (p ≤ 0.05)  0.064  0.075  ns  0.009  0.061  0.055  0.018  0.024  0.158  0.139  LSD: Least significant difference used for mean comparisons, ns: non significant.  −1 Table 5. Effect of MW, P, and MW + P on leaf micronutrient contents (mg∙L  dw) of “Taifi” pome‐ granate shrubs grown under different irrigation regimes (I1, I2, and I3), based on CWR, during the  2019 and 2020 seasons.  Fe  Zn  Mn  Treatment  2019  2020  2019  2020  2019  2020  Irrigation levels  I1: 100% CWR (control)  126.1  123.2  115.7  104.4  114.5  115.9  I2: 75% CWR  125.4  124.1  101.1  103.2  111.3  111.1  I3: 50% CWR  101.2  102.0  75.1  71.6  85.8  84.6  LSD (p ≤ 0.05)  9.75  12.87  9.65  19.11  5.79  9.02  Salinity‐mitigating treatements  C: tap water (control)  99.0  99.1  74.6  74.4  80.5  83.9  MW: magnitized water  123.8  122.7  103.8  98.6  113.8  109.2  P: proline  110.6  110.8  97.7  8.3  96.2  98.4  MW + P  136.7  133.1  113.1  111.0  124.9  124.0    Horticulturae 2022, 8, 564  11  of  24  LSD (p ≤ 0.05)  8.63  5.25  6.43  8.27  8.00  6.45  Interaction  I1 + C (control)  102.0  104.2  89.5  89.6  91.4  92.8  I1 + MW  133.8  129.2  123.7  109.0  122.8  122.5  I1 + P  120.4  120.8  113.2  90.4  106.7  108.0  I1 + MW + P  148.1  138.7  136.4  128.7  136.9  140.5  I2 + C (75% CWR)  102.6  101.2  90.4  90.6  86.7  86.0  I2 + MW  132.3  131.8  102.5  106.6  124.0  120.4  I2 + P  115.5  116.4  98.6  100.1  101.3  103.6  I2 + MW + P  151.3  147.0  112.9  115.6  133.0  134.3  I3 + C (50% CWR)  92.5  91.9  43.9  43.1  63.4  72.8  I3 + MW  105.4  107.0  85.2  80.2  94.6  85.0  I3 + P  96.2  95.3  81.1  74.5  80.9  83.6  I3 + MW + P  110.8  113.7  90.0  88.6  104.7  97.1  LSD (p ≤ 0.05)  ns  9.09  11.14  14.33  ns  11.16  3.3. Shoot Length and Leaf Area  Results indicated that the lower the soil moisture content, the smaller the shoot length  and leaf area, but the application of MW, P, or MW + P significantly improved both pa‐ rameters  in  comparison  with  the  control  at  all  three  irrigation  levels,  except  for  shoot  length during the first season (Figure 3). The most pronounced effect was recorded with  MW + P, followed by MW, and then P, which confirms the role of MW, at 100% or 75%  CWR. All three treatments at 75% CWR significantly improved the shoot length (second  season only) and leaf area (both seasons) compared with the non‐stressed non‐treated  shrubs (the control at 100% CWR), with the most pronounced effect recorded for MW + P.    Horticulturae 2022, 8, 564  12  of  24  Figure 3. Effect of MW, P, and MW + P on shoot length (A) and leaf area (B) of “Taifi” pomegranate  shrubs grown under different irrigation regimes (I1, I2, and I3), based on CWR, during the 2019 and  2020 seasons. Values are the means ± SD. DMRT was used for mean comparisons at p ≤ 0.05.  3.4. Plant/Water Relationships  The CWU of pomegranate shrubs was the highest at 100% CWR compared with other  deficit irrigation treatments during both seasons (Figure 4A). The foliar applications of  MW or MW + P were the most effective treatments reducing the CWU compared with the  stressed non‐treated shrubs (the control at 75% and 50% CWR), as well as the non‐stressed  non‐treated shrubs (the control at 100% CWR) during both seasons. Although MW + P  obtained lower CWU values, the difference was insignificant compared to MW during  both seasons.  Accordingly, the shrubs’ WUE was the lowest at 100% CWR compared with deficit  irrigation treatments (75% or 50% CWR); however, the difference was only significant in  the 2020 season (Figure 4B). At both deficit irrigation levels, the applications of MW, P, or  MW + P significantly improved WUE compared with the control of the stressed and non‐ stressed shrubs, and the most pronounced effect was recorded with MW + P, followed by  MW, and then P, which confirms the vital role of MW.  Likewise, Shrubs’ WP was the lowest at 100% CWR, and significantly improved with  the reduction in soil moisture content (Figure 4C). Overall, the salinity‐mitigating treat‐ ments positively improved WP compared with the control at all three levels of CWR, but  the most pronounced effect was noticed with the application of MW + P at 75% CWR,  which was insignificantly different from MW + P and MW at 50% CWR during both sea‐ sons.    Horticulturae 2022, 8, 564  13  of  24  Figure 4. Effect of MW, P, and MW + P on consumptive water use (CWU) (A), water use efficiency  (WUE) (B), and water productivity (WP) (C) of “Taifi” pomegranate shrubs grown under different  irrigation regimes (I1, I2, and I3), based on CWR, during the 2019 and 2020 seasons. Values are the  means ± SD. DMRT was used for mean comparisons at p ≤ 0.05.  3.5. Yield and Fruit Physiochemical Characteristics  Results in Table 6 revealed that deficit irrigation at 75% CWR was the best at improv‐ ing total yield, but the application of 50% CWR resulted in the lowest yield during both  seasons. Meanwhile, all three salinity‐mitigating treatments positively improved the total  yield, compared with the control shrubs, with the highest yield recorded for MW + P,  followed by MW, and then P. However, the difference between MW + P and MW was  insignificant during the second season. Overall, the best yield was recorded with the ap‐ plication of MW + P at 75% CWR.    Horticulturae 2022, 8, 564  14  of  24  The highest fruit weight and volume was recorded at 100% CWR, but the difference  was insignificant compared to 75% CWR. In addition, MW, P, and MW + P significantly  improved both fruit weight and volume with the most conspicuous effect with the appli‐ cation of MW + P in both seasons. In regards to fruit shape, there were no significant dif‐ ferences among all three levels of soil moisture, but the lowest values were recorded with  75%  CWR  during  both  seasons.  Moreover,  the  application  of  salinity‐mitigating  treat‐ ments increased, but decreased the fruit shape index compared with the control during  the 2019 and 2020 seasons, respectively. The interaction effect has shown the best values  of fruit weight and volume with the application of MW + P at 100% CWR, followed by  MW + P at 75% CWR; however, the difference between both treatments was insignificant  during both seasons.  