Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effects of Rootstocks on Blade Nutritional Content of Two Minority Grapevine Varieties Cultivated under Hyper-Arid Conditions in Northern Chile

Effects of Rootstocks on Blade Nutritional Content of Two Minority Grapevine Varieties Cultivated... Article  Effects of Rootstocks on Blade Nutritional Content   of Two Minority Grapevine Varieties Cultivated   under Hyper‐Arid Conditions in Northern Chile  1 2 1 1, Nicolás Verdugo‐Vásquez  , Gastón Gutiérrez‐Gamboa  , Emilio Villalobos‐Soublett   and Andrés Zurita‐Silva  *    Centro de Investigación Intihuasi, Instituto de Investigaciones Agropecuarias INIA, Colina San Joaquín s/n,  La Serena 1700000, Chile; nicolas.verdugo@inia.cl (N.V.‐V.); emilio.villalobos@inia.cl (E.V.‐S.)    Facultad de Ciencias Agrarias, Universidad de Talca, 2 Norte 685, Casilla 747, Talca 346000, Chile;   ggutierrezg@utalca.cl  *  Correspondence: andres.zurita@inia.cl  Abstract: In the 90s, as in other countries, transformation of Chilean viticulture brought about the  introduction and spread of European grapevine varieties which has resulted in a massive loss of  minor local and autochthonous grapevine varieties traditionally grown in several wine growing  regions. Fortunately, in recent years, autochthonous and minority varieties have been revalued due  to their high tolerance to pests and diseases and because of their adaptation to thermal and water  stress triggered by global warming. In this study, we assessed the nutritional status of two autoch‐ thonous grapevines grafted onto four different rootstocks under the hyper‐arid climatic conditions  of Northern Chile over three consecutive seasons. The results showed that R32 rootstock induced  high N, P, Ca, Mg and Mn levels in blades compared to Harmony rootstock. R32 rootstock and to a  Citation: Verdugo‐Vásquez, N.;  lesser extent, 1103 Paulsen and 140 Ruggeri rootstocks kept balanced levels of nutrients in blades  Gutiérrez‐Gamboa, G.; Villalobos‐ collected from Moscatel Amarilla and Moscatel Negra grapevine varieties. Additionally, Harmony  Soublett, E.; Zurita‐Silva, A. Effects  presented slight nutritional imbalance compared to the rest of studied rootstocks due to its low  of Rootstocks on Blade Nutritional  absorption of Mg, Mn, Ca and P, and its high K absorption, which was exacerbated under warm  Content of Two Minority Grapevine  weather and salinity soil conditions. These results may provide a basis for specific cultivar/root‐ Varieties Cultivated under   stock/site combinations, a nutritional guide for the viticulturists of Northern Chile, and options to  Hyper‐Arid Conditions in Northern  diversify their production favoring the use of minority and autochthonous varieties that adapt well  Chile. Agronomy 2021, 11, 327.  to hyper‐arid conditions of Northern Chile.  https://doi.org/10.3390/  agronomy11020327  Keywords:  Vitis  vinifera;  V.  berlandieri;  autochthonous;  Moscatel  Amarilla;  Moscatel  Negra;  V.  Academic Editor: Marco Landi  rupestris  Received: 31 December 2020    Accepted: 5 February 2021  Published: 12 February 2021  1. Introduction  Publisher’s Note: MDPI stays neu‐ The role of grape varieties is increasingly important in worldwide wine products,  tral with regard to jurisdictional  both wines and spirits [1]. The strategy of new world wine countries has appealed to the  claims in published maps and insti‐ relevance of varietal wines as the axis of their production and marketing strategy, while  tutional affiliations.  European wine industry emphasize their terroir and their thousand‐year wine‐making  history [1,2]. Currently, Chile has around 137,000 ha of vine cultivation surface distributed  between the Coquimbo (30.0° SL) and Araucanía (38.7° SL) regions, although there are  some experiences that are expanding the wine‐growing areas in Southern Araucanía and  Copyright: © 2021 by the authors. Li‐ censee  MDPI,  Basel,  Switzerland.  Northern Coquimbo [3]. The Chilean wine industry is rather concentrated and strongly  This article  is an open access article  export oriented. In this fashion, wine exports represent more than 1800 million dollars  distributed under the terms and con‐ and represent more than 80% of wine produced, reaching more than 130 countries [3]. The  ditions of the Creative Commons At‐ most cultivated grapevine varieties in Chile are Cabernet Sauvignon (30.0%), Sauvignon  tribution (CC BY) license (http://crea‐ Blanc  (11.2%),  Merlot  (8.6%),  Chardonnay  (8.2%),  Carménère  (7.8%)  and  Listán  Prieto  tivecommons.org/licenses/by/4.0/).  (7.5%), mainly intended for wine elaboration [4].  Agronomy 2021, 11, 327. https://doi.org/10.3390/agronomy11020327  www.mdpi.com/journal/agronomy  Agronomy 2021, 11, 327  2  of  16  Pisco is a brandy produced in wine‐growing regions of Chile and Peru that is pro‐ duced by distilling fermented grape juice [5]. In Chile, Pisco has been recognized, delim‐ ited and protected by the State as Denomination of Origin since 1931, and has managed  to sustain itself as an emblematic national beverage until today [1]. Pisco‐oriented grape  production is restricted to northern Chile from the desert fringe to the agricultural valleys  between Copiapó and Choapa rivers [6]. Today, 9150 ha of Pisco vineyards are planted in  Atacama (5.8%) and Coquimbo (94.2) regions, representing 6.3% of the country’s total  vineyards, about 1.3% less than a decade ago [1,6]. The Muscat grape yield in Northern  Chile is dedicated almost exclusively to Pisco production [6,7] as is shown in Figure 1.  Pszczólkowski and Lacoste [1] reported that the varieties used for Pisco production in  Chile correspond to Moscatel de Alejandría and native varieties, with low percentages of  European varieties. Based upon these findings, these authors proposed to define the Chil‐ ean Pisco as an Andean spirit made from native and historical varieties from Spanish col‐ ony, which would position the Chilean pisco to the Andean territory by traditional and  genetic material.  Figure 1. Varieties cultivated in Northern Chile intended for Pisco elaboration (in percentage).  Moscatel Amarilla: 166.0 ha; Moscatel Blanca: 15.9 ha; Moscatel de Alejandría: 1711.2 ha; Moscatel  Negra: 0.68 ha; Moscatel Rosada: 1630.3 ha; Pedro Jiménez: 4298.9 ha; Torontel: 179.41 ha. Figure  elaborated based onto the data provided by SAG [4].  The introduction and spread of recognized European varieties over the last few dec‐ ades have caused a massive loss of autochthonous and minor locally grown grapes tradi‐ tionally grown in different wine regions [8–12]. The current varietal homogenization of  the vineyards results in an increase in genetic vulnerability in relation to pathogen spread  against which some cultivars are not resistant [10]. Fortunately, in recent years there is a  significant revaluation of autochthonous and minor locally grown varieties worldwide  because they can become a potential source of natural adaptation to current challenges of  climate change in viticulture [13–15]. This opens up an interesting possibility of evaluating  autochthonous and minor locally grown varieties for the viticultural development of each  productive zone.  Chilean viticulture has been developed for centuries with ungrafted vineyards be‐ cause there is no presence of phylloxera (Daktulosphaira vitifoliae) [16–18]. Due to this, there  is limited local experience in the use of rootstocks in viticulture for wine grapes [16,19– 22]. However, during the last years, plant‐parasitic nematodes have become a main pro‐ ductive constraint in the Chilean viticulture [23]. Rootstock adoption in Chile is justified  not only by the resistance against nematodes or the need to replace old or unproductive  vineyards, but also by the need to overcome soil and water restraints, especially in the  arid Northern Chile [16,19,21,24].  Agronomy 2021, 11, 327  3  of  16  To our knowledge, there are no published reports regarding the vegetative behaviour  of minor locally grown or autochthonous varieties grafted onto different rootstocks in hy‐ per‐arid conditions to date, much less about their nutritional status. Grapevine nutritional  management is a fundamental issue for winegrowers in Northern Chile, since soils are  saline and the absorption of Mg, Ca and other nutrients may be affected. The varieties  such as Moscatel Amarilla and Moscatel Negra are minority and autochthonous varieties  distributed only in Northern  Chile  that  deserve to be investigated. An early study re‐ ported that Moscatel Amarilla variety produces grapes with high levels of free terpenes  levels and it could become a great alternative for the Chilean Pisco production [6]. In ad‐ dition, to date there are no published studies concerning Moscatel Negra variety. There‐ fore, the aim of this field trial was to evaluate nutritional status of Moscatel Amarilla and  Moscatel Negra grapevines grafted onto four different rootstocks under hyper‐arid cli‐ matic conditions over three consecutive seasons.  2. Materials and Methods  2.1. Characterization of Study Site, Plant Material and Experimental Design  The field trial was conducted in an experimental vineyard located at the Vicuña Ex‐ perimental Center belonging to the Instituto de Investigaciones Agropecuarias (INIA) (30°  02′S, 70°41′W, 630 m above sea level; Coquimbo region, Chile) in three consecutive seasons  (2017–18, 2018–19 and 2019–20). The climate of the area is classified as hyper‐arid, with an  average daily temperature of 16.1 °C and a mean annual rainfall of 100 mm that concen‐ trate in winter (June‐September). The vineyard soil is a sandy loam alluvial Entisol and  has a flat topography (<1%). The soil holds moderate depth (>50 cm), field capacity of  −1 −1 11.2% (v v ), permanent wilting point of 5.2% (v v ), pH value of 7.3 (calcareous soil), a  −1 1.5% percentage of organic matter, an electrical conductivity of 2.3 dS m  in saturated  paste.  Two Chilean autochthonous and minority grapevine varieties cv. Moscatel Amarilla  (synonyms: Torrontés and Torrontés Riojano) and cv. Moscatel Negra (synonym: Canela)  (Figure 2) were grafted onto three commercial rootstocks (1103 Paulsen, 140 Ruggeri and  Harmony) and one naturalized genotype (R32) selected in Northern Chile due to their  tolerance to water deficit [19,25,26]. The vineyard was established in the winter of 2016 in  a replanting soil previously planted with Vitis vinifera grapevines. The grapevines were  grafted using the Omega technique following the procedure described by Ibacache and  Sierra [20]. The grapevines were planted at spacing of 3 m × 3 m, trained on an overhead  trellis system and cane pruned leaving 4 to 5 nodes. Due to the low rainfall that is recorded  during the season (less than 100 mm) it is necessary to apply water through irrigation. In  this regard, the grapevines were drip irrigated using one irrigation line per row with emit‐ –1 ters supplying water at a rate of 4 l h  spaced at 1 m (3 emitters per plant). The reference  evapotranspiration during the three seasons varied between 1127 and 1162 mm (Septem‐ ber‐April). Field trial received a standard agronomic management used in commercial  vineyards in terms of irrigation, fertilization, pruning, pest and disease management in  each growing season. The fertilization program consisted of applications of N, P2O5 and  −1 K2O (90, 50, 70 kg ha  respectively) by means of fertigation in the spring and early sum‐ −1 mer. Nutritional content of the soil at the beginning of the study was 40 mg kg  of avail‐ −1 −1 able N, 8 mg kg  of available P and 105 mg kg  of available K.  Agronomy 2021, 11, 327  4  of  16  ab Figure 2. Clusters of autochthonous varieties not used commercially and authorized for the pro‐ duction of Pisco in accordance with Chilean alcohol regulation. (a) Moscatel Amarilla. (b) Mosca‐ tel Negra.  Both varieties grafted onto four rootstocks were assigned in a completely random‐ ized design at planting. The experimental design consisted in four treatments per varieties  with three replicates (blocks) of five grapevines each to cope for soil variability along the  vineyard. The description of the rootstocks under study is shown in Table 1.  Table 1. Description and abbreviations of the rootstocks selected in this field trial.  1  Rootstock  Abbreviation  Pedigree  Origin  1103 Paulsen  1103 P  V. berlandieri × V. rupestris  Italy  140 Ruggeri  140 Ru  V. berlandieri × V. rupestris  Italy  Couderc 1613 × V. champinii (Dog  Harmony  Harmony  USA  Ridge)  R32  R32  V. vinifera  Chile   V: Vitis.  To characterize the vineyard climatic conditions in terms of temperature and precip‐ itation during the seasons, an automatic weather station (AWS) located at 100 m from the  experimental vineyard was utilized. Based on the data provided by the AWS, different  bioclimatic indices, such as Growing Season Temperature (GST), Cool Night index (CI),  Heliothermal index (HI), Growing Degree Days (GDD), Mean Spring Temperature Sum‐ mation (SON Mean), Maximum Spring Temperature Summation (SON Max) and the ac‐ cumulated  precipitation  from  May  (year  n)  to  April  (year  n+1),  were  calculated  as  is  shown in Table 2.  Table 2. Bioclimatic indices calculated each season under study.  HI (Heat  GDD (Heat  SON Mean  SON Max  PP May‐Apr  Season  GST (°C)  CI (°C)  Units)  Units)  (Heat Units)  (Heat Units)  (mm)  2017–18  18.1  8.6  2488  1727.0  1442.9  2391.3  236.3  2018–19  18.4  8.8  2573  1780.2  1533.4  2505.6  36.2  2019–20  18.8  10.5  2608  1855.6  1443.3  2402.2  7.9  30‐years  18.5  10.0  2409.7  1808.2  1493.2  2310.7  93.1  (mean)    GST: Growing Season Temperature [27]; CI: Cool Night Index [28]; HI: Heliothermal Index [29];  GDD: Growing Degree Days [30]; SON Mean: Mean Spring Temperature Summation [31]; SON  Max: Maximum Spring Temperature Summation [31]. PP May‐Apr: Accumulated precipitation  a  from May (year n) to April (year n+1).  Mean of 1985–2015 years.  Agronomy 2021, 11, 327  5  of  16  2.2. Measurements  Forty leaf blades per replicates were collected at veraison stage of each studied sea‐ son. The leaf blades were located on the opposite side to the bunches, fully expanded,  healthy, and without any symptom of nutritional deficiency. The samples were dried in  an oven at 65 °C until a constant mass was achieved, then samples were milled and sieved  through a 1 mm mesh. Then, concentration of macro (N, P, K, Ca and Mg) and micro (Zn,  Mn and Cu) nutrients were analysed at the Foliar Analysis Laboratory of Vicuña Experi‐ mental Centre. The Kjeldahl method was used to analyse N content of leaf blades accord‐ ing to methodology described by Nikolaou et al. [32]. The Olsen colorimetric method was  utilized to analyse P content in leaf blades using a Spectronic 21 spectrophotometer (Spec‐ tronic  Instruments,  Garforth,  UK) at  440  nm.  K  was  determined  by atomic absorption  spectrophotometry (Unicam 929, Unicam Ltd., Cambridge, UK) according to the method  described by Garcia et al. [33]. Ca and Mg were determined by atomic absorption. Zn, Mn  and Cu concentrations were analysed by sample calcination and atomic absorption spec‐ trophotometry.  Macronutrient  concentration  was  expressed  in  terms  of  percentage  (w  −1 w ), while micronutrients were expressed in ppm. In order to determine the effect of root‐ stocks on the relationship between different macronutrients, the following relationships  were calculated: (i) K to Ca ratio (K/Ca), (ii) K to Mg ratio (K/Mg) and (iii) K to Ca+Mg  ratio [K/(Ca + Mg)].  2.3. Statistical Analysis  The variables were analysed considering a completely randomized design with fac‐ torial arrangement, accounting two varieties, four rootstocks by three study seasons. Var‐ iables were subjected to an analysis of variance (ANOVA). The significance of the differ‐ ences was determined by Tukey’s test (p ≤ 0.05). Interactions between varieties‐rootstocks  and  rootstocks‐season  were  examined.  Additionally,  a  principal  component  analysis  (PCA)  was  performed  to  determine  relationships  among  variables  according  to  root‐ stocks.  Both  analyses  were  performed  using  the  Xlstat  Software  version  2020.3.1  (Addinsoft SARL, Paris, France).  3. Results  3.1. Weather Conditions  Among seasons, 2017–18 displayed lower Growing Season Temperature (GST) than  the rest of studied seasons (2018–19 and 2019–20) and the 30‐year average, calculated from  September 1st to end of March (Table 2). This caused a lower heat accumulation for the  2017–18 season than other seasons in terms of Heliothermal Index (HI), Growing Degree  Days (GDD), Mean Spring Temperature Summation (SON Mean) and Maximum Spring  Temperature Summation (SON Max). Cool Night index (CI) reached values below 12 in  all seasons allowing to classify them as very cool nights [28]. On the contrary, 2019–20  presented higher GST, CI and HI than 2017–18 and 2018–19 seasons. Concerning HI, all  seasons under analysis were classified as warm, including 30‐year average [29]. The sum  of daily temperature during spring (SON Mean) and the sum of daily maximum temper‐ ature (SON Max) were higher in 2018–19 than the rest of seasons and the 30‐year average.  Regarding precipitations, 2019–20 was an extremely dry season reaching a precipitation  of only 7.9 mm from May (year n) to April (year n+1), whereas the maximum level of  rainfall was reached during the 2017–18 season, quantifying 236.3 mm.  3.2. Blade Nutrient Content  3.2.1. Macronutrients  The Variety factor significantly influenced N, P and Mg blade content, whereas Root‐ stock and Season factors determined the content of all macronutrients in blades of Mos‐ catel Amarilla and Moscatel Negra grapevines growing under hyper‐arid conditions (Ta‐ ble 3). The variety and rootstock interaction influenced both N and K blade content while  Agronomy 2021, 11, 327  6  of  16  rootstock and season factor influenced Ca and Mg blade content (Table 3). Moscatel Am‐ arilla blades presented lower content of N and P, and higher Mg content than Moscatel  Negra samples (Table 3). Harmony induced lower N and P content in grapevine blades  than R32 rootstock (Table 3). In addition, Harmony determined the highest K and the  lowest Mg levels in blades in both varieties. R32 rootstock induced lower K content in  blades than 140 Ru and Harmony but stimulated the highest Ca and Mg content in blades  in both varieties. Blade samples in the 2017–18 season exhibited the lowest N, P and K  content, and the highest Ca and Mg levels in blades (Table 3). Moscatel Negra grafted onto  R32 showed higher N blade contents than most of the variety and rootstock interactions  with the exception of the blade samples obtained from Moscatel Negra grapevines grafted  onto 140 Ru and 1103 P (Supplementary Table 1). Blades from Moscatel Negra grapevines  grafted onto R32 showed the lowest K content. Blades from Moscatel Negra and Moscatel  Amarilla grapevines grafted onto Harmony showed higher K content than most of the  variety and rootstock interactions, with the exception of blades collected from Moscatel  Negra grafted onto 140 Ru. Normally, R32 rootstock in the 2017–18 season induced the  highest Ca and Mg content in blades. As a whole, Harmony rootstock in 2019–20 season  induced lowest Ca content in blades, whereas in 2018–19 and 2019–20 season Harmony  promoted lower Mg content in blades in both varieties than R32 in all seasons, 1103 P in  2017–18 and 2018–19 seasons and 140 Ru in 2017–18 season (Supplementary Table 2).  Table 3. Effect of varieties and rootstocks on leaf blade macronutrient content growing under hy‐ per‐arid conditions over three consecutive seasons.  Factor  N (%)  P (%)  K (%)  Ca (%)  Mg (%)  Variety (V)           Moscatel Amarilla  1.96 b 0.14 b  1.07  2.00  0.28 a  Moscatel Negra  2.22 a  0.17 a  1.07  2.01  0.25 b  Rootstock (R)           1103 P  2.10 ab  0.15 ab  0.99 c  2.01 b  0.28 b  140 Ru  2.08 ab  0.15 ab  1.08 b  1.87 bc  0.27 b  Harmony  2.04 b  0.14 b  1.29 a  1.77 c  0.20 c  R32  2.15 a  0.16 a  0.91 c  2.36 a  0.32 a  Season (S)           2017–18  1.93 b  0.14 b  0.96 c  2.25 a  0.31 a  2018–19  2.15 a  0.15 a  1.06 b  2.08 b  0.25 b  2019–20  2.18 a  0.16 a  1.19 a  1.68 c  0.24 b  1  Signif           2  V  0.0001  0.0001  0.74  0.83  0.001  R  0.012  0.041  0.0001  0.0001  0.0001  S  0.00001  0.0001  0.0001  0.0001  0.0001  V × R  0.033  0.45  0.000  0.55  0.31  R × S  0.11  0.30  0.33  0.019  0.017  1  Significance (p‐value) for Variety (V), Rootstock (R), Season (S), V × R and R × S interactions. For a  given factor and significance p < 0.05, different letters within a column represent significant differ‐  2  ences (Tukey’s test, p < 0.05). In red, p‐value lower than 0.05.  3.2.2. Micronutrients  Considering micronutrients uptake and accumulation, Variety factor significantly af‐ fected Zn blade content only, where blades from Moscatel Amarilla showed lower Zn  content than the samples from Moscatel Negra (Table 4). In turn, rootstock factor influ‐ enced Mn content in Moscatel Amarilla and Moscatel Negra blades collected from grape‐ vines growing under hyper‐arid conditions (Table 4). Harmony rootstock induced lower  Mn content in blades than 140 Ru and R32 rootstocks, and this latter promoted higher Mn  levels in blades than 1103 P (Table 4). Season factor significantly affected Zn and Mn blade  content. Blades in the 2017–18 season showed the highest Zn and the lowest Mn content  (Table 4). Rootstock and season interaction affected Mn content only (Table 4). 140 Ru  Agronomy 2021, 11, 327  7  of  16  rootstock in the 2019–20 season promoted higher levels of Mn in blades than 1103 P in  2017–18, Harmony in 2017–18 and in 2019–20, and 140 Ru in 2017–18 (Supplementary Ta‐ ble 2). In general, Harmony rootstock managed to induce lower Mn content in blades over  the seasons compared to the rest of rootstocks and season interactions.  Table 4. Effect of varieties and rootstocks on leaf blade micronutrient content growing under hy‐ per‐arid conditions over three consecutive seasons.  Factor  Zn (ppm)  Mn (ppm)  Cu (ppm)  Variety (V)       Moscatel Amarilla  36.5 b 113.4  6.9  Moscatel Negra  42.4 a  118.2  6.5  Rootstock (R)       1103 P  35.8  109.6 bc  6.4  140 Ru  38.1  123.1 ab  6.8  Harmony  40.7  98.6 c  6.5  R32  43.3  131.8 a  7.1  Season (S)       2017–18  54.3 a  96.9 b  6.2  2018–19  19.0 c  126.1 a  7.0  2019–20  45.0 b  124.3 a  7.0  1  Signif       2  V  0.022  0.30  0.24  R  0.19  0.0001  0.51  S  0.0001  0.0001  0.16  V × R  0.87  0.09  0.18  R × S  0.19  0.007  0.7  1  Significance (p‐value) for Variety (V), Rootstock (R), Season (S), V × R and R × S interactions. For a  given factor and significance p < 0.05, different letters within a column represent significant differ‐  2  ences (Tukey’s test, p < 0.05). In red, p‐value lower than 0.05.  3.2.3. Relationship between Macronutrients  Variety  factor  did  not  influence  any  of  the  ratios  between  blade  macronutrients,  whereas rootstock and season factors significantly affected all the relationships among  nutrients (Table 5). However, Moscatel Negra blades presented higher K to Mg ratio than  the samples collected from Moscatel Amarilla grapevines (Table 5). Harmony rootstock  induced the highest K/Ca, K/Mg and K to Ca+Mg ratios in blades of both varieties, whilst  R32 rootstock showed the opposite effect (Table 5). 1103 P and 140 Ru rootstocks displayed  similar and intermediate levels of these calculated relationships in blades compared to  Harmony and R32 rootstocks. Blades in the 2017–18 season presented the lowest K/Ca,  K/Mg and K to Ca+Mg ratios, while blades collected in the 2019–20 season exhibited the  opposite effects on the calculated ratios (Table 5). The interaction between variety and  rootstock factors affected K/Mg ratio, as blades obtained from Moscatel Negra grapevines  grafted onto Harmony rootstocks presented the highest K/Mg ratio (Supplementary Table  1). Moscatel Negra grapevines grafted onto R32 grapevines presented lower K/Mg ratio  compared to most of variety and rootstock combinations with the exception of blade sam‐ ples collected from Moscatel Amarilla grapevines grafted onto R32 and 1103 P rootstocks  (Supplementary Table 1). The interaction between rootstock and season factors consider‐ ably affected K/Ca ratio and K to Ca+Mg ratio (Table 5). Harmony rootstock in the 2019– 20 season induced the highest K/Ca and K to Ca+Mg ratio in blades of both varieties.  Mostly, R32 rootstock in 2017–18 season promoted lower K/Ca and K to Ca+Mg ratio in  blades of both varieties than most of the rootstock and season interactions, with the ex‐ ception of R32 rootstock in 2018–19 and 1103 P in 2017–2018 season (Supplementary Table  2).  Agronomy 2021, 11, 327  8  of  16  Table 5. Effect of varieties and rootstocks on relationship between leaf blade macronutrient con‐ tent growing under hyper‐arid conditions over three consecutive seasons.  Factor  K/Ca  K/Mg  K/(Ca+Mg)  Variety (V)       Moscatel Amarilla  0.59 4.21 b  0.51  Moscatel Negra  0.56  4.63 a  0.50  Rootstock (R)       1103 Pa  0.52 c  3.87 b  0.46 b  140 Ru  0.60 b  4.18 b  0.52 b  Harmony  0.77 a  6.64 a  0.69 a  R32  0.40 d  3.00 c  0.35 c  Season (S)       2017–18  0.44 c  3.42 c  0.39 c  2018–19  0.52 b  4.54 b  0.46 b  2019–20  0.76 a  5.31 a  0.66 a  1  Signif       V  0.15    0.007  0.34  R  0.0001  0.0001  0.0001  S  0.0001  0.0001  0.0001  V × R  0.75  0.02  0.56  R × S  0.001  0.19  0.001  1  Significance (p‐value) for Variety (V), Rootstock (R), Season (S), V x R and R × S interactions. For a  given factor and significance p < 0.05, different letters within a column represent significant differ‐  2  ences (Tukey’s test, p < 0.05). In red, p‐value lower than 0.05.  3.3. Principal Component Analysis  In order to classify the different rootstocks and assess their influence on blade nutri‐ ent content in both varieties, a principal component analysis (PCA) was performed (Fig‐ ure 3). Principal component 1 (PC 1) explained 35.63% of the variance and principal com‐ ponent 2 (PC2) explained 30.36%, representing 65.99% of all the analysed variance. PC 1  was correlated (−) with Mg (and Ca), and (+) N, P and Mn, whereas PC 2 was (−) correlated  with K, and (+) Ca, Mg and Mn. Depending upon season and variety, Harmony and 1103  Paulsen rootstocks were (+) correlated with K, and (−) correlated with Mg and Ca blade  content. Conversely, 140 Ru and 1103 P were (+) correlated to P and N blade content and  (−) correlated to Harmony rootstock respectively. Similar behaviour regarding season was  observed for R32 and 1103 P rootstocks, which were (+) correlated to Zn, Mg and Ca blade  content.  Pearson  correlations  confirmed  some  relationships  (Supplementary  Table  3),  such as N blade content that was (+) related to P (r = 0.87) and Mn, (r = 0.58). P blade  content was (+) related to Mn (r = 0.63). K blade content was (‐) related to Ca (r = −0.68)  and Mg (r = −0.77). Ca blade content was (+) correlated with Mg (r = 0.75). Mn blade con‐ tent was (+) correlated with Cu (r = 0.62).  Agronomy 2021, 11, 327  9  of  16  Figure 3. Principal component analysis (PCA) performed with nutritional variables obtained from Moscatel Amarilla and  Moscatel Negra grapevines grafted onto Paulsen 1103, Ruggeri 140, Harmony and R32, during three seasons. Footnote: The  distribution of variables (red lines) and individual observations according to rootstocks (blue dots) on PC1 and PC2 are  shown.  4. Discussion  Irrigation in arid and semiarid regions over prolonged periods can lead to a build‐ up of salt near the soil surface. Most table and raisin grapes are grown in rather dry and  warm climatic regions, such as southwestern Asia, California, Chile, or Australia, and are  thus especially threatened by salinity [34]. Indeed, the soils of Northern Chile are alkaline  due to the presence of CaCO3 resulting in a high pH, which affects the availability of es‐ sential nutrients for crop development [20,35]. These types of soils display an accumula‐ tion of soluble salts and a high content of exchangeable Na and boron leading to micro‐ nutrient deficiencies such as Fe, Zn, Mn and Cu in crops [36,37]. Based upon the nutri‐ tional standards for viticultural management [38], both grafted grapevine varieties under  study exhibited adequate levels in all nutrients analysed in blades. However, blades col‐ lected in the 2018–19 season presented deficiencies in Zn levels (Table 4). Zn is an essential  micronutrient for plants that plays a key role in photosynthetic redox reactions, and it is  an essential cofactor for many enzymes involved in nitrogen metabolism and protein syn‐ thesis [39,40]. Zn solubility is strongly dependent on pH, and similar to Fe, Zn availability  is low in calcareous soils with a pH > 7 and high bicarbonate content [40]. Zn deficiency  may alter the expression and function of proteins at metabolic level that results in different  physiological symptoms characterized by root apex necrosis, and in a decline in starch  production and sugar accumulation in leaves [40,41]. Severe Zn deficiency in grapevines  may result in the production of clusters with few berries that also vary in size from normal  to very small [42,43]. Interestingly, Gainza‐Cortés et al. [41] reported that VvZIP3 encodes  a putative plasma membrane Zn transporter protein member of the ZIP gene family that  might play a role in Zn uptake and distribution during the early reproductive develop‐ ment in grapevines. Based on our results, the season that ensued a lower accumulation of  Zn in the leaves had a higher thermal accumulation during spring and low accumulated  rainfall, which could result in a certain degree of thermal and drought stress during the  reproductive  stages  of  the  grapevine.  Zn  applications  in  grapevines  cultivated  under  drought conditions enhance acquisition of many plant nutrients, promoting the vegetative  and generative developments related to shoot and leaf growth, greener leaves, enhancing  Agronomy 2021, 11, 327  10  of  16  berry development and vine yield [44]. Furthermore, abscisic acid alleviates uptake and  accumulation of Zn in grapevines by inducing expression of ZIP and detoxification‐re‐ lated genes [40]. Thereby, Zn absorption and accumulation in blades may be affected by  high temperatures and drought conditions in grapevines cultivated under the hyper‐arid  conditions of Northern Chile. Zn and Cu are integral parts of one form of the antioxidant  enzyme superoxide dismutase which may also help protect plant tissues against the pro‐ duction of reactive oxygen species that lead to oxidative stress that accompanies many  environmental stresses [40]. Pearson’s correlations did not show a relationship between  Zn and Cu under the edaphoclimatic conditions of the present study. Since solubility is  strongly dependent on pH, Zn availability is low in calcareous soils with a pH >7 and high  carbonate content [40].  Moscatel Amarilla tended to accumulate lesser amounts of N, P and Zn, and more  Mg content than Moscatel Negra blade leaves (Tables 3–5). This resulted in the K to Mg  ratio  being  higher  in  the  Moscatel  Negra  variety  than  Moscatel  Amarilla  blades  and  mostly if these grapevine varieties were grafted onto Harmony rootstock (Tables 3 to 5).  