Table 6. Effect of MW, P, and MW + P on yield and fruit physical characteristics of “Taifi” pome‐ granate shrubs grown under different irrigation regimes (I1, I2, and I3), based on CWR, during the  2019 and 2020 seasons.  Fruit Shape Index   Yield  Fruit Weight  Fruit Volume  (Sphericity)   −1 3 Treatment  (Kg∙shrub )  (g)  (cm )  −1 (length∙diameter )  2019  2020  2019  2020  2019  2020  2019  2020  Irrigation levels  I1: 100% CWR (control)  71.2  68.1  416.7  416.6  454.6  447.1  0.88  0.91  I2: 75% CWR  73.8  76.6  408.2  406.7  417.4  427.2  0.86  0.88  I3: 50% CWR  52.1  54.3  266.5  266.05  245.4  239.5  0.86  0.91  LSD (p ≤ 0.05)  1.51  3.34  8.53  16.83  62.15  32.47  ns  ns  Salinity‐mitigating treatments  C: tap water (control)  52.3  52.9  316.7  317.8  288.7  292.3  0.80  0.94  MW: magnitized water  70.2  71.6  383.2  365.3  405.1  404.8  0.84  0.87  P: proline  62.4  63.6  346.9  357.0  344.7  339.2  0.90  0.93  MW + P  77.9  77.3  408.4  412.4  451.3  448.7  0.88  0.87  LSD (p ≤ 0.05)  5.27  7.10  14.90  17.53  29.07  30.54  0.020  0.030  Interaction  I1 + C (control)  59.8  55.9  379.9  358.0  359.7  356.7  0.77  1.02  I1 + MW  75.3  75.8  434.4  433.8  523.3  484.3  0.83  0.80  I1 + P  68.9  67.9  393.3  398.0  398.0  401.0  0.86  0.98  I1 + MW + P  80.7  73.0  459.3  476.5  537.3  546.3  0.87  0.87  I2 + C (75% CWR)  53.9  56.3  340.9  366.2  325.3  327.7  0.78  0.91  I2 + MW  77.6  80.1  429.3  384.0  421.2  464.4  0.83  0.91  I2 + P  69.7  71.5  392.6  408.3  394.3  389.0  0.96  0.90  I2 + MW + P  94.7  98.4  470.2  468.3  528.9  527.7  0.89  0.81  I3 + C (50% CWR)  43.0  46.5  229.3  229.2  181.2  192.6  0.85  0.89  I3 + MW  57.8  58.9  285.8  278.0  270.7  265.7  0.85  0.90  I3 + P  49.1  51.3  254.8  264.7  241.8  227.7  0.89  0.90  I3 + MW + P  58.4  60.6  295.8  292.3  287.7  272.2  0.86  0.95  LSD (p ≤ 0.05)  9.14  12.29  25.81  30.36  50.35  52.89  0.042  0.051  Fruit TSS significantly increased with the reduction in CWR during both seasons, but  the best effect on juice acidity was recorded with 75% CWR, compared with the control  during the second season only. Accordingly, TSS/acid ratio differed from one season to  another (Table 7). The effect of soil moisture was not noticeable on vitamin C, but the  highest anthocyanin values were recorded with 75% and 50% CWR in the 2019 and 2020  seasons,  respectively,  although  the  difference  was  insignificant  between  50%  and  75%  CWR  during the 2020 season.  The application  of MW,  P, or MW + P has significantly    Horticulturae 2022, 8, 564  15  of  24  improved all parameters of fruit chemical characteristics with the most prominent effect  recorded for MW + P during both seasons. However, the difference between MW + P and  MW was insignificant on TSS during both seasons, as well as on anthocyanins during the  second season only.  The interaction effect of the irrigation levels and salinity‐mitigating treatments was  significant on fruit acidity, TSS/Acid ratio, and vitamin C during both seasons, whereas  this effect on TSS and anthocyanins was only significant during the second season (Table  7). Overall, it can be mentioned that the application of MW + P at 75% CWR was the most  effective treatment on fruit chemical characteristics, but the difference was insignificant  on TSS and anthocyanins when compared to MW + P at 50% CWR. Similarly, insignificant  differences were noticed between MW + P at 75% CWR and MW + P at 100% CWR on  acidity, TSS/Acid ratio, and anthocyanins.  Table 7. Effect of MW, P, and MW + P on fruit chemical characteristics of “Taifi” pomegranate  shrubs grown under different irrigation regimes (I1, I2, and I3), based on CWR, during the 2019 and  2020 seasons.  Vitamin C  Anthocyanins   TSS  Acidity  Tss/Acid   −1 −1 Treatment  (%)  (%)  Ratio  (mg∙100 mL )  (mg∙100 g )  2019  2020  2019  2020  2019  2020  2019  2020  2019  2020  Irrigation levels   I1: 100% CWR (control)  12.5  12.2  1.3  2.4  9.3  5.2  8.0  8.1  14.2  13.7  I2: 75% CWR  13.1  12.9  1.5  1.9  8.9  6.8  9.8  8.7  15.1  14.5  I3: 50% CWR  13.5  13.4  1.5  2.1  9.2  6.5  7.7  9.4  14.5  14.9  LSD (p ≤ 0.05)  0.51  0.32  ns  0.32  0.31  0.70  ns  ns  0.53  0.86  Salinity‐mitigating treatments   C: tap water (control)  11.9  11.4  1.5  3.2  7.9  3.6  5.9  5.4  11.9  11.4  MW: magnitized water  13.6  13.5  1.2  2.1  11.0  6.3  8.2  9.6  15.3  15.3  P: proline  12.9  12.9  2.0  1.9  6.4  6.8  8.8  9.4  14.9  14.7  MW + P  13.6  13.6  0.9  1.2  14.5  11.2  11.0  10.6  16.3  16.0  LSD (p ≤ 0.05)  0.31  0.30  0.50  0.21  1.79  0.67  0.76  0.94  0.68  0.76  Interaction  I1 + C (control)  11.3  10.3  2.3  3.1  4.8  3.4  4.1  3.5  11.0  8.9  I1 + MW  13.3  13.3  1.1  2.2  11.6  6.1  8.2  9.0  15.1  15.2  I1 + P  12.5  12.5  1.1  3.1  10.8  4.0  9.1  9.0  14.1  14.5  I1 + MW + P  12.9  12.7  0.7  1.0  16.8  12.2  10.5  11.0  16.6  16.2  I2 + C (75% CWR)  11.8  11.5  1.1  2.8  10.3  4.1  7.7  5.6  12.7  12.3  I2 + MW  13.5  13.30  1.9  2.4  7.0  5.4  9.0  9.4  16.0  15.2  I2 + P  12.8  12.7  1.9  1.2  6.7  11.0  9.7  9.0  15.4  14.9  I2 + MW + P  14.1  13.9  0.9  1.2  15.7  11.9  12.6  10.9  16.3  15.6  I3 + C (50% CWR)  12.6  12.5  1.0  3.7  12.3  3.4  5.9  7.1  11.9  13.1  I3 + MW  14.1  14.0  0.6  1.8  22.0  7.8  7.3  10.3  14.9  15.6  I3 + P  13.5  13.3  3.03  1.4  4.4  9.4  7.7  10.1  15.2  14.8  I3 + MW + P  13.8  14.0  1.15  1.4  12.0  9.9  9.8  10.0  16.0  16.3  LSD (p ≤ 0.05)  ns  0.52  0.87  0.36  3.10  1.16  1.32  1.62  ns  1.31  3.6. Fruit Physiological Disorders  It is obvious that higher irrigation levels positively increased fruit cracking, whereas  they decreased fruit sunburn percentages (Figure 5). However, the lowest percentage of  fruit sunburn was recorded for 75% CWR in 2020 season.  The application  of MW + P  showed the lowest percentages of fruit cracking at 75% CWR compared with the stressed  non‐treated shrubs (the control at 75% CWR) and the non‐stressed non‐treated shrubs (the  control at 100% CWR) during the second season, although the difference was insignificant    Horticulturae 2022, 8, 564  16  of  24  compared to MW and P treatments at 75% CWR, and MW, MW + P and the control at 50%  CWR (Figure 5A).  