The natural crossing between Listán Prieto and Moscatel de Alejandría occurred in the  XVII century originated Moscatel Amarilla and probably Moscatel Negra [1,26,45]. Local  experience carried out in recent years has shown that Moscatel Amarilla presents a me‐ −1 dium to large cluster, grapevines can produce between 30 to 50 tons ha  and technological  maturity occurs in the second week of February [46]. Moscatel Negra presents a small to  −1 medium cluster, the grapevines can produce between 25 to 35 tons ha  and technological  maturity occurs in the first week of February [46]. Thereby, the differences in productivity  and cluster size between both varieties can affect the uptake and accumulation of nutrients  in the blades in veraison. Recently, Verdenal et al. [47] reported that fertilizer N uptake  and its assimilation in Chasselas (Vitis vinifera) grapevines appeared to be strongly stimu‐ lated by high‐yielding conditions. Interestingly, grapevines were able to modulate root N  reserve mobilization and fertilizer N uptake in function of the crop load, thus maintaining  a uniform N concentration in fruits [47]. K/Mg ratio is an important factor in determining  Mg uptake and high K/Mg ratio determines low Mg uptake [48]. As a whole, Harmony  rootstock induced high accumulation of K in leaf tissues in different grapevine varieties  cultivated in Northern Chile [20]. Our results confirm these findings since Harmony in‐ duced a high K accumulation in blades that was exacerbated when Moscatel Negra grape‐ vines were grafted onto Harmony rootstock (Table 3 and S1). In addition, Harmony accu‐ mulated less amount of Mg in the leaves independent of the climatic conditions of study  season (Table S2). Recently, Gautier et al. [49] reported that rootstocks with a V. riparia  parent conferred a lower petiolar concentration of P, Mg, B and Al, but a higher petiolar  concentration of S, whereas rootstocks with a V. rupestris genetic background conferred a  higher petiolar concentration of P, B and Fe. Mg deficiency may reduce chlorophyll con‐ tent in leaves and changes the chlorophyll a to b ratio in favour of chlorophyll b [48,50].  In fact, Mg‐deficient grapevines are extremely light‐sensitive which accelerates the ap‐ pearance of the characteristic interveinal chlorosis [40]. This issue can become quite a se‐ rious problem for the vineyards grown in Northern Chile since the grapevines in this area  are cultivated at higher altitudes than in other Chilean viticultural regions and receive  higher UV radiation compared to more Southern locations. Bascuñán‐Godoy et al. [51]  reported that the yield rise of Red Globe grapevines grafted onto Harmony and Salt Creek  was correlated with the increase in light capture, greater leaf area, photosynthetic rate,  light absorption capacity, production and mobilization of reserve carbohydrates on these  rootstocks. However, Harmony in spite of having parents in common with Freedom, is  recognized in California because it induces lower vigour to the canopy and also reduces  uptake of nitrogen [52]. Pearson’s correlation showed a negative relationship between K  and Mg (r = −0.77) (Table S3). Toumi et al. [48] explained that the negative relationship  observed between the K and Mg in leaves may be explained due that the Mg decreases by  K to Mg antagonism. However, in this study the high K supply was accompanied by low  Agronomy 2021, 11, 327  11  of  16  Mg supply and it could have merely been caused by shortage of Mg rather than abun‐ dance of K. As regards our results, Mg and K contents in Moscatel Amarilla and Moscatel  Negra grapevines grafted onto Harmony should be strictly monitored during grape rip‐ ening to avoid and correct Mg deficiencies on grapevines. In this fashion, rootstocks that  harbour a V. berlandieri genetic background could be an interesting alternative for these  autochthonous grapevines varieties since they confer a higher of scion vigour and yield  than rootstocks with a V. riparia genetic background what is an attribute of interest for the  Pisco production. In parallel, R32 rootstock induced low accumulation of K in Moscatel  Negra grapevines and induced a high accumulation of Mg in both varieties. Low K supply  to  grapevines strongly reduces xylem sap  flow and limits shoot and fruit growth and  greatly increases the risk of drought stress [53]. K deficiency in grapevines also suppresses  sugar transport in the phloem and can result in sucrose accumulation in the leaves to sub‐ stitute for the missing K as osmoticum [40,54].  R32 (Vitis vinifera) is a native rootstock that corresponds to a naturalized genotype  selected for its tolerance to drought conditions of Northern Chile [19,26]. R32 rootstock  induced a higher accumulation of N, P, K and Mn than Harmony. Mn availability is highly  pH dependent and is minimal when soil pH reaches close to 7 [40]. Mn is required for the  function of enzymes such as glucosyltransferases, which attach a glucose molecule to phe‐ nolics and other compounds [55]. Mn deficiency may increase tissue sensitivity to oxida‐ tive stress, which can be caused by different environmental stresses [40]. Deficiency symp‐ toms are consequently more severe on sun‐exposed leaves [40]. Contrary to this, our re‐ sults pointed that Mn accumulation in blades was lower in the coldest season that was in  2017–18 than in 2018–19 and 2019–20 seasons which were the warmest. The occurrence of  chlorotic leaves in response to insufficient Mn availability occurs first in the basal portion  of the shoots, soon after budbreak [56]. Thus, high temperatures early in the grapevine  growing  season  could  induce  Mn  deficiencies  in  the  grapevines.  Pearson’s  correlation  showed that Mn blade content was correlated with N (r = 0.58), P (r = 0.63) and Cu (r =  – + 0.62) (Table S3). N depending on its form, i.e., as NO3  or NH4 , can affect Mn soil solubility  and shoot Mn uptake by altering rhizosphere pH [57]. The solubilization of higher Mn‐ oxides in soil is also facilitated by its organic matter content, and extreme heating and  drying [57]. Mn absorption also could be affected by other microelements due to a close  interaction of Mn nutrition and antioxidant metabolism in plants. This is because cytosolic  CuZn‐SOD and mitochondrial Mn‐SOD activities increase under conditions of Mn‐excess  as well as Mn‐starvation [58,59]. The main factor determining P and Mn availability and  solubility to plants is soil pH and P inactivation may occur also in calcareous soils due to  high concentration of Ca ions and high soil pH [60]. Our results confirm this notion since  P contents in the blade samples were below the nutritional optimum but did not reach  deficiency levels. Despite this, Mn levels in blades were above the optimal nutritional con‐ tent without reaching toxic levels for the plant. Both P and Mn ions are rather immobile  in soils implying that factors such as root length and root architecture, as well as rhizo‐ sphere processes, have a major impact on their availability for plants [61]. High soil P  resulted in elevated plant P status which interfered in the uptake and/or translocation of  Mn [62]. Similar to this, a negative effect of high P levels on Mn accumulation was shown  and it is suggested that P interferes directly with Mn at the uptake and/or translocation  level [63]. However, despite these findings, it is likely that under the edaphoclimatic con‐ ditions of our study, there is a positive relationship between P and Mn accumulation due  to the high soil pH that limit P availability and absorption, triggering a greater absorption  of Mn by grapevines. R32 rootstock may be suitable under these conditions since it pro‐ motes a high P and Mn accumulation compared to rest of studied rootstocks independent  of the weather conditions of the season. In addition, rootstocks that presents V. rupestris  and V. berlandieri genetic background may have acquired efficient mechanisms to increase  P acquisition or use in response to the limited‐P environment since they are native from  the south of the USA, particularly where soils are calcareous and often deficient in P due  Agronomy 2021, 11, 327  12  of  16  to precipitation of calcium phosphate [49]. Thereby, 140 Ru and 1103 P rootstocks can also  be interesting alternatives to both grapevines varieties under study to be grafted.  The highest accumulation of Ca and Mg was determined in R32 rootstocks that was  heightened in the 2017–18 season. Ca accumulation could have a key role in the osmotic  adjustment of grape leaves as other inorganic ions such as K [64,65]. Some authors show  an increase in calcium oxalate crystals in leaves of grapevines cultivated under drought  conditions, suggesting that these structures in the mesophyll could either play a functional  role in water stress and Ca regulation, or represent an unintended result of increased Ca  accumulation  [64,66].  Our  results  showed  that  during  the  warmest  season,  rootstocks  showed lower Ca accumulation with the exception of R32, than the rest of the rootstock  and season interactions (Table 3). During the cooler season, R32 rootstock showed the  highest accumulation of Ca and Mg (Table 3). This caused a lower K/Ca and K/Ca+Mg  ratios in the R32 rootstock, and that Harmony reached the highest values of the exposed  ratios in the warmer season (Table S2). The nutrient antagonism is produced when an  excessive concentration of one nutrient inhibits the uptake of another [67]. Because K, Ca  and Mg have similar charged ionic forms, and are taken up in a similar way, the absorp‐ tion of high amounts of one nutrient may inhibit the uptake of another nutrient. García et  al. [33] showed that K to Ca and K to Mg antagonisms were well expressed in Négrette  (V. vinifera) varieties grafted onto different rootstocks. In their study, 3309 C (Riparia to‐ menteaux × Rupestris martin) induced the lowest K level in leaves and SO4 (V. berlandieri ×  V. riparia) absorbed K more readily than 101–14 Mgt (V. riparia × V. rupestris), suggesting  that 3309 C appears to be the most appropriate rootstock for Négrette variety [33]. There‐ fore, based upon our results, for both autochthonous varieties under study, R32 rootstock  and to a lesser extent, the 1103 P and 140 Ru rootstocks can be interesting alternatives to  keep balanced levels of nutrients under the hyper‐arid conditions of Northern Chile. On  the other hand, the use of Harmony rootstock displayed noticeable nutritional imbalances,  especially due to its low absorption of Mg, Mn, Ca and P and its high absorption of K,  which  is  exacerbated  under  warm  weather  and  soil  salinity  conditions.  Moreover,  Ibacache et al. [21] reported that Harmony accumulated more chloride than 1613 Couderc,  Freedom, 1103 Paulsen, 110 Richter, 99 Richter, 140 Ruggeri, SO4, Salt Creek and Saint  George in blade petioles. The higher chloride concentration in petioles at full flowering  stage of Flame Seedless and Muscat of Alexandria growing on their own roots compared  to grafted grapevines may reflect the poor capacity of V. vinifera grapevines for chloride  exclusion [21]. Consequently, monitoring of these nutrients is critical to nutritional man‐ agement of grapevines grafted onto Harmony rootstock. Novel determinations regarding  nutritional requirements of grapevine, will rise to integrated sustainable practices, con‐ sidering developmental periods in which grapevine needs more P, such as the flowering  stage, or more N at the first berry expansion stage, less nutrient at the seed stone harden‐ ing stage, and more P and K at the second berry expansion stage and veraison stage [68].  Also,  roots  are  still able  to  respond to  temperature  and  hypoxia  in the  absence  of the  known perception mechanisms for the corresponding stress, and some authors hypothe‐ size that this is also the case for sodium sensing leading to sodium‐ specific growth away  from high salinity, and root directional growth is caused by asymmetrical PIN2 distribu‐ tion during hypoxia and halotropism [69].  Water scarcity and salinity, along with high temperature will impose more frequent  and severe drought and stress events. Under this perspective, water management will  play a major role, but taking care of avoiding eventual salinity problems. In areas with  water scarcity such as Northern Chile, more efficient rootstocks and scions will be the best  option, always combined with appropriate soil and canopy management [70]. Improved  knowledge of structure and function of grapevine roots and rhizosphere in different soils,  climates and under diverse agronomical practices may provide a wider range of solutions  to cope with the challenges associated to global change. In this regard, the genetic diver‐ sity hosted in Vitis ssp. can provide new functional abilities [70,71], necessary to match  Agronomy 2021, 11, 327  13  of  16  specific clone/cultivar/rootstock/site combinations. Finally, our results may provide a nu‐ tritional guide for the viticulturists and growers of Northern Chile and to bring the possi‐ bility to diversify their production using these minority and autochthonous varieties that  adapt well to the edaphoclimatic conditions of hyper‐arid Northern Chile.  Supplementary Materials: The following materials are available online at www.mdpi.com/2073‐ 4395/11/2/327/s1, Table S1: Interactions between varieties (V) and rootstocks (R), Table S2: Interac‐ tions between rootstocks (R) and seasons (S), Table S3: Pearson’s correlation obtained from Principal  Component Analysis (Figure 3).  Author Contributions: Conceptualization, N.V.‐V. and A.Z.‐S.; methodology, N.V.‐V. and E.V.‐S.;  formal analysis, E.V.‐S.; data collection, N.V.‐V. and E.V.‐S.; resources A.Z.‐S.; data curation, N.V.‐ V. and E.V.‐S.; writing—original draft preparation, N.V.‐V. and G.G.‐G.; writing—review and edit‐ ing, G.G.‐G. N.V.‐V., E.V.‐S. and A.Z.‐S.; project administration, N.V.‐V. and A.Z.‐S.; funding acqui‐ sition, N.V.‐V. and A.Z.‐S. All authors have read and agreed to the published version of the manu‐ script.  Funding: This research was funded by Agencia Nacional de Investigación y Desarrollo ANID–Post‐ doctoral Fondecyt [Grant Number 3180252 2018/INIA], and support of Instituto de Investigaciones  Agropecuarias—INIA.  Data Availability Statement: The data presented in this study are available on request from the  corresponding author.  Acknowledgments: Authors are grateful to Antonio Ibacache, María Isabel Rojas, Cristian Gonzá‐ lez, Elizabeth Pastén and Marco Cabrera for their valuable technical support.  Conflicts of Interest: The authors declare no conflict of interest.  References  1. Pszczólkowski, P.; Lacoste, P. Native varieties, an opportunity for Chilean pisco. Rev. Fac. Ciencias Agrar. 2016, 48, 239–251.  2. Banks, G.; Overton, J. Old world, new world, third world? Reconceptualising the worlds of wine. J. Wine Res. 2010, 21, 57–75,  doi:10.1080/09571264.2010.495854.  3. Mora, G.M. The Chilean wine industry. In The Palgrave Handbook of Wine Industry Economics; Ugaglia, A.A., Cardebat, J.M., Corsi,  A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 177–200.  4. SAG. Catastro Vitícola Nacional. Available online: http://www.sag.cl/ambitos‐de‐accion/catastro‐viticola‐nacional/1490/publi‐ caciones (accessed on 30 November 2020).  5. Mitchell,  J.T.;  Terry,  W.C.  Contesting  pisco:  Chile,  Peru,  and  the  politics  of  trade.  Geogr.  Rev.  2011,  101,  518–535,  doi:10.1111/j.1931‐0846.2011.00115.x.  6. Agosin, E.; Belancic, A.; Ibacache, A.; Baumes, R.; Bordeu, E. Aromatic potential of certain Muscat grape varieties important for  Pisco production in Chile. Am. J. Enol. Vitic. 2000, 51, 404–408.  7. Belancic, A.; Agosin, E.; Ibacache, A.; Bordeu, E.; Baumes, R.; Razungles, A.; Bayonove, C. Influence of sun exposure on the  aromatic composition of Chilean Muscat grape cultivars Moscatel de Alejandría and Moscatel Rosada. Am. J. Enol. Vitic. 1997,  48, 181–186.  8. Martínez‐Pinilla, O.; Martínez‐Lapuente, L.; Guadalupe, Z.; Ayestarán, B. Sensory profiling and changes in colour and phenolic  composition produced by malolactic fermentation in red minority varieties. Food Res. Int. 2012, 46, 286–293, doi:10.1016/j.food‐ res.2011.12.030.  9. García‐Carpintero, E.G.; Sánchez‐Palomo, E.; Gallego, M.A.G.; González‐Viñas, M.A. Volatile and sensory characterization of  red wines from cv. Moravia Agria minority grape variety cultivated in La Mancha region over five consecutive vintages. Food  Res. Int. 2011, 44, 1549–1560, doi:10.1016/j.foodres.2011.04.022.  10. Gutiérrez‐Gamboa, G.; Moreno‐Simunovic, Y. Terroir and typicity of Carignan from Maule Valley (Chile): The resurgence of a  minority variety. OENO One 2019, 53, 75–93, doi:10.20870/oeno‐one.2019.53.1.2348.  11. Gutiérrez‐Gamboa, G.; Liu, S.; Pszczólkowski, P. Resurgence of minority and autochthonous grapevine varieties in South Amer‐ ica: A review of their oenological potential. J. Sci. Food Agric. 2020, 100, 465–482, doi:10.1002/jsfa.10003.  12. Liang, N.N.; Pan, Q.H.; He, F.; Wang, J.; Reeves, M.J.; Duan, C.Q. Phenolic profiles of Vitis davidii and Vitis quinquangularis  species native to China. J. Agric. Food Chem. 2013, 61, 6016–6027, doi:10.1021/jf3052658.  13. Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho‐Pereira, J.; Dinis, L.‐T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Cos‐ tafreda‐Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for European viticulture.  Appl. Sci. 2020, 10, 3092, doi:10.3390/APP10093092.  14. Van Leeuwen, C.; Destrac‐Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier,  L.;  Ollat,  N.  An  update  on  the  impact  of  climate  change  in  viticulture  and  potential  adaptations.  Agronomy  2019,  9,  514,  Agronomy 2021, 11, 327  14  of  16  doi:10.3390/agronomy9090514.  15. Gutiérrez‐Gamboa, G.; Zheng, W.; Martínez de Toda, F. Strategies in vineyard establishment to face global warming in viticul‐ ture: A mini review. J. Sci. Food Agric. 2020, doi:10.1002/jsfa.10813.  16. Carrasco‐Quiroz, M.; Martínez‐Gil, A.M.; Gutiérrez‐Gamboa, G.; Moreno‐Simunovic, Y. Effect of rootstocks on volatile compo‐ sition of Merlot wines. J. Sci. Food Agric. 2020, doi:10.1002/jsfa.10395.  17. Rubio, B.; Lalanne‐Tisné, G.; Voisin, R.; Tandonnet, J.P.; Portier, U.; Van Ghelder, C.; Lafargue, M.; Petit, J.P.; Donnart, M.;  Joubard, B.; et al. Characterization of genetic determinants of the resistance to phylloxera, Daktulosphaira vitifoliae, and the dag‐ ger nematode Xiphinema index from muscadine background. BMC Plant Biol. 2020, 20, 213, doi:10.1186/s12870‐020‐2310‐0.  18. Vincent, C.; Isaacs, R.; Bostanian, N.J.; Lasnier, J. Principles of arthropod pest management in vineyards. In Arthropod Manage‐ ment in Vineyards: Pests, Approaches, and Future Directions; Bostanian, N.J., Charles, V., Isaacs, E., Eds.; Springer: Dordrecht, The  Netherlands, 2012; pp. 1–16.  19. Franck, N.; Zamorano, D.; Wallberg, B.; Hardy, C.; Ahumada, M.; Rivera, N.; Montoya, M.; Urra, C.; Meneses, C.; Balic, I.; et al.  Contrasting grapevines grafted into naturalized rootstock suggest scion‐ driven transcriptomic changes in response to water  deficit. Sci. Hortic. 2019, 262, 109031, doi:10.1016/j.scienta.2019.109031.  20. Ibacache, A.; Sierra, C. Influence of rootstocks on nitrogen, phosphorus and potassium content in petioles of four table grape  varieties. Chil. J. Agric. Res. 2009, 69, 503–508, doi:10.4067/S0718‐58392009000400004.  21. Ibacache, A.; Verdugo‐Vásquez, N.; Zurita‐Silva, A. Rootstock: Scion combinations and nutrient uptake in grapevines. In Fruit  Crops: Diagnosis and Management of Nutrient Constraints; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands,  2020; pp. 297–316.  22. Gutiérrez‐Gamboa, G.; Gómez‐Plaza, E.; Bautista‐Ortín, A.B.; Garde‐Cerdán, T.; Moreno‐Simunovic, Y.; Martínez‐Gil, A.M.  Rootstock effects on grape anthocyanins, skin and seed proanthocyanidins and wine color and phenolic compounds from Vitis  vinifera L. Merlot grapevines. J. Sci. Food Agric. 2019, 99, 2846–2854, doi:10.1002/jsfa.9496.  23. Aballay, E.; Prodan, S.; Correa, P.; Allende, J. Assessment of rhizobacterial consortia to manage plant parasitic nematodes of  grapevine. Crop Prot. 2020, 131, 105103, doi:10.1016/j.cropro.2020.105103.  24. Ibacache, A.; Albornoz, F.; Zurita‐Silva, A. Yield responses in Flame seedless, Thompson seedless and Red Globe table grape  cultivars are differentially modified by rootstocks under semi arid conditions. Sci. Hortic. 2016, 204, 25–32, doi:10.1016/j.sci‐ enta.2016.03.040.  25. Bavestrello‐Riquelme, C.; Cavieres, L.; Gallardo, J.; Ibacache, A.; Franck, N.; Zurita‐Silva, A. Evaluación de la tolerancia a estrés  por  sequía  en  cuatro  genotipos  naturalizados  de  vid  (Vitis  vinifera)  provenientes  del  norte  de  Chile.  Idesia  2012,  30,  83–92,  doi:10.4067/S0718‐34292012000300011.  26. Milla‐Tapia, A.; Gómez, S.; Moncada, X.; León, P.; Ibacache, A.; Rosas, M.; Carrasco, B.; Hinrichsen, P.; Zurita‐Silva, A. Natu‐ ralised grapevines collected from arid regions in Northern Chile exhibit a high level of genetic diversity. Aust. J. Grape Wine Res.  2013, 19, 299–310, doi:10.1111/ajgw.12020.  27. Jones, G.V. Climate and terroir: Impacts of climate variability and change on wine. GeoSci. Can. 2005, 9, 1–14.  28. Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape‐growing regions worldwide. Agric. For. Me‐ teorol. 2004, 124, 81–97, doi:10.1016/j.agrformet.2003.06.001.  29. Huglin, P. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Compt. Rend. Acad. Agric. Fr. 1978,  64, 1117–1126, doi:10.4236/ojog.2018.813145.  30. Amerine, M.A.; Winkler, A.J. Composition and quality of musts and wines of California grapes. Hilgardia 1944, 15, 493–675,  doi:10.3733/hilg.v15n06p493.  31. Jarvis, C.; Barlow, E.; Darbyshire, R.; Eckard, R.; Goodwin, I. Relationship between viticultural climatic indices and grape ma‐ turity in Australia. Int. J. Biometeorol. 2017, 61, 1849–1862, doi:10.1007/s00484‐017‐1370‐9.  32. Nikolaou, N.; Koukourikou, M.A.; Karagiannidis, N. Effects of various rootstocks on xylem exudates cytokinin content, nutrient  uptake  and  growth  patterns  of  grapevine  Vitis  vinifera  L.  cv.  Thompson  seedless.  Agronomie  2000,  20,  363–373,  doi:10.1051/agro:2000133.  33. Garcia, M.; Gallego, P.; Daverède, C.; Ibrahim, H. Effect of three rootstocks on grapevine (Vitis vinifera L.) cv. Négrette, grown  hydroponically. I. Potassium, calcium and magnesium nutrition. S. Afr. J. Enol. Vitic. 2001, 22, 101–103, doi:10.21548/22‐2‐2202.  34. Keller, M. The Science of Grapevines, Anatomy and Physiology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2020.  35. Sierra, C.; Lancelloti, A.; Vidal, I. Elemental sulphur as pH and soil fertility amendment for some Chileans soils of Regions III  and IV. Agric. Técnica 2007, 67, 173–181, doi:10.4067/S0365‐28072007000200007.  36. Machado, R.; Serralheiro, R. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil  salinization. Horticulturae 2017, 3, 30, doi:10.3390/horticulturae3020030.  37. Pistocchi, C.; Ragaglini, G.; Colla, V.; Branca, T.A.; Tozzini, C.; Romaniello, L. Exchangeable sodium percentage decrease in  saline  sodic  soil  after  basic  oxygen  furnace  slag  application  in  a  lysimeter  trial.  J.  Environ.  Manag.  2017,  203,  896–906,  doi:10.1016/j.jenvman.2017.05.007.  38. Robinson, J.B. Critical Plant Tissue Values and Application of Nutritional Standards for Practical Use in Vineyards, Proceedings of the  Soil Environment and Vine Mineral Nutrition Symposium, San Diego, CA, USA, 29–30 June 2004; Smart, D.R., Christensen, L.P., Eds.;  The American Society for Enology and Viticulture: Davis, CA, USA, 2005; pp. 61–68.  39. Hafeez,  B.;  Khanif,  Y.M.;  Saleem,  M.  Role  of  zinc  in  plant  nutrition—A  review.  Am.  J.  Exp.  Agric.  2013,  3,  374–391,  doi:10.9734/ajea/2013/2746.  Agronomy 2021, 11, 327  15  of  16  40. Song, C.; Yan, Y.; Rosado, A.; Zhang, Z.; Castellarin, S.D. ABA alleviates uptake and accumulation of zinc in grapevine (Vitis  vinifera  L.)  by  inducing  expression  of  ZIP  and  detoxification‐related  genes.  Front.  Plant  Sci.  2019,  10,  872,  doi:10.3389/fpls.2019.00872.  41. Gainza‐Cortés, F.; Pérez‐Dïaz, R.; Pérez‐Castro, R.; Tapia, J.; Casaretto, J.A.; González, S.; Peña‐Cortés, H.; Ruiz‐Lara, S.; Gon‐ zález, E. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive de‐ velopment in Vitis vinifera L. BMC Plant Biol. 2012, 12, 1–13, doi:10.1186/1471‐2229‐12‐111.  42. Christensen, P.; Jensen, F.L. Grapevine response to concentrate and to dilute application of two zinc compounds. Am. J. Enol.  Vitic. 1978, 29, 213–216.  43. Vasconcelos, M.C.; Greven, M.; Winefield, C.S.; Trought, M.C.T.; Raw, V. The flowering process of Vitis vinifera: A review. Am.  J. Enol. Vitic. 2009, 60, 411–434.  44. Sabir, A.; Sari, G. Zinc pulverization alleviates the adverse effect of water deficit on plant growth, yield and nutrient acquisition  in grapevines (Vitis vinifera L.). Sci. Hortic. 2019, 244, 61–67, doi:10.1016/j.scienta.2018.09.035.  45. Milla‐Tapia, A.; Cabezas, J.A.; Cabello, F.; Lacombe, T.; Martínez‐Zapater, J.M.; Hinrichsen, P.; Cervera, M.T. Determining the  Spanish origin of representative ancient american grapevine varieties. Am. J. Enol. Vitic. 2007, 58, 242–251.  46. Verdugo‐Vásquez, N.; Zurita‐Silva, A. Potencial Productivo y Enologico de Variedades Pisqueras no Tradicionales; Instituto de Inves‐ tigaciones Agropecuarias: La Serena, Chile, 2020; p. 76.  47. Verdenal, T.; Spangenberg, J.E.; Zufferey, V.; Dienes‐Nagy, Á.; Viret, O.; Van Leeuwen, C.; Spring, J.L. Impact of crop load on  nitrogen uptake and reserve mobilisation in Vitis vinifera. Funct. Plant Biol. 2020, 47, 744, doi:10.1071/FP20010.  48. Toumi, M.; Nedjimi, B.; Halitim, A.; Garcia, M. Effects of K‐Mg ratio on growth and cation nutrition of Vitis vinifera L. cv.  “Dattier de Beiruth” grafted on SO4 rootstock. J. Plant Nutr. 2016, 39, 904–911, doi:10.1080/01904167.2015.1087564.  49. Gautier, A.T.; Cookson, S.J.; Lagalle, L.; Ollat, N.; Marguerit, E. Influence of the three main genetic backgrounds of grapevine  rootstocks  on  petiolar  nutrient  concentrations  of  the  scion,  with  a  focus  on  phosphorus.  OENO  One  2020,  54,  1–13,  doi:10.20870/oeno‐one.2020.54.1.2458.  50. Ksouri, R.; Gharsalli, M.; Lachaal, M. Physiological responses of Tunisian grapevine varieties to bicarbonate‐induced iron defi‐ ciency. J. Plant Physiol. 2005, 162, 335–341, doi:10.1016/j.jplph.2004.06.011.  51. Bascuñán‐Godoy, L.; Franck, N.; Zamorano, D.; Sanhueza, C.; Carvajal, D.E.; Ibacache, A. Rootstock effect on irrigated grape‐ vine yield under arid climate conditions are explained by changes in traits related to light absorption of the scion. Sci. Hortic.  2015, 218, 284–292, doi:10.1016/j.scienta.2017.02.034.  52. Christensen, L.P. Rootstock selection. In Wine Grape Varieties in California; Christensen, L.P., Dokoozlian, N.K., Walker, M.A.,  Wolpert, J.A., Eds.; ANR Pub 3419; UC Agriculture and Natural Resource: Oakland, CA, USA, 2003; pp 12–15.  53. Rogiers, S.Y.; Greer, D.H.; Moroni, F.J.; Baby, T. Potassium and magnesium mediate the light and CO2 photosynthetic responses  of grapevines. Biology 2020, 9, 1–19, doi:10.3390/biology9070144.  54. Rogiers, S.Y.; Coetzee, Z.A.; Walker, R.R.; Deloire, A.; Tyerman, S.D. Potassium in the grape (Vitis vinifera L.) berry: Transport  and function. Front. Plant Sci. 2017, 8, 1629, doi:10.3389/fpls.2017.01629.  55. Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011.  56. Pradubsuk, S.; Davenport, J.R. Seasonal distribution of micronutrients in mature ‘Concord’ grape: Boron, iron, manganese,  copper, and zinc. J. Am. Soc. Hortic. Sci. 2011, 136, 69–77.  57. Fernando, D.R.; Lynch, J.P. Manganese phytotoxicity: New light on an old problem. Ann. Bot. 2015, 116, 313–319.  58. Shenker, M.; Plessner, O.E.; Tel‐Or, E. Manganese nutrition effects on tomato growth, chlorophyll concentration, and superox‐ ide dismutase activity. J. Plant Physiol. 2004, 161, 197–202, doi:10.1078/0176‐1617‐00931.  59. Ducic, T.; Polle, A. Transport and detoxification of manganese and copper in plants. Braz. J. Plant Physiol. 2005, 17, 103–112,  doi:10.1590/S1677‐04202005000100009.  60. Slunjski, S.; Coga, L.; Herak Ćustić, M.; Petek, M.; Spoljar, A. Phosphorus, manganese and iron ratios in grapevine (Vitis vinifera  L.) leaves on acid and calcareous soils. Acta Hortic. 2012, 938, 299–306, doi:10.17660/ActaHortic.2012.938.39.  61. Raghothama, K.G.; Karthikeyan, A.S. Phosphate acquisition. Plant Soil 2005, 274, 37–49, doi:10.1007/s11104‐004‐2005‐6.  62. Nielsen, D.; Nielsen, G.H.; Sinclair, A.H.; Linehan, D.J. Soil phosphorus status, pH and the manganese nutrition of wheat on  JSTOR. Plant Soil 1992, 145, 45–50.  63. Pedas, P.; Husted, S.; Skytte, K.; Schjoerring, J.K. Elevated phosphorus impedes manganese acquisition by barley plants. Front.  Plant Sci. 2011, 2, 37, doi:10.3389/fpls.2011.00037.  64. Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The physiology of drought stress in grapevine:  Towards an integrative definition of drought tolerance. J. Exp. Bot. 2020, 71, 4658–4676, doi:10.1093/jxb/eraa245.  65. Degu, A.; Hochberg, U.; Wong, D.C.J.; Alberti, G.; Lazarovitch, N.; Peterlunger, E.; Castellarin, S.D.; Herrera, J.C.; Fait, A. Swift  metabolite changes and leaf shedding are milestones in the acclimation process of grapevine under prolonged water stress.  BMC Plant Biol. 2019, 19, 1–17, doi:10.1186/s12870‐019‐1652‐y.  66. Doupis, G.; Bosabalidis, A.M.; Patakas, A. Comparative effects of water deficit and enhanced UV‐B radiation on photosynthetic  capacity  and  leaf  anatomy  traits  of  two  grapevine  (Vitis  vinifera  L.)  cultivars.  Theor.  Exp.  Plant  Physiol.  2016,  28,  131–141,  doi:10.1007/s40626‐016‐0055‐9.  67. Senbayram, M.; Gransee, A.; Wahle, V.; Thiel, H. Role of magnesium fertilisers in agriculture: Plant–soil continuum. Crop Pasture  Sci. 2015, 66, 1229, doi:10.1071/CP15104.  68. Zhang, C.; Jia, H.; Zeng, J.; Perraiz, T.; Xie, Z.; Zhu, X.; Wang, C. Fertilization of grapevine based on gene expression. Plant  Agronomy 2021, 11, 327  16  of  16  Genome 2016, 9, doi:10.3835/plantgenome2015.09.0083.  69. Lamers, J.; van der Meer, T.; Testerink, C. How plants sense and respond to stressful environments. Plant Physiol. 2020, 182,  1624–1635, doi:10.1104/PP.19.01464.  70. Marín, D.; Armengol, J.; Carbonell‐Bejerano, P.; Escalona, J.M.; Gramaje, D.; Hernández‐Montes, E.; Intrigliolo, D.S.; Martínez‐ Zapater, J.M.; Medrano, H.; Mirás‐Avalos, J.M.; et al. Challenges of viticulture adaptation to global change: Tackling the issue  from the roots. Aust. J. Grape Wine Res. 2021, 27, 8–25, doi:10.1111/ajgw.12463.  71. Gutiérrez‐Gamboa, G.; Zheng, W.; Martínez de Toda, F. Current viticultural techniques to mitigate the effects of global warming  on grape and wine quality: A comprehensive review. Food Res. Int. 2021, 139, 109946, doi:10.1016/j.foodres.2020.109946.  http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agronomy Multidisciplinary Digital Publishing Institute

Effects of Rootstocks on Blade Nutritional Content of Two Minority Grapevine Varieties Cultivated under Hyper-Arid Conditions in Northern Chile

Loading next page...