Meanwhile,  all  three  treatments  showed  a  reduction  in  fruit  sunburn  percentage  compared with the non‐treated plants at all soil moisture levels. The most distinct effect  was noticed with the application of MW + P at 100% CWR, followed by MW + P at 75%  CWR, compared with the non‐stressed non‐treated shrubs (the control at 100% CWR) in  both seasons (Figure 5B).  Figure 5. Effect of MW, P, and MW + P on fruit cracking (A) and sunburn (B) of “Taifi” pomegran‐ ate shrubs grown under different irrigation regimes (I1, I2, and I3), based on CWR, during the 2019  and 2020 seasons. Values are the means ± SD. DMRT was used for mean comparisons at p ≤ 0.05.  3.7. Soil Chemical Characteristics after the Experiment  It is obvious that soil‐applied treatment (i.e., MW) should affect soil chemical charac‐ teristics, but foliarly sprayed treatment (i.e., P) has nothing to do with soil characteristics.  However, all of the used treatments were statistically analyzed together since it is hard to  separate these parameters in such an RCBD experiment. By the end of the second season,  soil pH was not significantly affected by the irrigation levels or the interaction with salin‐ ity‐mitigating treatments, whereas the effect of salinity‐mitigating treatments on pH was  significant (Table 8). Both MW and MW + P treatments similarly decreased soil pH, but  no significant difference was recorded for the P treatment, compared to the control, which  confirms the role of MW (but not P) affecting soil characteristics.  Soil EC was not also affected by the interaction of irrigation levels and salinity‐miti‐ gating treatments, but each factor was significantly effective by itself (Table 8). It could be  noticed that the higher the soil moisture content, the lower the EC value with no signifi‐ cant difference between 100% and 75% CWR. Additionally, the application of MW or MW    Horticulturae 2022, 8, 564  17  of  24  + P effectively reduced soil EC, which also confirms the role of MW affecting soil EC. In  this regard, the difference between MW and MW + P was insignificant.  +2 + +2 The irrigation levels significantly affected soil Mg , Na , and Ca  with the highest  values recorded at 50% CWR, but no significant effect was noticed on K  (Table 8). The  + +2 application of MW or MW + P markedly decreased soil contents of Na  and Ca , but no  significant effect was recorded for the P treatment, which confirms the role of MW affect‐ ing soil nutrient contents. The interaction effect indicated that the best treatment that re‐ + +2 duced soil Na  and Ca  was MW + P at 100% CWR. No significant difference was noticed  on Ca  in response to MW + P and MW at 100% CWR, which confirms the role of MW.  Both MW and MW + P improved K  levels at 100% CWR, albeit the difference was insig‐ nificant compared to the control. Interestingly, the interaction effect has also shown that  the application of 75% CWR insignificantly increased soil K  level compared with the con‐ −1 trol (0.33 vs. 0.28 meq/L ); however, this treatment saved 25% of the used water.  Table 8. Effect of MW, P, and MW + P on post‐experiment soil chemical characteristics under dif‐ ferent irrigation regimes (I1, I2, and I3), based on CWR, during the 2019 and 2020 seasons.  −1 EC   Soluble Cations (meq∙L )  Treatment  pH  −1 + 2+ + 2+ (dS∙m )  K   Mg   Na   Ca   Irrigation levels   I1: 100% CWR (control)  8.16  1.59  0.33  0.17  0.33  0.52  12: 75% CWR  8.17  1.60  0.27  0.32  0.36  0.60  13: 50% CWR  8.39  1.67  0.27  0.39  0.43  0.66  LSD (p ≤ 0.05)  ns  0.039  ns  0.052  0.043  0.035  Salinity‐mitigating treatments   C: tap water (control)  8.36  1.65  0.28  0.27  0.42  0.64  MW: magnitized water  8.18  1.61  0.30  0.28  0.34  0.54  P: proline   8.27  1.67  0.29  0.30  0.39  0.63  MW + P   8.15  1.58  0.29  0.32  0.35  0.56  LSD (p ≤ 0.05)  0.140  0.034  ns  ns  0.032  0.049  Interaction  I1 + C (control)  8.24  1.58  0.28  0.14  0.36  0.57  I1 + MW  8.13  1.60  0.34  0.16  0.32  0.46  I1 + P  8.16  1.65  0.35  0.19  0.40  0.58  I1 + MW + P  8.12  1.65  0.34  0.20  0.26  0.46  I2 + C (75% CWR)  8.26  1.65  0.33  0.28  0.39  0.59  I2 + MW  8.15  1.59  0.29  0.30  0.31  0.50  I2 + P  8.16  1.64  0.24  0.32  0.36  0.66  I2 + MW + P  8.12  1.52  0.23  0.38  0.39  0.63  I3 + C (50% CWR)  8.59  1.71  0.21  0.39  0.50  0.76  I3 + MW  8.26  1.63  0.28  0.39  0.40  0.66  I3 + P  8.50  1.71  0.28  0.38  0.41  0.65  I3 + MW + P  8.23  1.66  0.31  0.38  0.39  0.58  LSD (p ≤ 0.05)  ns  ns  0.060  ns  0.050  0.080  3.8. Feasiability Study  The above‐mentioned results showed the positive role of MW + P application at 75%  CWR on plant growth and productivity. Therefore, the highest yield was recorded for this  treatment,  compared  with  other  treatments  and  the  control  during  both  seasons,  and  hence this was the most profitable treatment for the growers (Table 9).       Horticulturae 2022, 8, 564  18  of  24  Table 9. The feasibility study of the applied treatments.  (4)   (5 = 4 × ℗)   (6 = 5 − 3)  (3 = 1 + 2)  (1) Treatment  (2)  Total Yield  Total Return   Net Profit   Fixed Cost  Total Cost  Treatment  Cost  −1 −1 −1 (t∙ha )  (USD∙ha )  (USD∙ha )  −1 −1 −1 (USD∙ha )  (USD∙ha )  (USD∙ha )  2019  2020  2019  2020  2019  2020  I1 (100% CWR) + C  ‐  1786.12  1786.12  23.91  22.29  7476.22  6970.82  5690.10  5184.7  (tap water) [control]  I1 + MW (magnitized  500.31  1786.12  2286.43  30.12  30.94  10,358.88 10,642.28  8072.45  8355.85  water)  I1 + P (proline)  59.54  1786.12  1845.66  27.55  26.81  8876.33  8980.20  7030.67  7134.54  I1 + MW + P  559.85  1786.12  2345.97  32.29  29.43  11,105.75 10,123.81  8759.78  7777.84  I2 (75% CWR) + C ‐  1786.12  1786.12  21.57  22.53  6745.08  7045.24  4958.96  5259.12  I2 + MW  500.31  1786.12  2286.43  31.04  32.53  10,675.58 10,170.94  8389.15  7884.51  I2 + P  59.54  1786.12  1845.66  27.65  28.56  9222.38  9253.08  7376.72  7407.42  I2 + MW + P  559.85  1786.12  2345.97  37.86  39.67  13,021.84 13,643.94  10,675.87  11,297.97 I3 (50% CWR) + C ‐  1786.12  1786.12  17.21  18.56  4305.32  4643.90  2519.20  2857.78  I3 + MW  500.31  1786.12  2286.43  21.37  21.66  5346.90  5346.90  3060.47  3060.47  I3 + P  59.54  1786.12  1845.66  21.38  22.13  5348.91  5536.96  3503.25  3691.30  I3 + MW + P  559.85  1786.12  2345.97  23.35  24.2  6299.15  6299.15  3953.18  3953.18  −1 ℗: average fruit price (USD∙kg ) was determined per fruit weight; 200–299 g = $0.25, 300–399 g =  $0.31 and ≥400 g = $0.34.  