 
/lp/multidisciplinary-digital-publishing-institute/effects-of-rootstocks-on-blade-nutritional-content-of-two-minority-0UqviVlPUW

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Multidisciplinary Digital Publishing Institute
Copyright
© 1996-2021 MDPI (Basel, Switzerland) unless otherwise stated Disclaimer The statements, opinions and data contained in the journals are solely those of the individual authors and contributors and not of the publisher and the editor(s). MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Terms and Conditions Privacy Policy
ISSN
2073-4395
DOI
10.3390/agronomy11020327
Publisher site
See Article on Publisher Site

Abstract

Article  Effects of Rootstocks on Blade Nutritional Content   of Two Minority Grapevine Varieties Cultivated   under Hyper‐Arid Conditions in Northern Chile  1 2 1 1, Nicolás Verdugo‐Vásquez  , Gastón Gutiérrez‐Gamboa  , Emilio Villalobos‐Soublett   and Andrés Zurita‐Silva  *    Centro de Investigación Intihuasi, Instituto de Investigaciones Agropecuarias INIA, Colina San Joaquín s/n,  La Serena 1700000, Chile; nicolas.verdugo@inia.cl (N.V.‐V.); emilio.villalobos@inia.cl (E.V.‐S.)    Facultad de Ciencias Agrarias, Universidad de Talca, 2 Norte 685, Casilla 747, Talca 346000, Chile;   ggutierrezg@utalca.cl  *  Correspondence: andres.zurita@inia.cl  Abstract: In the 90s, as in other countries, transformation of Chilean viticulture brought about the  introduction and spread of European grapevine varieties which has resulted in a massive loss of  minor local and autochthonous grapevine varieties traditionally grown in several wine growing  regions. Fortunately, in recent years, autochthonous and minority varieties have been revalued due  to their high tolerance to pests and diseases and because of their adaptation to thermal and water  stress triggered by global warming. In this study, we assessed the nutritional status of two autoch‐ thonous grapevines grafted onto four different rootstocks under the hyper‐arid climatic conditions  of Northern Chile over three consecutive seasons. The results showed that R32 rootstock induced  high N, P, Ca, Mg and Mn levels in blades compared to Harmony rootstock. R32 rootstock and to a  Citation: Verdugo‐Vásquez, N.;  lesser extent, 1103 Paulsen and 140 Ruggeri rootstocks kept balanced levels of nutrients in blades  Gutiérrez‐Gamboa, G.; Villalobos‐ collected from Moscatel Amarilla and Moscatel Negra grapevine varieties. Additionally, Harmony  Soublett, E.; Zurita‐Silva, A. Effects  presented slight nutritional imbalance compared to the rest of studied rootstocks due to its low  of Rootstocks on Blade Nutritional  absorption of Mg, Mn, Ca and P, and its high K absorption, which was exacerbated under warm  Content of Two Minority Grapevine  weather and salinity soil conditions. These results may provide a basis for specific cultivar/root‐ Varieties Cultivated under   stock/site combinations, a nutritional guide for the viticulturists of Northern Chile, and options to  Hyper‐Arid Conditions in Northern  diversify their production favoring the use of minority and autochthonous varieties that adapt well  Chile. Agronomy 2021, 11, 327.  to hyper‐arid conditions of Northern Chile.  https://doi.org/10.3390/  agronomy11020327  Keywords:  Vitis  vinifera;  V.  berlandieri;  autochthonous;  Moscatel  Amarilla;  Moscatel  Negra;  V.  Academic Editor: Marco Landi  rupestris  Received: 31 December 2020    Accepted: 5 February 2021  Published: 12 February 2021  1. Introduction  Publisher’s Note: MDPI stays neu‐ The role of grape varieties is increasingly important in worldwide wine products,  tral with regard to jurisdictional  both wines and spirits [1]. The strategy of new world wine countries has appealed to the  claims in published maps and insti‐ relevance of varietal wines as the axis of their production and marketing strategy, while  tutional affiliations.  European wine industry emphasize their terroir and their thousand‐year wine‐making  history [1,2]. Currently, Chile has around 137,000 ha of vine cultivation surface distributed  between the Coquimbo (30.0° SL) and Araucanía (38.7° SL) regions, although there are  some experiences that are expanding the wine‐growing areas in Southern Araucanía and  Copyright: © 2021 by the authors. Li‐ censee  MDPI,  Basel,  Switzerland.  Northern Coquimbo [3]. The Chilean wine industry is rather concentrated and strongly  This article  is an open access article  export oriented. In this fashion, wine exports represent more than 1800 million dollars  distributed under the terms and con‐ and represent more than 80% of wine produced, reaching more than 130 countries [3]. The  ditions of the Creative Commons At‐ most cultivated grapevine varieties in Chile are Cabernet Sauvignon (30.0%), Sauvignon  tribution (CC BY) license (http://crea‐ Blanc  (11.2%),  Merlot  (8.6%),  Chardonnay  (8.2%),  Carménère  (7.8%)  and  Listán  Prieto  tivecommons.org/licenses/by/4.0/).  (7.5%), mainly intended for wine elaboration [4].  Agronomy 2021, 11, 327. https://doi.org/10.3390/agronomy11020327  www.mdpi.com/journal/agronomy  Agronomy 2021, 11, 327  2  of  16  Pisco is a brandy produced in wine‐growing regions of Chile and Peru that is pro‐ duced by distilling fermented grape juice [5]. In Chile, Pisco has been recognized, delim‐ ited and protected by the State as Denomination of Origin since 1931, and has managed  to sustain itself as an emblematic national beverage until today [1]. Pisco‐oriented grape  production is restricted to northern Chile from the desert fringe to the agricultural valleys  between Copiapó and Choapa rivers [6]. Today, 9150 ha of Pisco vineyards are planted in  Atacama (5.8%) and Coquimbo (94.2) regions, representing 6.3% of the country’s total  vineyards, about 1.3% less than a decade ago [1,6]. The Muscat grape yield in Northern  Chile is dedicated almost exclusively to Pisco production [6,7] as is shown in Figure 1.  Pszczólkowski and Lacoste [1] reported that the varieties used for Pisco production in  Chile correspond to Moscatel de Alejandría and native varieties, with low percentages of  European varieties. Based upon these findings, these authors proposed to define the Chil‐ ean Pisco as an Andean spirit made from native and historical varieties from Spanish col‐ ony, which would position the Chilean pisco to the Andean territory by traditional and  genetic material.  Figure 1. Varieties cultivated in Northern Chile intended for Pisco elaboration (in percentage).  Moscatel Amarilla: 166.0 ha; Moscatel Blanca: 15.9 ha; Moscatel de Alejandría: 1711.2 ha; Moscatel  Negra: 0.68 ha; Moscatel Rosada: 1630.3 ha; Pedro Jiménez: 4298.9 ha; Torontel: 179.41 ha. Figure  elaborated based onto the data provided by SAG [4].  The introduction and spread of recognized European varieties over the last few dec‐ ades have caused a massive loss of autochthonous and minor locally grown grapes tradi‐ tionally grown in different wine regions [8–12]. The current varietal homogenization of  the vineyards results in an increase in genetic vulnerability in relation to pathogen spread  against which some cultivars are not resistant [10]. Fortunately, in recent years there is a  significant revaluation of autochthonous and minor locally grown varieties worldwide  because they can become a potential source of natural adaptation to current challenges of  climate change in viticulture [13–15]. This opens up an interesting possibility of evaluating  autochthonous and minor locally grown varieties for the viticultural development of each  productive zone.  Chilean viticulture has been developed for centuries with ungrafted vineyards be‐ cause there is no presence of phylloxera (Daktulosphaira vitifoliae) [16–18]. Due to this, there  is limited local experience in the use of rootstocks in viticulture for wine grapes [16,19– 22]. However, during the last years, plant‐parasitic nematodes have become a main pro‐ ductive constraint in the Chilean viticulture [23]. Rootstock adoption in Chile is justified  not only by the resistance against nematodes or the need to replace old or unproductive  vineyards, but also by the need to overcome soil and water restraints, especially in the  arid Northern Chile [16,19,21,24].  Agronomy 2021, 11, 327  3  of  16  To our knowledge, there are no published reports regarding the vegetative behaviour  of minor locally grown or autochthonous varieties grafted onto different rootstocks in hy‐ per‐arid conditions to date, much less about their nutritional status. Grapevine nutritional  management is a fundamental issue for winegrowers in Northern Chile, since soils are  saline and the absorption of Mg, Ca and other nutrients may be affected. The varieties  such as Moscatel Amarilla and Moscatel Negra are minority and autochthonous varieties  distributed only in Northern  Chile  that  deserve to be investigated. An early study re‐ ported that Moscatel Amarilla variety produces grapes with high levels of free terpenes  levels and it could become a great alternative for the Chilean Pisco production [6]. In ad‐ dition, to date there are no published studies concerning Moscatel Negra variety. There‐ fore, the aim of this field trial was to evaluate nutritional status of Moscatel Amarilla and  Moscatel Negra grapevines grafted onto four different rootstocks under hyper‐arid cli‐ matic conditions over three consecutive seasons.  2. Materials and Methods  2.1. Characterization of Study Site, Plant Material and Experimental Design  The field trial was conducted in an experimental vineyard located at the Vicuña Ex‐ perimental Center belonging to the Instituto de Investigaciones Agropecuarias (INIA) (30°  02′S, 70°41′W, 630 m above sea level; Coquimbo region, Chile) in three consecutive seasons  (2017–18, 2018–19 and 2019–20). The climate of the area is classified as hyper‐arid, with an  average daily temperature of 16.1 °C and a mean annual rainfall of 100 mm that concen‐ trate in winter (June‐September). The vineyard soil is a sandy loam alluvial Entisol and  has a flat topography (<1%). The soil holds moderate depth (>50 cm), field capacity of  −1 −1 11.2% (v v ), permanent wilting point of 5.2% (v v ), pH value of 7.3 (calcareous soil), a  −1 1.5% percentage of organic matter, an electrical conductivity of 2.3 dS m  in saturated  paste.  Two Chilean autochthonous and minority grapevine varieties cv. Moscatel Amarilla  (synonyms: Torrontés and Torrontés Riojano) and cv. Moscatel Negra (synonym: Canela)  (Figure 2) were grafted onto three commercial rootstocks (1103 Paulsen, 140 Ruggeri and  Harmony) and one naturalized genotype (R32) selected in Northern Chile due to their  tolerance to water deficit [19,25,26]. The vineyard was established in the winter of 2016 in  a replanting soil previously planted with Vitis vinifera grapevines. The grapevines were  grafted using the Omega technique following the procedure described by Ibacache and  Sierra [20]. The grapevines were planted at spacing of 3 m × 3 m, trained on an overhead  trellis system and cane pruned leaving 4 to 5 nodes. Due to the low rainfall that is recorded  during the season (less than 100 mm) it is necessary to apply water through irrigation. In  this regard, the grapevines were drip irrigated using one irrigation line per row with emit‐ –1 ters supplying water at a rate of 4 l h  spaced at 1 m (3 emitters per plant). The reference  evapotranspiration during the three seasons varied between 1127 and 1162 mm (Septem‐ ber‐April). Field trial received a standard agronomic management used in commercial  vineyards in terms of irrigation, fertilization, pruning, pest and disease management in  each growing season. The fertilization program consisted of applications of N, P2O5 and  −1 K2O (90, 50, 70 kg ha  respectively) by means of fertigation in the spring and early sum‐ −1 mer. Nutritional content of the soil at the beginning of the study was 40 mg kg  of avail‐ −1 −1 able N, 8 mg kg  of available P and 105 mg kg  of available K.  Agronomy 2021, 11, 327  4  of  16  ab Figure 2. Clusters of autochthonous varieties not used commercially and authorized for the pro‐ duction of Pisco in accordance with Chilean alcohol regulation. (a) Moscatel Amarilla. (b) Mosca‐ tel Negra.  Both varieties grafted onto four rootstocks were assigned in a completely random‐ ized design at planting. The experimental design consisted in four treatments per varieties  with three replicates (blocks) of five grapevines each to cope for soil variability along the  vineyard. The description of the rootstocks under study is shown in Table 1.  Table 1. Description and abbreviations of the rootstocks selected in this field trial.  1  Rootstock  Abbreviation  Pedigree  Origin  1103 Paulsen  1103 P  V. berlandieri × V. rupestris  Italy  140 Ruggeri  140 Ru  V. berlandieri × V. rupestris  Italy  Couderc 1613 × V. champinii (Dog  Harmony  Harmony  USA  Ridge)  R32  R32  V. vinifera  Chile   V: Vitis.  To characterize the vineyard climatic conditions in terms of temperature and precip‐ itation during the seasons, an automatic weather station (AWS) located at 100 m from the  experimental vineyard was utilized. Based on the data provided by the AWS, different  bioclimatic indices, such as Growing Season Temperature (GST), Cool Night index (CI),  Heliothermal index (HI), Growing Degree Days (GDD), Mean Spring Temperature Sum‐ mation (SON Mean), Maximum Spring Temperature Summation (SON Max) and the ac‐ cumulated  precipitation  from  May  (year  n)  to  April  (year  n+1),  were  calculated  as  is  shown in Table 2.  Table 2. Bioclimatic indices calculated each season under study.  HI (Heat  GDD (Heat  SON Mean  SON Max  PP May‐Apr  Season  GST (°C)  CI (°C)  Units)  Units)  (Heat Units)  (Heat Units)  (mm)  2017–18  18.1  8.6  2488  1727.0  1442.9  2391.3  236.3  2018–19  18.4  8.8  2573  1780.2  1533.4  2505.6  36.2  2019–20  18.8  10.5  2608  1855.6  1443.3  2402.2  7.9  30‐years  18.5  10.0  2409.7  1808.2  1493.2  2310.7  93.1  (mean)    GST: Growing Season Temperature [27]; CI: Cool Night Index [28]; HI: Heliothermal Index [29];  GDD: Growing Degree Days [30]; SON Mean: Mean Spring Temperature Summation [31]; SON  Max: Maximum Spring Temperature Summation [31]. PP May‐Apr: Accumulated precipitation  a  from May (year n) to April (year n+1).  Mean of 1985–2015 years.  Agronomy 2021, 11, 327  5  of  16  2.2. Measurements  Forty leaf blades per replicates were collected at veraison stage of each studied sea‐ son. The leaf blades were located on the opposite side to the bunches, fully expanded,  healthy, and without any symptom of nutritional deficiency. The samples were dried in  an oven at 65 °C until a constant mass was achieved, then samples were milled and sieved  through a 1 mm mesh. Then, concentration of macro (N, P, K, Ca and Mg) and micro (Zn,  Mn and Cu) nutrients were analysed at the Foliar Analysis Laboratory of Vicuña Experi‐ mental Centre. The Kjeldahl method was used to analyse N content of leaf blades accord‐ ing to methodology described by Nikolaou et al. [32]. The Olsen colorimetric method was  utilized to analyse P content in leaf blades using a Spectronic 21 spectrophotometer (Spec‐ tronic  Instruments,  Garforth,  UK) at  440  nm.  K  was  determined  by atomic absorption  spectrophotometry (Unicam 929, Unicam Ltd., Cambridge, UK) according to the method  described by Garcia et al. [33]. Ca and Mg were determined by atomic absorption. Zn, Mn  and Cu concentrations were analysed by sample calcination and atomic absorption spec‐ trophotometry.  