4. Discussion  As water scarcity has recently become a global problem [19], water deficit regimes  have been used to reduce agricultural water demand and increase economic productivity  [21]. However, using deficit irrigation particularly under saline soil conditions is very crit‐ ical, since it results in increased soil salinity [23,24]. Therefore, the use of some modern  techniques such as MW [25], as well as foliar application of plant bio‐regulators (i.e., pro‐ line) can play an important role in inducing the plant’s ability to withstand adverse stress  conditions, thereby improving plant growth, productivity, and fruit quality [28,39]. The  results of the present study addressed the positive role of MW and proline on the vegeta‐ tive growth (Figure 3) and nutrient contents (Tables 4 and 5) of stressed (i.e., 75% CWR)  and  non‐stressed  (i.e.,  100%  CWR)  ‘Taifi’  pomegranate  shrubs.  Improved  vegetative  growth could be attributed to the increase in leaf chlorophyll content (Figure 2), associated  with improved photosynthesis and accumulation of more assimilates [65]. Irrigation with  MW, characterized by lower viscosity and surface tension, resulted in reduced soil pH,  stimulated carbon deposition, enhanced levels of phosphorus (P) and K in soil solution,  and increased activity of soil microbes [32]. It was reported that MW altered the permea‐ bility and transport capability of the cellular membrane, and improved nutrient accumu‐ lation in plant cells [66,67]. The results of the present study are in accordance with previ‐ ous findings on the role of MW enhancing the vegetative growth and nutritional status of  ‘Valencia’ orange [37]. Furthermore, proline plays an important role as antioxidant that  stimulates the stress responsive genes, adjusts the cytoplasmic osmotic pressure, protects  cells against ROS (that negatively affect plant metabolism through the oxidative damage  of lipids, protein and nucleic acids), stabilizes the cellular membrane and proteins [68,69],  and eventually improves the shoot length and leaf area of ‘Manfalouty’ and ‘Wonderful’  pomegranate shrubs [41,70].  The results of the current study are in accordance with the previous findings indicat‐ ing that the higher the soil moisture levels, the higher the chlorophyll content and the  lower the proline accumulation in the plant [71]. The increase in leaf chlorophyll, associ‐ ated with the decrease in proline contents of MW + P‐treated ‘Taifi’ pomegranate shrubs  subjected to 100% and 75% CWR, compared with those received no MW or proline at 50%    Horticulturae 2022, 8, 564  19  of  24  CWR (Figure 2), suggested a positive role of MW and proline mitigating the deleterious  effects of salinity and drought stress. Khoshravesh et al. [72] stated that MW had less hy‐ drophobicity due to the reaction with released ions in soil solution, which increased the  binding of water molecules to soil particles. Thereby, soil moisture level was higher in  plots irrigated with MW than the control, and led to improved absorption of macro and  micronutrients (Tables 4 and 5). The combined application of MW + P resulted in reduced  leaf proline content, as previously reported on ‘Wonderful’ pomegranate [70].  Total fruit yield was also the highest with the application of MW + P at 75% CWR  (Table 6). It was reported that MW may alleviate the impacts of salinity stress either by  reducing Na  absorption through plant roots [73] or improving the capacity of nutrient  and water uptakes, and hence improves plant root and vegetative growth, which in turn  increases fruit yield [74]. A positive effect of exogenous proline application on orange fruit  has been reported [42], particularly when combined with MW under salinity stress con‐ ditions [37]. The reduction in fruit yield of non‐MW treated shrubs, compared with the  MW‐treated ones, could be related to the unbalanced effect on the plant’s nutritional sta‐ tus and vegetative growth [72].  The application of MW + P resulted in the lowest CWU at 50% CWR, but the highest  WUE at 75% CWR, and WP at both 75% and 50% CWR (Figure 4). The improvement in  WUE and WP may be attributed to the increase in fruit yield (Table 6), while the reduction  in CWU may be due to the lower hydrophobicity of MW. Therefore, soil moisture levels  should be higher in MW‐irrigated plots compared with the control ones [72]. A previous  report on ‘Manfalouty’ pomegranate stated that the maximum WUE was found in mod‐ erate irrigation levels, while it was decreased with higher or lower amounts of water [45].  The improvement in fruit weight and volume (Table 6) with MW + P treatment at 100%  or 75% CWR could be owing to the role of MW altering the permeability of the cell mem‐ brane, causing changes in cell metabolism with improved water and nutrient uptakes [45].  For instance, K  adjusts the osmotic pressure of the cell, and leads to cell enlargement [75].  Proline also plays an important role under stressful conditions by balancing the osmotic  pressure of the cytosol and the vacuole with that of the external environment, resulting in  improved water and nutrient uptakes [42]. The improvement in nutrient uptake (Tables 4  and 5) confirms the previous findings. Furthermore, the positive effect of irrigation at 75%  CWR, compared with 100% CWR (non significant) and 50% CWR (significant), on fruit  weight (Table 6) may be due to the balanced effect on vegetative growth, as previously  reported [71,72,76].  