Macronutrient  concentration  was  expressed  in  terms  of  percentage  (w  −1 w ), while micronutrients were expressed in ppm. In order to determine the effect of root‐ stocks on the relationship between different macronutrients, the following relationships  were calculated: (i) K to Ca ratio (K/Ca), (ii) K to Mg ratio (K/Mg) and (iii) K to Ca+Mg  ratio [K/(Ca + Mg)].  2.3. Statistical Analysis  The variables were analysed considering a completely randomized design with fac‐ torial arrangement, accounting two varieties, four rootstocks by three study seasons. Var‐ iables were subjected to an analysis of variance (ANOVA). The significance of the differ‐ ences was determined by Tukey’s test (p ≤ 0.05). Interactions between varieties‐rootstocks  and  rootstocks‐season  were  examined.  Additionally,  a  principal  component  analysis  (PCA)  was  performed  to  determine  relationships  among  variables  according  to  root‐ stocks.  Both  analyses  were  performed  using  the  Xlstat  Software  version  2020.3.1  (Addinsoft SARL, Paris, France).  3. Results  3.1. Weather Conditions  Among seasons, 2017–18 displayed lower Growing Season Temperature (GST) than  the rest of studied seasons (2018–19 and 2019–20) and the 30‐year average, calculated from  September 1st to end of March (Table 2). This caused a lower heat accumulation for the  2017–18 season than other seasons in terms of Heliothermal Index (HI), Growing Degree  Days (GDD), Mean Spring Temperature Summation (SON Mean) and Maximum Spring  Temperature Summation (SON Max). Cool Night index (CI) reached values below 12 in  all seasons allowing to classify them as very cool nights [28]. On the contrary, 2019–20  presented higher GST, CI and HI than 2017–18 and 2018–19 seasons. Concerning HI, all  seasons under analysis were classified as warm, including 30‐year average [29]. The sum  of daily temperature during spring (SON Mean) and the sum of daily maximum temper‐ ature (SON Max) were higher in 2018–19 than the rest of seasons and the 30‐year average.  Regarding precipitations, 2019–20 was an extremely dry season reaching a precipitation  of only 7.9 mm from May (year n) to April (year n+1), whereas the maximum level of  rainfall was reached during the 2017–18 season, quantifying 236.3 mm.  3.2. Blade Nutrient Content  3.2.1. Macronutrients  The Variety factor significantly influenced N, P and Mg blade content, whereas Root‐ stock and Season factors determined the content of all macronutrients in blades of Mos‐ catel Amarilla and Moscatel Negra grapevines growing under hyper‐arid conditions (Ta‐ ble 3). The variety and rootstock interaction influenced both N and K blade content while  Agronomy 2021, 11, 327  6  of  16  rootstock and season factor influenced Ca and Mg blade content (Table 3). Moscatel Am‐ arilla blades presented lower content of N and P, and higher Mg content than Moscatel  Negra samples (Table 3). Harmony induced lower N and P content in grapevine blades  than R32 rootstock (Table 3). In addition, Harmony determined the highest K and the  lowest Mg levels in blades in both varieties. R32 rootstock induced lower K content in  blades than 140 Ru and Harmony but stimulated the highest Ca and Mg content in blades  in both varieties. Blade samples in the 2017–18 season exhibited the lowest N, P and K  content, and the highest Ca and Mg levels in blades (Table 3). Moscatel Negra grafted onto  R32 showed higher N blade contents than most of the variety and rootstock interactions  with the exception of the blade samples obtained from Moscatel Negra grapevines grafted  onto 140 Ru and 1103 P (Supplementary Table 1). Blades from Moscatel Negra grapevines  grafted onto R32 showed the lowest K content. Blades from Moscatel Negra and Moscatel  Amarilla grapevines grafted onto Harmony showed higher K content than most of the  variety and rootstock interactions, with the exception of blades collected from Moscatel  Negra grafted onto 140 Ru. Normally, R32 rootstock in the 2017–18 season induced the  highest Ca and Mg content in blades. As a whole, Harmony rootstock in 2019–20 season  induced lowest Ca content in blades, whereas in 2018–19 and 2019–20 season Harmony  promoted lower Mg content in blades in both varieties than R32 in all seasons, 1103 P in  2017–18 and 2018–19 seasons and 140 Ru in 2017–18 season (Supplementary Table 2).  Table 3. Effect of varieties and rootstocks on leaf blade macronutrient content growing under hy‐ per‐arid conditions over three consecutive seasons.  Factor  N (%)  P (%)  K (%)  Ca (%)  Mg (%)  Variety (V)           Moscatel Amarilla  1.96 b 0.14 b  1.07  2.00  0.28 a  Moscatel Negra  2.22 a  0.17 a  1.07  2.01  0.25 b  Rootstock (R)           1103 P  2.10 ab  0.15 ab  0.99 c  2.01 b  0.28 b  140 Ru  2.08 ab  0.15 ab  1.08 b  1.87 bc  0.27 b  Harmony  2.04 b  0.14 b  1.29 a  1.77 c  0.20 c  R32  2.15 a  0.16 a  0.91 c  2.36 a  0.32 a  Season (S)           2017–18  1.93 b  0.14 b  0.96 c  2.25 a  0.31 a  2018–19  2.15 a  0.15 a  1.06 b  2.08 b  0.25 b  2019–20  2.18 a  0.16 a  1.19 a  1.68 c  0.24 b  1  Signif           2  V  0.0001  0.0001  0.74  0.83  0.001  R  0.012  0.041  0.0001  0.0001  0.0001  S  0.00001  0.0001  0.0001  0.0001  0.0001  V × R  0.033  0.45  0.000  0.55  0.31  R × S  0.11  0.30  0.33  0.019  0.017  1  Significance (p‐value) for Variety (V), Rootstock (R), Season (S), V × R and R × S interactions. For a  given factor and significance p < 0.05, different letters within a column represent significant differ‐  2  ences (Tukey’s test, p < 0.05). In red, p‐value lower than 0.05.  3.2.2. Micronutrients  Considering micronutrients uptake and accumulation, Variety factor significantly af‐ fected Zn blade content only, where blades from Moscatel Amarilla showed lower Zn  content than the samples from Moscatel Negra (Table 4). In turn, rootstock factor influ‐ enced Mn content in Moscatel Amarilla and Moscatel Negra blades collected from grape‐ vines growing under hyper‐arid conditions (Table 4). Harmony rootstock induced lower  Mn content in blades than 140 Ru and R32 rootstocks, and this latter promoted higher Mn  levels in blades than 1103 P (Table 4). Season factor significantly affected Zn and Mn blade  content. Blades in the 2017–18 season showed the highest Zn and the lowest Mn content  (Table 4). Rootstock and season interaction affected Mn content only (Table 4). 140 Ru  Agronomy 2021, 11, 327  7  of  16  rootstock in the 2019–20 season promoted higher levels of Mn in blades than 1103 P in  2017–18, Harmony in 2017–18 and in 2019–20, and 140 Ru in 2017–18 (Supplementary Ta‐ ble 2). In general, Harmony rootstock managed to induce lower Mn content in blades over  the seasons compared to the rest of rootstocks and season interactions.  Table 4. Effect of varieties and rootstocks on leaf blade micronutrient content growing under hy‐ per‐arid conditions over three consecutive seasons.  Factor  Zn (ppm)  Mn (ppm)  Cu (ppm)  Variety (V)       Moscatel Amarilla  36.5 b 113.4  6.9  Moscatel Negra  42.4 a  118.2  6.5  Rootstock (R)       1103 P  35.8  109.6 bc  6.4  140 Ru  38.1  123.1 ab  6.8  Harmony  40.7  98.6 c  6.5  R32  43.3  131.8 a  7.1  Season (S)       2017–18  54.3 a  96.9 b  6.2  2018–19  19.0 c  126.1 a  7.0  2019–20  45.0 b  124.3 a  7.0  1  Signif       2  V  0.022  0.30  0.24  R  0.19  0.0001  0.51  S  0.0001  0.0001  0.16  V × R  0.87  0.09  0.18  R × S  0.19  0.007  0.7  1  Significance (p‐value) for Variety (V), Rootstock (R), Season (S), V × R and R × S interactions. For a  given factor and significance p < 0.05, different letters within a column represent significant differ‐  2  ences (Tukey’s test, p < 0.05). In red, p‐value lower than 0.05.  3.2.3. Relationship between Macronutrients  Variety  factor  did  not  influence  any  of  the  ratios  between  blade  macronutrients,  whereas rootstock and season factors significantly affected all the relationships among  nutrients (Table 5). However, Moscatel Negra blades presented higher K to Mg ratio than  the samples collected from Moscatel Amarilla grapevines (Table 5). Harmony rootstock  induced the highest K/Ca, K/Mg and K to Ca+Mg ratios in blades of both varieties, whilst  R32 rootstock showed the opposite effect (Table 5). 1103 P and 140 Ru rootstocks displayed  similar and intermediate levels of these calculated relationships in blades compared to  Harmony and R32 rootstocks. Blades in the 2017–18 season presented the lowest K/Ca,  K/Mg and K to Ca+Mg ratios, while blades collected in the 2019–20 season exhibited the  opposite effects on the calculated ratios (Table 5). The interaction between variety and  rootstock factors affected K/Mg ratio, as blades obtained from Moscatel Negra grapevines  grafted onto Harmony rootstocks presented the highest K/Mg ratio (Supplementary Table  1). Moscatel Negra grapevines grafted onto R32 grapevines presented lower K/Mg ratio  compared to most of variety and rootstock combinations with the exception of blade sam‐ ples collected from Moscatel Amarilla grapevines grafted onto R32 and 1103 P rootstocks  (Supplementary Table 1). The interaction between rootstock and season factors consider‐ ably affected K/Ca ratio and K to Ca+Mg ratio (Table 5). Harmony rootstock in the 2019– 20 season induced the highest K/Ca and K to Ca+Mg ratio in blades of both varieties.  Mostly, R32 rootstock in 2017–18 season promoted lower K/Ca and K to Ca+Mg ratio in  blades of both varieties than most of the rootstock and season interactions, with the ex‐ ception of R32 rootstock in 2018–19 and 1103 P in 2017–2018 season (Supplementary Table  2).  Agronomy 2021, 11, 327  8  of  16  Table 5. Effect of varieties and rootstocks on relationship between leaf blade macronutrient con‐ tent growing under hyper‐arid conditions over three consecutive seasons.  Factor  K/Ca  K/Mg  K/(Ca+Mg)  Variety (V)       Moscatel Amarilla  0.59 4.21 b  0.51  Moscatel Negra  0.56  4.63 a  0.50  Rootstock (R)       1103 Pa  0.52 c  3.87 b  0.46 b  140 Ru  0.60 b  4.18 b  0.52 b  Harmony  0.77 a  6.64 a  0.69 a  R32  0.40 d  3.00 c  0.35 c  Season (S)       2017–18  0.44 c  3.42 c  0.39 c  2018–19  0.52 b  4.54 b  0.46 b  2019–20  0.76 a  5.31 a  0.66 a  1  Signif       V  0.15    0.007  0.34  R  0.0001  0.0001  0.0001  S  0.0001  0.0001  0.0001  V × R  0.75  0.02  0.56  R × S  0.001  0.19  0.001  1  Significance (p‐value) for Variety (V), Rootstock (R), Season (S), V x R and R × S interactions. For a  given factor and significance p < 0.05, different letters within a column represent significant differ‐  2  ences (Tukey’s test, p < 0.05). In red, p‐value lower than 0.05.  3.3. Principal Component Analysis  In order to classify the different rootstocks and assess their influence on blade nutri‐ ent content in both varieties, a principal component analysis (PCA) was performed (Fig‐ ure 3). Principal component 1 (PC 1) explained 35.63% of the variance and principal com‐ ponent 2 (PC2) explained 30.36%, representing 65.99% of all the analysed variance. PC 1  was correlated (−) with Mg (and Ca), and (+) N, P and Mn, whereas PC 2 was (−) correlated  with K, and (+) Ca, Mg and Mn. Depending upon season and variety, Harmony and 1103  Paulsen rootstocks were (+) correlated with K, and (−) correlated with Mg and Ca blade  content. Conversely, 140 Ru and 1103 P were (+) correlated to P and N blade content and  (−) correlated to Harmony rootstock respectively. Similar behaviour regarding season was  observed for R32 and 1103 P rootstocks, which were (+) correlated to Zn, Mg and Ca blade  content.  Pearson  correlations  confirmed  some  relationships  (Supplementary  Table  3),  such as N blade content that was (+) related to P (r = 0.87) and Mn, (r = 0.58). P blade  content was (+) related to Mn (r = 0.63). K blade content was (‐) related to Ca (r = −0.68)  and Mg (r = −0.77). Ca blade content was (+) correlated with Mg (r = 0.75). Mn blade con‐ tent was (+) correlated with Cu (r = 0.62).  Agronomy 2021, 11, 327  9  of  16  Figure 3. Principal component analysis (PCA) performed with nutritional variables obtained from Moscatel Amarilla and  Moscatel Negra grapevines grafted onto Paulsen 1103, Ruggeri 140, Harmony and R32, during three seasons. Footnote: The  distribution of variables (red lines) and individual observations according to rootstocks (blue dots) on PC1 and PC2 are  shown.  4. Discussion  Irrigation in arid and semiarid regions over prolonged periods can lead to a build‐ up of salt near the soil surface. Most table and raisin grapes are grown in rather dry and  warm climatic regions, such as southwestern Asia, California, Chile, or Australia, and are  thus especially threatened by salinity [34]. Indeed, the soils of Northern Chile are alkaline  due to the presence of CaCO3 resulting in a high pH, which affects the availability of es‐ sential nutrients for crop development [20,35]. These types of soils display an accumula‐ tion of soluble salts and a high content of exchangeable Na and boron leading to micro‐ nutrient deficiencies such as Fe, Zn, Mn and Cu in crops [36,37]. Based upon the nutri‐ tional standards for viticultural management [38], both grafted grapevine varieties under  study exhibited adequate levels in all nutrients analysed in blades. However, blades col‐ lected in the 2018–19 season presented deficiencies in Zn levels (Table 4). Zn is an essential  micronutrient for plants that plays a key role in photosynthetic redox reactions, and it is  an essential cofactor for many enzymes involved in nitrogen metabolism and protein syn‐ thesis [39,40]. Zn solubility is strongly dependent on pH, and similar to Fe, Zn availability  is low in calcareous soils with a pH > 7 and high bicarbonate content [40]. Zn deficiency  may alter the expression and function of proteins at metabolic level that results in different  physiological symptoms characterized by root apex necrosis, and in a decline in starch  production and sugar accumulation in leaves [40,41]. Severe Zn deficiency in grapevines  may result in the production of clusters with few berries that also vary in size from normal  to very small [42,43]. Interestingly, Gainza‐Cortés et al. [41] reported that VvZIP3 encodes  a putative plasma membrane Zn transporter protein member of the ZIP gene family that  might play a role in Zn uptake and distribution during the early reproductive develop‐ ment in grapevines. Based on our results, the season that ensued a lower accumulation of  Zn in the leaves had a higher thermal accumulation during spring and low accumulated  rainfall, which could result in a certain degree of thermal and drought stress during the  reproductive  stages  of  the  grapevine.  Zn  applications  in  grapevines  cultivated  under  drought conditions enhance acquisition of many plant nutrients, promoting the vegetative  and generative developments related to shoot and leaf growth, greener leaves, enhancing  Agronomy 2021, 11, 327  10  of  16  berry development and vine yield [44]. Furthermore, abscisic acid alleviates uptake and  accumulation of Zn in grapevines by inducing expression of ZIP and detoxification‐re‐ lated genes [40]. Thereby, Zn absorption and accumulation in blades may be affected by  high temperatures and drought conditions in grapevines cultivated under the hyper‐arid  conditions of Northern Chile. Zn and Cu are integral parts of one form of the antioxidant  enzyme superoxide dismutase which may also help protect plant tissues against the pro‐ duction of reactive oxygen species that lead to oxidative stress that accompanies many  environmental stresses [40]. Pearson’s correlations did not show a relationship between  Zn and Cu under the edaphoclimatic conditions of the present study. Since solubility is  strongly dependent on pH, Zn availability is low in calcareous soils with a pH >7 and high  carbonate content [40].  Moscatel Amarilla tended to accumulate lesser amounts of N, P and Zn, and more  Mg content than Moscatel Negra blade leaves (Tables 3–5). This resulted in the K to Mg  ratio  being  higher  in  the  Moscatel  Negra  variety  than  Moscatel  Amarilla  blades  and  mostly if these grapevine varieties were grafted onto Harmony rootstock (Tables 3 to 5).  The natural crossing between Listán Prieto and Moscatel de Alejandría occurred in the  XVII century originated Moscatel Amarilla and probably Moscatel Negra [1,26,45]. Local  experience carried out in recent years has shown that Moscatel Amarilla presents a me‐ −1 dium to large cluster, grapevines can produce between 30 to 50 tons ha  and technological  maturity occurs in the second week of February [46]. Moscatel Negra presents a small to  −1 medium cluster, the grapevines can produce between 25 to 35 tons ha  and technological  maturity occurs in the first week of February [46]. Thereby, the differences in productivity  and cluster size between both varieties can affect the uptake and accumulation of nutrients  in the blades in veraison. Recently, Verdenal et al. [47] reported that fertilizer N uptake  and its assimilation in Chasselas (Vitis vinifera) grapevines appeared to be strongly stimu‐ lated by high‐yielding conditions. Interestingly, grapevines were able to modulate root N  reserve mobilization and fertilizer N uptake in function of the crop load, thus maintaining  a uniform N concentration in fruits [47]. K/Mg ratio is an important factor in determining  Mg uptake and high K/Mg ratio determines low Mg uptake [48]. As a whole, Harmony  rootstock induced high accumulation of K in leaf tissues in different grapevine varieties  cultivated in Northern Chile [20]. Our results confirm these findings since Harmony in‐ duced a high K accumulation in blades that was exacerbated when Moscatel Negra grape‐ vines were grafted onto Harmony rootstock (Table 3 and S1). In addition, Harmony accu‐ mulated less amount of Mg in the leaves independent of the climatic conditions of study  season (Table S2). Recently, Gautier et al. [49] reported that rootstocks with a V. riparia  parent conferred a lower petiolar concentration of P, Mg, B and Al, but a higher petiolar  concentration of S, whereas rootstocks with a V. rupestris genetic background conferred a  higher petiolar concentration of P, B and Fe. Mg deficiency may reduce chlorophyll con‐ tent in leaves and changes the chlorophyll a to b ratio in favour of chlorophyll b [48,50].  In fact, Mg‐deficient grapevines are extremely light‐sensitive which accelerates the ap‐ pearance of the characteristic interveinal chlorosis [40]. This issue can become quite a se‐ rious problem for the vineyards grown in Northern Chile since the grapevines in this area  are cultivated at higher altitudes than in other Chilean viticultural regions and receive  higher UV radiation compared to more Southern locations. Bascuñán‐Godoy et al. [51]  reported that the yield rise of Red Globe grapevines grafted onto Harmony and Salt Creek  was correlated with the increase in light capture, greater leaf area, photosynthetic rate,  light absorption capacity, production and mobilization of reserve carbohydrates on these  rootstocks. However, Harmony in spite of having parents in common with Freedom, is  recognized in California because it induces lower vigour to the canopy and also reduces  uptake of nitrogen [52]. Pearson’s correlation showed a negative relationship between K  and Mg (r = −0.77) (Table S3). Toumi et al. [48] explained that the negative relationship  observed between the K and Mg in leaves may be explained due that the Mg decreases by  K to Mg antagonism. However, in this study the high K supply was accompanied by low  Agronomy 2021, 11, 327  11  of  16  Mg supply and it could have merely been caused by shortage of Mg rather than abun‐ dance of K. As regards our results, Mg and K contents in Moscatel Amarilla and Moscatel  Negra grapevines grafted onto Harmony should be strictly monitored during grape rip‐ ening to avoid and correct Mg deficiencies on grapevines. In this fashion, rootstocks that  harbour a V. berlandieri genetic background could be an interesting alternative for these  autochthonous grapevines varieties since they confer a higher of scion vigour and yield  than rootstocks with a V. riparia genetic background what is an attribute of interest for the  Pisco production. In parallel, R32 rootstock induced low accumulation of K in Moscatel  Negra grapevines and induced a high accumulation of Mg in both varieties. Low K supply  to  grapevines strongly reduces xylem sap  flow and limits shoot and fruit growth and  greatly increases the risk of drought stress [53]. K deficiency in grapevines also suppresses  sugar transport in the phloem and can result in sucrose accumulation in the leaves to sub‐ stitute for the missing K as osmoticum [40,54].  R32 (Vitis vinifera) is a native rootstock that corresponds to a naturalized genotype  selected for its tolerance to drought conditions of Northern Chile [19,26]. R32 rootstock  induced a higher accumulation of N, P, K and Mn than Harmony. Mn availability is highly  pH dependent and is minimal when soil pH reaches close to 7 [40]. Mn is required for the  function of enzymes such as glucosyltransferases, which attach a glucose molecule to phe‐ nolics and other compounds [55]. Mn deficiency may increase tissue sensitivity to oxida‐ tive stress, which can be caused by different environmental stresses [40]. Deficiency symp‐ toms are consequently more severe on sun‐exposed leaves [40]. Contrary to this, our re‐ sults pointed that Mn accumulation in blades was lower in the coldest season that was in  2017–18 than in 2018–19 and 2019–20 seasons which were the warmest. The occurrence of  chlorotic leaves in response to insufficient Mn availability occurs first in the basal portion  of the shoots, soon after budbreak [56]. Thus, high temperatures early in the grapevine  growing  season  could  induce  Mn  deficiencies  in  the  grapevines.  Pearson’s  correlation  showed that Mn blade content was correlated with N (r = 0.58), P (r = 0.63) and Cu (r =  – + 0.62) (Table S3). N depending on its form, i.e., as NO3  or NH4 , can affect Mn soil solubility  and shoot Mn uptake by altering rhizosphere pH [57]. The solubilization of higher Mn‐ oxides in soil is also facilitated by its organic matter content, and extreme heating and  drying [57]. Mn absorption also could be affected by other microelements due to a close  interaction of Mn nutrition and antioxidant metabolism in plants. This is because cytosolic  CuZn‐SOD and mitochondrial Mn‐SOD activities increase under conditions of Mn‐excess  as well as Mn‐starvation [58,59]. The main factor determining P and Mn availability and  solubility to plants is soil pH and P inactivation may occur also in calcareous soils due to  high concentration of Ca ions and high soil pH [60]. Our results confirm this notion since  P contents in the blade samples were below the nutritional optimum but did not reach  deficiency levels. Despite this, Mn levels in blades were above the optimal nutritional con‐ tent without reaching toxic levels for the plant. Both P and Mn ions are rather immobile  in soils implying that factors such as root length and root architecture, as well as rhizo‐ sphere processes, have a major impact on their availability for plants [61]. High soil P  resulted in elevated plant P status which interfered in the uptake and/or translocation of  Mn [62]. Similar to this, a negative effect of high P levels on Mn accumulation was shown  and it is suggested that P interferes directly with Mn at the uptake and/or translocation  level [63]. However, despite these findings, it is likely that under the edaphoclimatic con‐ ditions of our study, there is a positive relationship between P and Mn accumulation due  to the high soil pH that limit P availability and absorption, triggering a greater absorption  of Mn by grapevines. R32 rootstock may be suitable under these conditions since it pro‐ motes a high P and Mn accumulation compared to rest of studied rootstocks independent  of the weather conditions of the season. In addition, rootstocks that presents V. rupestris  and V. berlandieri genetic background may have acquired efficient mechanisms to increase  P acquisition or use in response to the limited‐P environment since they are native from  the south of the USA, particularly where soils are calcareous and often deficient in P due  Agronomy 2021, 11, 327  12  of  16  to precipitation of calcium phosphate [49]. Thereby, 140 Ru and 1103 P rootstocks can also  be interesting alternatives to both grapevines varieties under study to be grafted.  The highest accumulation of Ca and Mg was determined in R32 rootstocks that was  heightened in the 2017–18 season. Ca accumulation could have a key role in the osmotic  adjustment of grape leaves as other inorganic ions such as K [64,65]. Some authors show  an increase in calcium oxalate crystals in leaves of grapevines cultivated under drought  conditions, suggesting that these structures in the mesophyll could either play a functional  role in water stress and Ca regulation, or represent an unintended result of increased Ca  accumulation  [64,66].  Our  results  showed  that  during  the  warmest  season,  rootstocks  showed lower Ca accumulation with the exception of R32, than the rest of the rootstock  and season interactions (Table 3). During the cooler season, R32 rootstock showed the  highest accumulation of Ca and Mg (Table 3). This caused a lower K/Ca and K/Ca+Mg  ratios in the R32 rootstock, and that Harmony reached the highest values of the exposed  ratios in the warmer season (Table S2). The nutrient antagonism is produced when an  excessive concentration of one nutrient inhibits the uptake of another [67]. Because K, Ca  and Mg have similar charged ionic forms, and are taken up in a similar way, the absorp‐ tion of high amounts of one nutrient may inhibit the uptake of another nutrient. García et  al. [33] showed that K to Ca and K to Mg antagonisms were well expressed in Négrette  (V. vinifera) varieties grafted onto different rootstocks. In their study, 3309 C (Riparia to‐ menteaux × Rupestris martin) induced the lowest K level in leaves and SO4 (V. berlandieri ×  V. riparia) absorbed K more readily than 101–14 Mgt (V. riparia × V. rupestris), suggesting  that 3309 C appears to be the most appropriate rootstock for Négrette variety [33]. There‐ fore, based upon our results, for both autochthonous varieties under study, R32 rootstock  and to a lesser extent, the 1103 P and 140 Ru rootstocks can be interesting alternatives to  keep balanced levels of nutrients under the hyper‐arid conditions of Northern Chile. On  the other hand, the use of Harmony rootstock displayed noticeable nutritional imbalances,  especially due to its low absorption of Mg, Mn, Ca and P and its high absorption of K,  which  is  exacerbated  under  warm  weather  and  soil  salinity  conditions.  Moreover,  Ibacache et al. [21] reported that Harmony accumulated more chloride than 1613 Couderc,  Freedom, 1103 Paulsen, 110 Richter, 99 Richter, 140 Ruggeri, SO4, Salt Creek and Saint  George in blade petioles. The higher chloride concentration in petioles at full flowering  stage of Flame Seedless and Muscat of Alexandria growing on their own roots compared  to grafted grapevines may reflect the poor capacity of V. vinifera grapevines for chloride  exclusion [21]. Consequently, monitoring of these nutrients is critical to nutritional man‐ agement of grapevines grafted onto Harmony rootstock. Novel determinations regarding  nutritional requirements of grapevine, will rise to integrated sustainable practices, con‐ sidering developmental periods in which grapevine needs more P, such as the flowering  stage, or more N at the first berry expansion stage, less nutrient at the seed stone harden‐ ing stage, and more P and K at the second berry expansion stage and veraison stage [68].  Also,  roots  are  still able  to  respond to  temperature  and  hypoxia  in the  absence  of the  known perception mechanisms for the corresponding stress, and some authors hypothe‐ size that this is also the case for sodium sensing leading to sodium‐ specific growth away  from high salinity, and root directional growth is caused by asymmetrical PIN2 distribu‐ tion during hypoxia and halotropism [69].  Water scarcity and salinity, along with high temperature will impose more frequent  and severe drought and stress events. Under this perspective, water management will  play a major role, but taking care of avoiding eventual salinity problems. In areas with  water scarcity such as Northern Chile, more efficient rootstocks and scions will be the best  option, always combined with appropriate soil and canopy management [70]. Improved  knowledge of structure and function of grapevine roots and rhizosphere in different soils,  climates and under diverse agronomical practices may provide a wider range of solutions  to cope with the challenges associated to global change. In this regard, the genetic diver‐ sity hosted in Vitis ssp. can provide new functional abilities [70,71], necessary to match  Agronomy 2021, 11, 327  13  of  16  specific clone/cultivar/rootstock/site combinations. Finally, our results may provide a nu‐ tritional guide for the viticulturists and growers of Northern Chile and to bring the possi‐ bility to diversify their production using these minority and autochthonous varieties that  adapt well to the edaphoclimatic conditions of hyper‐arid Northern Chile.  Supplementary Materials: The following materials are available online at www.mdpi.com/2073‐ 4395/11/2/327/s1, Table S1: Interactions between varieties (V) and rootstocks (R), Table S2: Interac‐ tions between rootstocks (R) and seasons (S), Table S3: Pearson’s correlation obtained from Principal  Component Analysis (Figure 3).  Author Contributions: Conceptualization, N.V.‐V. and A.Z.‐S.; methodology, N.V.‐V. and E.V.‐S.;  formal analysis, E.V.‐S.; data collection, N.V.‐V. and E.V.‐S.; resources A.Z.‐S.; data curation, N.V.‐ V. and E.V.‐S.; writing—original draft preparation, N.V.‐V. and G.G.‐G.; writing—review and edit‐ ing, G.G.‐G. N.V.‐V., E.V.‐S. and A.Z.‐S.; project administration, N.V.‐V. and A.Z.‐S.; funding acqui‐ sition, N.V.‐V. and A.Z.‐S. All authors have read and agreed to the published version of the manu‐ script.  Funding: This research was funded by Agencia Nacional de Investigación y Desarrollo ANID–Post‐ doctoral Fondecyt [Grant Number 3180252 2018/INIA], and support of Instituto de Investigaciones  Agropecuarias—INIA.  Data Availability Statement: The data presented in this study are available on request from the  corresponding author.  Acknowledgments: Authors are grateful to Antonio Ibacache, María Isabel Rojas, Cristian Gonzá‐ lez, Elizabeth Pastén and Marco Cabrera for their valuable technical support.  Conflicts of Interest: The authors declare no conflict of interest.  References  1. Pszczólkowski, P.; Lacoste, P. Native varieties, an opportunity for Chilean pisco. Rev. Fac. Ciencias Agrar. 2016, 48, 239–251.  2. Banks, G.; Overton, J. Old world, new world, third world? Reconceptualising the worlds of wine. J. Wine Res. 2010, 21, 57–75,  doi:10.1080/09571264.2010.495854.  3. Mora, G.M. The Chilean wine industry. In The Palgrave Handbook of Wine Industry Economics; Ugaglia, A.A., Cardebat, J.M., Corsi,  A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 177–200.  4. SAG. Catastro Vitícola Nacional. Available online: http://www.sag.cl/ambitos‐de‐accion/catastro‐viticola‐nacional/1490/publi‐ caciones (accessed on 30 November 2020).  5. Mitchell,  J.T.;  Terry,  W.C.  Contesting  pisco:  Chile,  Peru,  and  the  politics  of  trade.  