The positive effect of MW + P treatment on TSS, TSS/acid ratio, vitamin C, and an‐ thocyanins at 75% or 50% CWR, as well as the role of MW on TSS at 50% CWR (Table 7)  confirmed the previous findings on orange fruit characteristics [37,76], which could be  owing to the role of MW on cryptochromes (CRY1 and CRY2), which are considered as  photolyase‐like blue light receptors that have various roles on plant growth such as the  functional role of guard cells in stomatal opening, photosynthesis, root development, and  the subsequent roles on fruit growth, development, and the translocation of assimilates  from leaves to fruit (source/sink relationship) that governs overall fruit growth and qual‐ ity [38]. It could also be mentioned that the survival of ‘Taifi’ pomegranate shrubs under  reduced irrigation levels, particularly with MW application, could be related to the im‐ proved biosynthesis rate of anthocyanins under such conditions (Table 7). Anthocyanins  are the prominent phenolic compounds, which contribute to the plant antioxidant capac‐ ity more than other phenolic compounds [77], in addition to their role in fruit color [78],  which was also enhanced at reduced CWR compared with the control during both sea‐ sons. The improvement in fruit color, associated with increased TSS and reduced acidity  under such conditions (Table 7), is in accordance with the previous reports [79–84]. In  addition, the application of MW + P with reduced CWR also effectively reduced the per‐ centage of fruit cracking at 75% or 50% CWR (Figure 5). A previous finding confirmed a  reduction in fruit cracking of ‘Wonderful’ pomegranate under moderate water deficit con‐ ditions [70]. It could be noticed that higher fruit weight and volume (both seasons), as    Horticulturae 2022, 8, 564  20  of  24  indicators of fruit size [85], and lower shape index (second season) were associated with  a reduction in fruit cracking percentage, compared with the control, particularly in the  second season (Figure 5A). This means that bigger and more spherical fruit are less sus‐ ceptible to fruit cracking. Small size fruit were reported to be more susceptible to fruit  cracking [60]. It was found that fruit shape index ranged between 0.80 and 0.97, meaning  closer to a round shape [86], and values could reach up to 1.61, suggesting a slenderer  shape of the fruit [87]. The less rounded fruit at harvest indicated a steady decline in sphe‐ ricity with fruit development [60], and this change in fruit shape with development might  coincide with the onset of physical defects that are related to fruit growth stress such as  cracking and splitting [88] due to the reduction in epidermal cell density, thus further  weakening the skin [87]. However, it was reported that in pomegranate, the relationship  between skin thickness or fruit volume and resistance to cracking was not significant [89].  On the other hand, the reduction in fruit sunburn was noticed with increased CWR to be  the minimum at 100% CWR (Figure 5). A linear reduction in the incidence and severity of  apple fruit sunburn with increased soil water levels was recorded [90].  Soil characteristics after the application of 100% and 75% CWR indicated a significant  +2 + +2 reduction in soil pH, EC, and the concentration of Mg , Na , and Ca , in comparison with  50% CWR, and the lowest values were recorded with MW application. Simultaneously,  there was an insignificant increase in K  level (Table 8). The application of MW at 100%  + +2 CWR might promote salt leaching and lower Na  and Ca  concentrations in the soil, and  consequently reduce soil pH and EC. This could be attributed to the water molecules of  MW that are more linked to soil particles than ions, easily penetrate into soil particle micro  spaces, and do not go deeper into the soil, and hence become more available for plant  absorption [32]. Overall, the use of MW at 100% CWR was very helpful to reduce soil  salinity and enhance soil characteristics (Table 8). However, the combined application of  MW and proline (MP + P) at 75% CWR was the best treatment, in terms of the total yield  (Table 6), fruit quality (Tables 6 and 7), and grower’s net profit (Table 9).  5. Conclusions  To improve the growth and productivity of ‘Taifi’ pomegranate shrubs grown in sa‐ line clay soils with reduced amounts of irrigation water, a sustainable, eco‐friendly, and  easily  available  approach  was  used  via  a  combined  application  of  MW  and  foliarly  −1 3 −1 −1 sprayed proline (200 mg∙L ) at 75% CWR (11.86 m ∙tree ∙season ). This approach effec‐ tively compensated for the reduction in normal CWR and mitigated the deleterious effect  of drought and salinity stresses with enhanced soil characteristics and improved shrub’s  growth, WUE, WP, yield, and fruit quality, in addition to grower’s profit. Future research  could incorporate the long‐term effects of using MW on saline soil characteristics, plant  productivity, and fruit quality under the semi‐arid conditions. Future prospective studies  could also include the molecular basis of pomegranate defense mechanism, which cur‐ rently has no reported findings. In addition, the role of MW on reducing Ca  in the soil  could be a focal point for further research to reduce its level in calcareous soils around the  world.  Author  Contributions:  Conceptualization,  S.K.O.  and  G.B.M.;  methodology,  S.K.O.,  G.B.M.  and  M.E.H.F.; software, S.K.O., G.B.M. and M.E.H.F.; validation, S.K.O., M.E.H.F. and S.M.A.‐E.; formal  analysis, Y.M., G.B.M., M.E.H.F. and S.M.A.‐E.; investigation, Y.M., G.B.M. and M.E.H.F.; resources,  S.K.O.,  G.B.M.  and  Y.M.;  data  curation,  S.K.O.,  M.E.H.F.  and  S.M.A.‐E.;  writing—original  draft  preparation, S.K.O. and G.B.M.; writing—review and editing, S.K.O. and S.M.A.‐E.; visualization,  S.K.O., Y.M. and S.M.A.‐E.; supervision, S.K.O., G.B.M. and M.E.H.F.; funding acquisition, Y.M. and  S.M.A.‐E. All authors have read and agreed to the published version of the manuscript.  Funding:  The  Deanship  of  Scientific  Research  at  King  Khaled  University  funded  this  research  through the Program of Research Groups under grant number RGP2/67/43.  Institutional Review Board Statement: Not applicable.    