Geogr.  Rev.  2011,  101,  518–535,  doi:10.1111/j.1931‐0846.2011.00115.x.  6. Agosin, E.; Belancic, A.; Ibacache, A.; Baumes, R.; Bordeu, E. Aromatic potential of certain Muscat grape varieties important for  Pisco production in Chile. Am. J. Enol. Vitic. 2000, 51, 404–408.  7. Belancic, A.; Agosin, E.; Ibacache, A.; Bordeu, E.; Baumes, R.; Razungles, A.; Bayonove, C. Influence of sun exposure on the  aromatic composition of Chilean Muscat grape cultivars Moscatel de Alejandría and Moscatel Rosada. Am. J. Enol. Vitic. 1997,  48, 181–186.  8. Martínez‐Pinilla, O.; Martínez‐Lapuente, L.; Guadalupe, Z.; Ayestarán, B. Sensory profiling and changes in colour and phenolic  composition produced by malolactic fermentation in red minority varieties. Food Res. Int. 2012, 46, 286–293, doi:10.1016/j.food‐ res.2011.12.030.  9. García‐Carpintero, E.G.; Sánchez‐Palomo, E.; Gallego, M.A.G.; González‐Viñas, M.A. Volatile and sensory characterization of  red wines from cv. Moravia Agria minority grape variety cultivated in La Mancha region over five consecutive vintages. Food  Res. Int. 2011, 44, 1549–1560, doi:10.1016/j.foodres.2011.04.022.  10. Gutiérrez‐Gamboa, G.; Moreno‐Simunovic, Y. Terroir and typicity of Carignan from Maule Valley (Chile): The resurgence of a  minority variety. OENO One 2019, 53, 75–93, doi:10.20870/oeno‐one.2019.53.1.2348.  11. Gutiérrez‐Gamboa, G.; Liu, S.; Pszczólkowski, P. Resurgence of minority and autochthonous grapevine varieties in South Amer‐ ica: A review of their oenological potential. J. Sci. Food Agric. 2020, 100, 465–482, doi:10.1002/jsfa.10003.  12. Liang, N.N.; Pan, Q.H.; He, F.; Wang, J.; Reeves, M.J.; Duan, C.Q. Phenolic profiles of Vitis davidii and Vitis quinquangularis  species native to China. J. Agric. Food Chem. 2013, 61, 6016–6027, doi:10.1021/jf3052658.  13. Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho‐Pereira, J.; Dinis, L.‐T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Cos‐ tafreda‐Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for European viticulture.  Appl. Sci. 2020, 10, 3092, doi:10.3390/APP10093092.  14. Van Leeuwen, C.; Destrac‐Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier,  L.;  Ollat,  N.  An  update  on  the  impact  of  climate  change  in  viticulture  and  potential  adaptations.  Agronomy  2019,  9,  514,  Agronomy 2021, 11, 327  14  of  16  doi:10.3390/agronomy9090514.  15. Gutiérrez‐Gamboa, G.; Zheng, W.; Martínez de Toda, F. Strategies in vineyard establishment to face global warming in viticul‐ ture: A mini review. J. Sci. Food Agric. 2020, doi:10.1002/jsfa.10813.  16. Carrasco‐Quiroz, M.; Martínez‐Gil, A.M.; Gutiérrez‐Gamboa, G.; Moreno‐Simunovic, Y. Effect of rootstocks on volatile compo‐ sition of Merlot wines. J. Sci. Food Agric. 2020, doi:10.1002/jsfa.10395.  17. Rubio, B.; Lalanne‐Tisné, G.; Voisin, R.; Tandonnet, J.P.; Portier, U.; Van Ghelder, C.; Lafargue, M.; Petit, J.P.; Donnart, M.;  Joubard, B.; et al. Characterization of genetic determinants of the resistance to phylloxera, Daktulosphaira vitifoliae, and the dag‐ ger nematode Xiphinema index from muscadine background. BMC Plant Biol. 2020, 20, 213, doi:10.1186/s12870‐020‐2310‐0.  18. Vincent, C.; Isaacs, R.; Bostanian, N.J.; Lasnier, J. Principles of arthropod pest management in vineyards. In Arthropod Manage‐ ment in Vineyards: Pests, Approaches, and Future Directions; Bostanian, N.J., Charles, V., Isaacs, E., Eds.; Springer: Dordrecht, The  Netherlands, 2012; pp. 1–16.  19. Franck, N.; Zamorano, D.; Wallberg, B.; Hardy, C.; Ahumada, M.; Rivera, N.; Montoya, M.; Urra, C.; Meneses, C.; Balic, I.; et al.  Contrasting grapevines grafted into naturalized rootstock suggest scion‐ driven transcriptomic changes in response to water  deficit. Sci. Hortic. 2019, 262, 109031, doi:10.1016/j.scienta.2019.109031.  20. Ibacache, A.; Sierra, C. Influence of rootstocks on nitrogen, phosphorus and potassium content in petioles of four table grape  varieties. Chil. J. Agric. Res. 2009, 69, 503–508, doi:10.4067/S0718‐58392009000400004.  21. Ibacache, A.; Verdugo‐Vásquez, N.; Zurita‐Silva, A. Rootstock: Scion combinations and nutrient uptake in grapevines. In Fruit  Crops: Diagnosis and Management of Nutrient Constraints; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands,  2020; pp. 297–316.  22. Gutiérrez‐Gamboa, G.; Gómez‐Plaza, E.; Bautista‐Ortín, A.B.; Garde‐Cerdán, T.; Moreno‐Simunovic, Y.; Martínez‐Gil, A.M.  Rootstock effects on grape anthocyanins, skin and seed proanthocyanidins and wine color and phenolic compounds from Vitis  vinifera L. Merlot grapevines. J. Sci. Food Agric. 2019, 99, 2846–2854, doi:10.1002/jsfa.9496.  23. Aballay, E.; Prodan, S.; Correa, P.; Allende, J. Assessment of rhizobacterial consortia to manage plant parasitic nematodes of  grapevine. Crop Prot. 2020, 131, 105103, doi:10.1016/j.cropro.2020.105103.  24. Ibacache, A.; Albornoz, F.; Zurita‐Silva, A. Yield responses in Flame seedless, Thompson seedless and Red Globe table grape  cultivars are differentially modified by rootstocks under semi arid conditions. Sci. Hortic. 2016, 204, 25–32, doi:10.1016/j.sci‐ enta.2016.03.040.  25. Bavestrello‐Riquelme, C.; Cavieres, L.; Gallardo, J.; Ibacache, A.; Franck, N.; Zurita‐Silva, A. Evaluación de la tolerancia a estrés  por  sequía  en  cuatro  genotipos  naturalizados  de  vid  (Vitis  vinifera)  provenientes  del  norte  de  Chile.  Idesia  2012,  30,  83–92,  doi:10.4067/S0718‐34292012000300011.  26. Milla‐Tapia, A.; Gómez, S.; Moncada, X.; León, P.; Ibacache, A.; Rosas, M.; Carrasco, B.; Hinrichsen, P.; Zurita‐Silva, A. Natu‐ ralised grapevines collected from arid regions in Northern Chile exhibit a high level of genetic diversity. Aust. J. Grape Wine Res.  2013, 19, 299–310, doi:10.1111/ajgw.12020.  27. Jones, G.V. Climate and terroir: Impacts of climate variability and change on wine. GeoSci. Can. 2005, 9, 1–14.  28. Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape‐growing regions worldwide. Agric. For. Me‐ teorol. 2004, 124, 81–97, doi:10.1016/j.agrformet.2003.06.001.  29. Huglin, P. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Compt. Rend. Acad. Agric. Fr. 1978,  64, 1117–1126, doi:10.4236/ojog.2018.813145.  30. Amerine, M.A.; Winkler, A.J. Composition and quality of musts and wines of California grapes. Hilgardia 1944, 15, 493–675,  doi:10.3733/hilg.v15n06p493.  31. Jarvis, C.; Barlow, E.; Darbyshire, R.; Eckard, R.; Goodwin, I. Relationship between viticultural climatic indices and grape ma‐ turity in Australia. Int. J. Biometeorol. 2017, 61, 1849–1862, doi:10.1007/s00484‐017‐1370‐9.  32. Nikolaou, N.; Koukourikou, M.A.; Karagiannidis, N. Effects of various rootstocks on xylem exudates cytokinin content, nutrient  uptake  and  growth  patterns  of  grapevine  Vitis  vinifera  L.  cv.  Thompson  seedless.  Agronomie  2000,  20,  363–373,  doi:10.1051/agro:2000133.  33. Garcia, M.; Gallego, P.; Daverède, C.; Ibrahim, H. Effect of three rootstocks on grapevine (Vitis vinifera L.) cv. Négrette, grown  hydroponically. I. Potassium, calcium and magnesium nutrition. S. Afr. J. Enol. Vitic. 2001, 22, 101–103, doi:10.21548/22‐2‐2202.  34. Keller, M. The Science of Grapevines, Anatomy and Physiology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2020.  35. Sierra, C.; Lancelloti, A.; Vidal, I. Elemental sulphur as pH and soil fertility amendment for some Chileans soils of Regions III  and IV. Agric. Técnica 2007, 67, 173–181, doi:10.4067/S0365‐28072007000200007.  36. Machado, R.; Serralheiro, R. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil  salinization. Horticulturae 2017, 3, 30, doi:10.3390/horticulturae3020030.  37. Pistocchi, C.; Ragaglini, G.; Colla, V.; Branca, T.A.; Tozzini, C.; Romaniello, L. Exchangeable sodium percentage decrease in  saline  sodic  soil  after  basic  oxygen  furnace  slag  application  in  a  lysimeter  trial.  J.  Environ.  Manag.  2017,  203,  896–906,  doi:10.1016/j.jenvman.2017.05.007.  38. Robinson, J.B. Critical Plant Tissue Values and Application of Nutritional Standards for Practical Use in Vineyards, Proceedings of the  Soil Environment and Vine Mineral Nutrition Symposium, San Diego, CA, USA, 29–30 June 2004; Smart, D.R., Christensen, L.P., Eds.;  The American Society for Enology and Viticulture: Davis, CA, USA, 2005; pp. 61–68.  39. Hafeez,  B.;  Khanif,  Y.M.;  Saleem,  M.  Role  of  zinc  in  plant  nutrition—A  review.  Am.  J.  Exp.  Agric.  2013,  3,  374–391,  doi:10.9734/ajea/2013/2746.  Agronomy 2021, 11, 327  15  of  16  40. Song, C.; Yan, Y.; Rosado, A.; Zhang, Z.; Castellarin, S.D. ABA alleviates uptake and accumulation of zinc in grapevine (Vitis  vinifera  L.)  by  inducing  expression  of  ZIP  and  detoxification‐related  genes.  Front.  Plant  Sci.  2019,  10,  872,  doi:10.3389/fpls.2019.00872.  41. Gainza‐Cortés, F.; Pérez‐Dïaz, R.; Pérez‐Castro, R.; Tapia, J.; Casaretto, J.A.; González, S.; Peña‐Cortés, H.; Ruiz‐Lara, S.; Gon‐ zález, E. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive de‐ velopment in Vitis vinifera L. BMC Plant Biol. 2012, 12, 1–13, doi:10.1186/1471‐2229‐12‐111.  42. Christensen, P.; Jensen, F.L. Grapevine response to concentrate and to dilute application of two zinc compounds. Am. J. Enol.  Vitic. 1978, 29, 213–216.  43. Vasconcelos, M.C.; Greven, M.; Winefield, C.S.; Trought, M.C.T.; Raw, V. The flowering process of Vitis vinifera: A review. Am.  J. Enol. Vitic. 2009, 60, 411–434.  44. Sabir, A.; Sari, G. Zinc pulverization alleviates the adverse effect of water deficit on plant growth, yield and nutrient acquisition  in grapevines (Vitis vinifera L.). Sci. Hortic. 2019, 244, 61–67, doi:10.1016/j.scienta.2018.09.035.  45. Milla‐Tapia, A.; Cabezas, J.A.; Cabello, F.; Lacombe, T.; Martínez‐Zapater, J.M.; Hinrichsen, P.; Cervera, M.T. Determining the  Spanish origin of representative ancient american grapevine varieties. Am. J. Enol. Vitic. 2007, 58, 242–251.  46. Verdugo‐Vásquez, N.; Zurita‐Silva, A. Potencial Productivo y Enologico de Variedades Pisqueras no Tradicionales; Instituto de Inves‐ tigaciones Agropecuarias: La Serena, Chile, 2020; p. 76.  47. Verdenal, T.; Spangenberg, J.E.; Zufferey, V.; Dienes‐Nagy, Á.; Viret, O.; Van Leeuwen, C.; Spring, J.L. Impact of crop load on  nitrogen uptake and reserve mobilisation in Vitis vinifera. Funct. Plant Biol. 2020, 47, 744, doi:10.1071/FP20010.  48. Toumi, M.; Nedjimi, B.; Halitim, A.; Garcia, M. Effects of K‐Mg ratio on growth and cation nutrition of Vitis vinifera L. cv.  “Dattier de Beiruth” grafted on SO4 rootstock. J. Plant Nutr. 2016, 39, 904–911, doi:10.1080/01904167.2015.1087564.  49. Gautier, A.T.; Cookson, S.J.; Lagalle, L.; Ollat, N.; Marguerit, E. Influence of the three main genetic backgrounds of grapevine  rootstocks  on  petiolar  nutrient  concentrations  of  the  scion,  with  a  focus  on  phosphorus.  OENO  One  2020,  54,  1–13,  doi:10.20870/oeno‐one.2020.54.1.2458.  50. Ksouri, R.; Gharsalli, M.; Lachaal, M. Physiological responses of Tunisian grapevine varieties to bicarbonate‐induced iron defi‐ ciency. J. Plant Physiol. 2005, 162, 335–341, doi:10.1016/j.jplph.2004.06.011.  51. Bascuñán‐Godoy, L.; Franck, N.; Zamorano, D.; Sanhueza, C.; Carvajal, D.E.; Ibacache, A. Rootstock effect on irrigated grape‐ vine yield under arid climate conditions are explained by changes in traits related to light absorption of the scion. Sci. Hortic.  2015, 218, 284–292, doi:10.1016/j.scienta.2017.02.034.  52. Christensen, L.P. Rootstock selection. In Wine Grape Varieties in California; Christensen, L.P., Dokoozlian, N.K., Walker, M.A.,  Wolpert, J.A., Eds.; ANR Pub 3419; UC Agriculture and Natural Resource: Oakland, CA, USA, 2003; pp 12–15.  53. Rogiers, S.Y.; Greer, D.H.; Moroni, F.J.; Baby, T. Potassium and magnesium mediate the light and CO2 photosynthetic responses  of grapevines. Biology 2020, 9, 1–19, doi:10.3390/biology9070144.  54. Rogiers, S.Y.; Coetzee, Z.A.; Walker, R.R.; Deloire, A.; Tyerman, S.D. Potassium in the grape (Vitis vinifera L.) berry: Transport  and function. Front. Plant Sci. 2017, 8, 1629, doi:10.3389/fpls.2017.01629.  55. Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011.  56. Pradubsuk, S.; Davenport, J.R. Seasonal distribution of micronutrients in mature ‘Concord’ grape: Boron, iron, manganese,  copper, and zinc. J. Am. Soc. Hortic. Sci. 2011, 136, 69–77.  57. Fernando, D.R.; Lynch, J.P. Manganese phytotoxicity: New light on an old problem. Ann. Bot. 2015, 116, 313–319.  58. Shenker, M.; Plessner, O.E.; Tel‐Or, E. Manganese nutrition effects on tomato growth, chlorophyll concentration, and superox‐ ide dismutase activity. J. Plant Physiol. 2004, 161, 197–202, doi:10.1078/0176‐1617‐00931.  59. Ducic, T.; Polle, A. Transport and detoxification of manganese and copper in plants. Braz. J. Plant Physiol. 2005, 17, 103–112,  doi:10.1590/S1677‐04202005000100009.  60. Slunjski, S.; Coga, L.; Herak Ćustić, M.; Petek, M.; Spoljar, A. Phosphorus, manganese and iron ratios in grapevine (Vitis vinifera  L.) leaves on acid and calcareous soils. Acta Hortic. 2012, 938, 299–306, doi:10.17660/ActaHortic.2012.938.39.  61. Raghothama, K.G.; Karthikeyan, A.S. Phosphate acquisition. Plant Soil 2005, 274, 37–49, doi:10.1007/s11104‐004‐2005‐6.  62. Nielsen, D.; Nielsen, G.H.; Sinclair, A.H.; Linehan, D.J. Soil phosphorus status, pH and the manganese nutrition of wheat on  JSTOR. Plant Soil 1992, 145, 45–50.  63. Pedas, P.; Husted, S.; Skytte, K.; Schjoerring, J.K. Elevated phosphorus impedes manganese acquisition by barley plants. Front.  Plant Sci. 2011, 2, 37, doi:10.3389/fpls.2011.00037.  64. Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The physiology of drought stress in grapevine:  Towards an integrative definition of drought tolerance. J. Exp. Bot. 2020, 71, 4658–4676, doi:10.1093/jxb/eraa245.  65. Degu, A.; Hochberg, U.; Wong, D.C.J.; Alberti, G.; Lazarovitch, N.; Peterlunger, E.; Castellarin, S.D.; Herrera, J.C.; Fait, A. Swift  metabolite changes and leaf shedding are milestones in the acclimation process of grapevine under prolonged water stress.  BMC Plant Biol. 2019, 19, 1–17, doi:10.1186/s12870‐019‐1652‐y.  66. Doupis, G.; Bosabalidis, A.M.; Patakas, A. Comparative effects of water deficit and enhanced UV‐B radiation on photosynthetic  capacity  and  leaf  anatomy  traits  of  two  grapevine  (Vitis  vinifera  L.)  cultivars.  Theor.  Exp.  Plant  Physiol.  2016,  28,  131–141,  doi:10.1007/s40626‐016‐0055‐9.  67. Senbayram, M.; Gransee, A.; Wahle, V.; Thiel, H. Role of magnesium fertilisers in agriculture: Plant–soil continuum. Crop Pasture  Sci. 2015, 66, 1229, doi:10.1071/CP15104.  68. Zhang, C.; Jia, H.; Zeng, J.; Perraiz, T.; Xie, Z.; Zhu, X.; Wang, C. Fertilization of grapevine based on gene expression. Plant  Agronomy 2021, 11, 327  16  of  16  Genome 2016, 9, doi:10.3835/plantgenome2015.09.0083.  69. Lamers, J.; van der Meer, T.; Testerink, C. How plants sense and respond to stressful environments. Plant Physiol. 2020, 182,  1624–1635, doi:10.1104/PP.19.01464.  70. Marín, D.; Armengol, J.; Carbonell‐Bejerano, P.; Escalona, J.M.; Gramaje, D.; Hernández‐Montes, E.; Intrigliolo, D.S.; Martínez‐ Zapater, J.M.; Medrano, H.; Mirás‐Avalos, J.M.; et al. Challenges of viticulture adaptation to global change: Tackling the issue  from the roots. Aust. J. Grape Wine Res. 2021, 27, 8–25, doi:10.1111/ajgw.12463.  71. Gutiérrez‐Gamboa, G.; Zheng, W.; Martínez de Toda, F. Current viticultural techniques to mitigate the effects of global warming  on grape and wine quality: A comprehensive review. Food Res. Int. 2021, 139, 109946, doi:10.1016/j.foodres.2020.109946. 

Journal

AgronomyMultidisciplinary Digital Publishing Institute

Published: Feb 12, 2021

There are no references for this article.