Horticulturae 2022, 8, 564  21  of  24  Informed Consent Statement: Not applicable.  Acknowledgments: The authors would like to thank the Deanship of Scientific Research at King  Khaled University for funding this research under grant number RGP2/67/43. The authors would  also like to extend their appreciation to the staff of the Horticultural Research Institute for their  technical assistance.  Conflicts of Interest: The authors declare no conflict of interest.  References  1. Still, D.W. Pomegranates: A botanical perspective. In Pomegranates: Ancient Roots to Modern Medicine; Seeram, N., Schulman, R.,  Heber, D., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 199–209.  2. Kahramanoglu, I. Trends in pomegranate sector: Production, postharvesthandling and marketing. Int. J. Agric. For. Life Sci. 2019,  3, 239–246.  3. Sheets, M.D.; Du Bois, M.L.; Williamson, J.G. The Pomegranate; University of Florida IFAS Extension Publication # HS44: Gaines‐ ville, FL, USA, 1994.  4. Bhantana, P.; Lazarovitch, N. Evapotranspiration, crop coefficient and growth of two young pomegranate (Punica granatum L.)  varieties under salt stress. Agric. Water Manag. 2010, 97, 715–722.  5. Tavousi, M.; Kaveh, F.; Alizadeh, A.; Babazadeh, H.; Tehranifar, A. Effects of drought and salinity on yield and water use  efficiency in pomegranate tree. J. Mater. Environ. Sci. 2015, 6, 1975–1980.  6. Pandey, P.; Ramegowda, V.; Senthil‐Kumar, M. Shared and unique responses of plants to multiple individual stresses and stress  combinations: Physiological and molecular mechanisms. Front. Plant Sci. 2015, 6, 723.  7. Saiki, S.T.; Ishida, A.; Yoshimura, K.; Yazaki, K. Physiological mechanisms of drought‐induced tree die‐off in relation to carbon,  hydraulic and respiratory stress in a drought‐tolerant woody plants. Sci. Rep. 2017, 7, 2995.  8. Yamaguchi, T.; Blumwald, E. Developing salt‐tolerant crop plants: Challenges and opportunities. Trends Plant Sci. 2005, 10, 615– 620.  9. Li, J.; Pu, L.; Zhu, M.; Zhang, R. The present situation and hot issues in the salt‐affected soil research. Acta Geogr. Sin. 2012, 67,  1233–1245.  10. Grieve, C.M.; Grattan, S.R.; Maas, E.V. Plant Salt Tolerance. In ASCE Manual and Reports on Engineering Practice No. 71: Agricul‐ tural  Salinity  Assessment  and  Management,  2nd ed.;  Wallender,  W.W., Tanji, K.K.,  Eds.;  American Society of  Civil Engineers  (ASCE) Library: Reston, VA, USA, 2012; Chapter 13, pp. 405–459.  11. Zhu, J.K. Plant salt stress. In Encyclopedia of Life Science; 2nd ed.; O’Daly, A., Ed.; John and Wiley & Sons, Ltd.: Chichester, UK,  2007; pp. 1–3.  12. Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963.  13. Sun, Y.; Niu, G.; Masabni, J.G.; Ganjegunte, G. Relative salt tolerance of 22 pomegranate (Punica granatum) cultivars. HortScience  2018, 53, 1513–1519.  14. Borochov‐Neori, H.; Judeinstein, S.; Tripler, E.; Holland, D.; Lazarovitch, N. Salinity effects on colour and health traits in the  pomegranate (Punica granatum L.) fruit peel. Int. J. Postharvest Technol. Innov. 2014, 4, 54–68.  15. Agricultural Statistics of Egypt, Ministry of Agriculture and Land Reclamation. In Agricultural Economics Annual Report #781;  Agricultural Statistics of Egypt, Ministry of Agriculture and Land Reclamation: Cairo, Egypt, 2020.  16. El‐Desouky, M.I.; Abd El‐Hamied, S.A. Improving Growth and Productivity of Pomegranate Fruit Trees Planted on Sandy  Slopes at Baloza District (N. Sinai) using Dfferent Methods of Drip Irrigation, Organic Fertilization and Soil Mulching. IOSR J.  Agric. Vet. Sci. 2014, 7, 86–97.  17. Naser, T.A. Evergreen and Deciduus Fruits Production and Important Cultivars in the Arab World, 1st ed.; Dar Alma’arif Publishing  Inc.: Cairo, Egypt, 1983.  18. Al Shawish, F.; Hamed, F.; Al‐Aisa, I. Evaluation of some qualitative and chemical characteristics for most important pome‐ granate (Punica granatum) accessions in Yemen. J. Agric Sci. Damascus Univ. Fac. Agric. Damascus Univ. 2006, 22, 117–241.  19. Agricultural Statistics of Egypt. Water Scarcity in Egypt: The Urgent Need for Regional Cooperation among the Nile Basin Countries;  Report of the Ministry of Water Resources and Irrigation, Government of Egypt: Cairo, Egypt, 2014; p. 5.  20. Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res.  2015, 51, 4823–4839.  21. Costa, J.M.; Ortuno, M.F.; Chaves, M.M. Deficit irrigation as a strategy to save water: Physiology and potential application to  horticulture. J. Integr. Plant Biol. 2007, 49, 1421–1434.  22. Laribi, A.I.; Palou, L.; Intrigliolo, D.S.; Nortes, P.A.; Rojas‐Argudo, C.; Taberner, V.; Bartual, J.; Perez‐Gago, M.B. Effect of sus‐ tained and regulated deficit irrigation on fruit quality of pomegranate cv.ʹMollar de Elcheʹ at harvest and during cold storage.  Agric. Water Manag. 2013, 125, 61–70.  23. Shafqat, W.; Mazrou, Y.S.A.; Nehela, Y.; Ikram, S.; Bibi, S.; Naqvi, S.A.; Hameed, M.; Jaskani, M.J. Effect of Three Water Regimes  on the Physiological and Anatomical Structure of Stem and Leaves of Different Citrus Rootstocks with Distinct Degrees of  Tolerance to Drought Stress. Horticulture 2021, 7, 554.    Horticulturae 2022, 8, 564  22  of  24  24. Tarantino, A.; Frabboni, L.; Disciglio, G. Water‐yield relationship and vegetative growth of wonderful young pomegranate trees  under deficit irrigation conditions in southeastern italy. Horticulturae 2021, 7, 79.  25. El‐Hamied, A.; Sheren, A.; Ghieth, W.M. Use of magnetized water and compost tea to improve peach productivity under salin‐ ity stress of North Sinai conditions, Egypt. Egypt J. Desert Res. 2017, 67, 231–254.  26. Van Oosten, M.J.; Pepe, O.; Pascale, S.D.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic  stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5.  27. Ennab, H.; Alam‐Eldein, S.M. Biostimulants Foliar Application to Improve Growth, Yield, and Fruit Quality of ‘Valencia’ Or‐ ange Trees under Deficit Irrigation Conditions. J. Amer. Pomological. Soc. 2020, 74, 118–134.  28. Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41.  Amiri, M.C.; Dadkhah, A.A. On reduction in the surface tension of water due to magnetic treatment. Colloids Surfaces A Phys‐ icochem. Eng. Asp. 2006, 278, 252–255.  30. Holysz, L.; Szczes, A.; Chibowski, E. Effects of a static magnetic field on water and electrolyte solutions. J. Colloid Interface Sci.  2007, 316, 996–1002.  31. Han, H.B.; Guo, B.; Chai, F. Influence of Magnetic Field on Aqueous NaCl Solutions: A Foundational Research on the Desalina‐ tion Method Based on the Rotating Electromagnetic Effect. Adv. Mat. Res. 2012, 591–593, 2607–2611.  32. Mostafazadeh‐Fard, B.; Khoshravesh, M.; Mousavi, S.F.; Kiani, A.R. Effects of magnetized water on soil chemical components  underneathtrickle irrigation. J. Irrig. Drain. Eng. 2012, 138, 1075–1081.  33. Hillal, M.H.; Hillal, M.M. Application of magnetic technologies in desert agriculture. 1. seed germination and seedling emer‐ gence of some crop in a saline calcareous soil. Egypt. J. Soil Sci. 40, 413–421.  34. Coey, J.M.D.; Cass, S. Magnetic water treatment. J. Magn. Magn. Mater. 2000, 209, 71–74.  35. Tai, C.Y.; Wu, C.K.; Chang, M.C. Effects of magnetic field on the crystallization of CaCo3 using permanent magnets. J. Chem.  Eng. Sci. 2008, 63, 5606–5612.  36. Al‐Ghamdi, A.A.M. The Effect of Magnetic Water on Soil Characteristics and Raphanus sativus L. Growth 2014, 9, 16–20.  37. Aly, M.A.; Thanaa, M.E.; Osman, S.M.; Abdelhamed, A.A. Effect of magnetic irrigation water and some anti‐salinity substances  on the growth and production of Valencia orange. Middle East J. Agric. Res. 2015, 4, 88–98.  38. Yu, X.; Liu, H.; Klejnot, J.; Lin, C. The Cryptochrome Blue Light Receptors. Arab. Book Am. Soc. Plant Biol. 2010, 8, 1–27. ISBN  1543‐8120 (Electronic).  39. Ghafoor, R.; Akram, N.A.; Rashid, M.; Ashraf, M.; Iqbal, M.; Lixin, Z. Exogenously applied proline induced changes in key  anatomical features and physio‐biochemical attributes in water stressed oat (Avena sativa L.) plants. Physiol. Mol. Biol. Plants  2019, 25, 1121–1135.  40. Meister, A. Biochemistry of the Amino Acids, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2012; ISBN 0323161472.  41. El Sayed, O.M.; El Gammal, O.H.M.; Salama, A.S.M. Effect of proline and tryptophan amino acids on yield and fruit quality of  Manfalouty pomegranate variety. Sci. Hortic. 2014, 169, 1–5.  42. Caronia, A.; Gugliuzza, G.; Inglese, P. Influence of L‐proline on Citrus sinensis (L.)[’New Hall’and’Tarocco Scire’] fruit quality.  In Proceedings of the XI International Symposium on Plant Bioregulators in Fruit Production. Acta Hortic. 2010, 884, 423–426.  43. Elsheery, N.I.; Helaly, M.N.; El‐Hoseiny, H.M.; Alam‐Eldein, S.M. Zinc Oxide and Silicone Nanoparticles to Improve the Re‐ sistance Mechanism and Annual Productivity of Salt‐Stressed Mango Trees. Agronomy 2020, 10, 558.  44. Kahlaoui, B.; Hachicha, M.; Misle, E.; Fidalgo, F.; Teixeira, J. Physiological and biochemical responses to the exogenous appli‐ cation of proline of tomato plants irrigated with saline water. J. Saudi Soc. Agric. Sci. 2018, 17, 17–23.  45. Ezz, T.M.; Aly, M.A.M.; Nassem, M.G.; Abou Taleb, S.A.; Farag, M.E.H. Alleviation of salinity effect in irrigation water and soil  on Manfalouty pomegranate trees using magnetic water, bio‐fertilizer and some soil amendments. Egypt. J. Agric. Res. 2017, 95,  805–820.  46. Worldweatheronline.  Kafr  El‐Sheikh,  Egypt  Historical  Weather.  2020.  Available  online:  https://www.worldweather‐ online.com/kafr‐ash‐shaykh‐weather‐averages/kafr‐ash‐shaykh/eg.aspx (accessed on 3 June 2021).  47. Chapman, H.D.; Pratt, F.P. Methods of Analysis for Soils, Plants and Waters, 1st ed.; University of California, Division of Agricul‐ tural Sciences: Davis, CA, USA, 1961; p. 309.  48. Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; Iowa State University Press: Ames, IA, USA, 1990.  49. Murquard, R.D.; Timpton, J.L. Relationship between extractable chlorophyll and the method to estimate leaf green. Hort. Sci.  1987, 22, 1327.  50. Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water‐stress studies. Plant Soil 1973, 39, 205–207.  51. Wolf, B. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal.  1982, 13, 1035–1059.  52. Evenhuis, B.; Dewaard, P.W. Nitrogen Determination; Department of Agriculture Research, Royal Tropical Institute: Amsterdam,  The Netherlands, 1976.  53. Jones, J.B.; Wolf, B.; Mills, H.A. Plant Analysis Handbook. A Practical Sampling, Preparation, Analysis, and Interpretation Guide; Mi‐ cro‐Macro Publishing, Inc.: Athens, GA, USA, 1991; p. 212.  54. Tendon, H.L.S. Analysis of Soils, Plants, Waters and Fertilizers; Fertiliser Development and Consultation Organisation: New Delhi,  India, 2005.  55. Chang, K.L.; Bray, R.H. Determination of calcium and magnesium in soil and plant material. Soil Sci. 1951, 72, 449–458.    Horticulturae 2022, 8, 564  23  of  24  56. Rashid, A. Mapping Zinc Fertility of Soil Using Indicator Plant and Soil Analysis. Ph.D. Thesis, University of Hawaii, Manoa,  HI, USA, 1986.  57. Li‐COR Inc. Li‐3000A Portable Leaf Area Meter, Instruction Manual; Li‐ COR: Lincoln, NE, USA, 1987.  58. Hansen, V.W.; Israelsen, D.W.; Stringharm, D.E. Irrigation Principle and Practices, 4th ed.; Johns Willey & Sons: New York, NY,  USA, 1979.  59. Ali, M.H.; Hoque, M.R.; Hassan, A.A.; Khair, A. Effects of deficit irrigation on yield, water productivity, and economic returns  of wheat. Agric. Water Manag. 2007, 92, 151–161.  60. Al‐Yahyai, R.; Al‐Said, F.; Opara, L. Fruit growth characteristics of four pomegranate cultivars from northern Oman. Fruits 2009,  64, 335–341.  61. AOAC. Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemist: Washington, DC, USA, 2000; pp:  16–20.  62. Hsia, C.L.; Luh, B.S.; Chichester, C.O. Anthocyanin in Freestone Peaches. J. Food Sci. 1965, 30, 5–12.  63. Ikram, S.; Shafqat, W.; Qureshi, M.A.; ud Din, S.; ur‐Rehman, S.; Mehmood, A.; Sajjad, Y.; Nafees, M. Causes and control of fruit  cracking in pomegranate: A review. J. Glob. Imov. Agric. Soc. Sci. 2020, 8, 183–190.  64. Agehara, S.; Wang, W.; Sarkhosh, A. Guidelines for Pomegranate Nutrient Management in Florida; Horticultural Sciences Depart‐ ment, UF/IFAS Extension Publication # HS1347: Gainesville, FL, USA, 2019; p. 5.  65. Grotjohann, I.; Jolley, C.; Fromme, P. Evolution of photosynthesis and oxygen evolution: Implications from the structural com‐ parison of photosystem I and II. Phys. Chem. Chem. Phys. 2004, 6, 4743–4753.  66. Ratushnyak, A.A.; Andreeva, M.G.; Morozova, O.V.; Morozov, G.A.; Trushin, M.V. Effect of extremely high frequency Electro‐ magnetic fields on the microbiological community in rhizosphere of plants. Int. Agrophysics 2008, 22, 71–74.  67. Azharonok, V.V.; Goncharik, S.V.; Filatova, I.I.; Shik, A.S.; Antonyuk, A.S. The effect of the high frequency electromagnetic  treatment of the sowing material for legumes on their sowing quality and productivity. Surf. Eng. Appl. Electrochem. 2009, 45,  318–328.  68. Kishor, P.B.K.; Sangam, S.; Amrutha, R.N.; Laxmi, P.S.; Naidu, K.R.; Rao, K.R.S.S.; Rao, S.; Reddy, K.J.; Theriappan, P.; Sreeni‐ vasulu, N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant  growth and abiotic stress tolerance. Curr. Sci. 2005, 88, 424–438.  69. Vendruscolo, E.C.G.; Schuster, I.; Pileggi, M.; Scapim, C.A.; Molinari, H.B.C.; Marur, C.J.; Vieira, L.G.E. Stress‐induced synthesis  of proline confers tolerance to water deficit in transgenic wheat. J. Plant Physiol. 2007, 164, 1367–1376.  70. Abo‐Ogiala, A. Managing crop production of pomegranate cv. Wonderful via foliar application of ascorbic acid, proline and  glycinbetaine under environmental stresses. Int. J. Environ. 2018, 7, 95–103.  71. Khattab, M.M.; Shaban, A.E.; El‐shrief, A.H.; Mohamed, A.S.E. Growth and productivity of pomegranate trees under different  irrigation levels. III: Leaf pigments, proline and mineral content. J. Hortic. Sci. Ornam. Plants 2011, 3, 265–269.  72. Khoshravesh, M.; Mostafazadeh‐Fard, B.; Mousavi, S.F.; Kiani, A.R. Effects of magnetized water on the distribution pattern of  soil water with respect to time in trickle irrigation. Soil Use Manag. 2011, 27, 515–522.  73. Maheshwari, B.L.; Grewal, H.S. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productiv‐ ity. Agric. Water Manag. 2009, 96, 1229–1236.  74. De Souza, A.; García, D.; Sueiro, L.; Licea, L.; Porras, E. Pre‐sowing magnetic treatment of tomato seeds: Effects on the growth  and yield of plants cultivated late in the season. Span. J. Agric. Res. 2005, 3, 113–122.  75. Okba, S.K.; Mazrou, Y.; Elmenofy, H.M.; Ezzat, A.; Salama, A.‐M. New Insights of Potassium Sources Impacts as Foliar Appli‐ cation on ‘Canino’Apricot Fruit Yield, Fruit Anatomy, Quality and Storability. Plants 2021, 10, 1163.  76. Mahmoud, T.A.; Youssef, E.A.; El‐Harouny, S.B.; Abo Eid, M.A.M. Effect of irrigation with magnetic water on nitrogen fertili‐ zation efficiency of navel orange trees. Plant Arch. 2019, 19, 966–975.  77. Kristl, J.; Slekovec, M.; Tojnko, S.; Unuk, T. Extractable antioxidants and non‐extractable phenolics in the total antioxidant ac‐ tivity of selected plum cultivars (Prunus domestica L.): Evolution during on‐tree ripening. Food Chem. 2011, 125, 29–34.  78. Alesiani, D.; Canini, A.; D’Abroca, B.; DellaGreca, M.; Fiorentino, A.; Mastellone, C.; Monaco, P.; Pacifico, S. Antioxidant and  antiproliferative activities of phytochemicals from Quince (Cydonia vulgaris) peels. Food Chem. 2010, 118, 199–207.  79. Hassan, I.F.; Gaballah, M.S.; El‐Hoseiny, H.M.; El‐Sharnouby, M.E.; Alam‐Eldein, S.M. Deficit irrigation to enhance fruit quality  of the ’African Rose’ plum under the Egyptian semi‐arid conditions. Agronoy 2021, 11, 1405.  80. Maatallah, S.; Guizani, M.; Hjlaoui, H.; Boughattas, N.E.H.; Lopez‐Lauri, F.; Ennajeh, M. Improvement of fruit quality by mod‐ erate water deficit in three plum cultivars (Prunus salicina L.) cultivated in a semi‐arid region. Fruits 2015, 70, 325–332.  81. Hamayat, N.; Hafiz, I.A.; Ahmad, T.; Ali, I.; Qureshi, A.A. Biochemical and physiological responses of peach rootstocks against  drought stress. J. Pure Appl. Agric. 2020, 5, 82–89.  82. Zhao, Z.; Wang, W.; Wu, Y.; Xu, M.; Huang, X.; Ma, Y.; Ren, D. Leaf physiological responses of mature pear trees to regulated  deficit irrigation in field conditions under desert climate. Sci. Hortic. 2015, 187, 122–130.  83. Blanco, V.; Blaya‐Ros, P.J.; Torres‐Sánchez, R.; Domingo, R. Influence of regulated deficit irrigation and environmental condi‐ tions on reproductive response of sweet cherry trees. Plants 2020, 9, 94.   W.; Conesa, M.R.; Dominguez, A.; Pardo, J.J.; Léllis,  84. Fernández‐García, I.; Lecina, S.; Ruiz‐Sánchez, M.C.; Vera, J.; Conejero, B.C.; Montesinos, P. Trends and challenges in irrigation scheduling in the semi‐arid area of Spain. Water 2020, 12, 785.  85. Wetzstein,  H.Y.;  Zhang,  Z.;  Ravid,  N.;  Wetzstein,  M.E.  Characterization  of  attributes  related  to  fruit  size  in  pomegranate.  Hortscience 2011, 46, 908–912.    Horticulturae 2022, 8, 564  24  of  24  86. Chen, Y.‐H.; Gao, H.‐F.; Wang, S.; Liu, X.‐Y.; Hu, Q.‐X.; Jian, Z.H.; Wan, R.; Song, J.‐H.; Shi, J.‐L. Comperhensive evaluation of  20 pomegranate (Punica granatum) cultivars in China. J. Integ. Agric. 2022, 21, 434–445.  87. Tehranifar, A.; Zarei, M.; Nemati, Z.; Esfandiyari, B.; Vazifeshenas, M.R. Investigation of physio‐chemical properities and anti‐ oxidant activity of twenty Irania pomegranate (Punica granataum) cultivars. Sci. Hortic. 2010, 126, 180–185.  88. Hepaksoy, S.; Aksoy, U.; Can, H.Z.; Ui, M.A. Determination of relationship between fruit cracking and some physiological  responses, leaf characteristics and nutritional status of some pomegranate varieties. Options Mediterr. 2000, 42, 87–92.  89. Saei, H.; Sharifani, M.M.; Dehghani, A.; Seifi, E.; Akbarpour, V. Description of biochemical forces and physiological parameters  of fruit cracking in pomegranate. Sci. Hortic. 2014, 178, 224–230.  90. Makeredza, B.; Schmeisser, M.; Lötze, E.; Steyn, W.J. Water stress increases sunburn in “Cripps” Pink’ apple. HortScience 2013,  48, 444–447. 

Journal

HorticulturaeMultidisciplinary Digital Publishing Institute

Published: Jun 21, 2022

Keywords: clay soils; deficit irrigation; magnetic water; osmoregulants; salinity; water relationships

There are no references for this article.