Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Determining the Charred Layer of Wooden Beams with Finite Element Analysis Based on Enthalpy Approach

Determining the Charred Layer of Wooden Beams with Finite Element Analysis Based on Enthalpy... Article  Determining the Charred Layer of Wooden Beams with Finite  Element Analysis Based on Enthalpy Approach  Dominik Špilák *, Andrea Majlingová, Danica Kačíková and Patrik Tischler  Department of Fire Protection, Faculty of Wood Sciences and Technology, Technical University in Zvolen,   960 01 Zvolen, Slovakia; majlingova@tuzvo.sk (A.M.); kacikova@tuzvo.sk (D.K.);   xtischlerp@is.tuzvo.sk (P.T.)  *  Correspondence: xspilakd@is.tuzvo.sk  Abstract: In the process of computer modeling the formation of a charred layer in wood materials,  it is important to implement the correct material data. In thermal analysis, there exist two different  approaches of implementation: the temperature‐dependent material data properties, heat capacity  approach and enthalpy approach, which is not commonly used but which has a few advantages.  This approach should be examined in more detail because it can solve the problem associated with  inaccurate results at temperatures around 100 °C. This scientific paper deals with the assessment of  the computer‐aided fire modeling and simulation suitability based on the enthalpy approach for  determining the charred layer of structural elements. The structural elements selected for testing  were spruce wooden beams with rectangular and circular cross‐sections. A finite element model  (FEM) was created in ANSYS software. The model was validated by medium‐scale fire tests data of  the spruce wooden beams loaded with a radiation panel. Boundary conditions were identical to the  medium‐scale fire test. Due to the enthalpy approach, the temperature curves from the simulations  also faithfully simulated the section with a constant temperature around 100 °C. Within the temper‐ ature profiles, the accuracy of simulations averaged 91.7%. The accuracy of the simulations describ‐ ing the total area of the charred layer was 93.0% on average. Presented FEM can be used in the  Citation: Špilák, D.; Majlingová, A.;  search for new construction solutions for wooden elements and modifications to the design of cross‐ Kačíková, D.; Tischler, P. Determining  sections of wooden beams or wooden joints so that they can better withstand fire conditions.  the Charred Layer of Wooden Beams  with Finite Element Analysis Based  Keywords: wood beams; fire resistance; finite element analysis; transient thermal analysis; ANSYS  on Enthalpy Approach. Buildings  2022, 12, 875. https://doi.org/    10.3390/buildings12070875  Academic Editors: Chiara Bedon,  1. Introduction  Vlatka Rajčič  Wood has excellent structural and mechanical properties and construction options.  Received: 11 May 2022  For timber building structures, this material ideally meets the increasingly dominant and  Accepted: 17 June 2022  uncompromising demand of the present and probably the foreseeable future for environ‐ Published: 21 June 2022  mental friendliness in the environment, housing, industrial production, and construction.  Publisher’s  Note:  MDPI  stays  neu‐ It turns out that the use of wood as a construction material in the construction industry  tral  with  regard  to  jurisdictional  and architecture will have a significantly progressive trend in the 21st century [1].  claims in published maps and institu‐ The role of the construction system of each building is to transfer the loading to its  tional affiliations.  foundations. During its lifetime, the building is exposed to the effects of permanent and  accidental loads, which also include fire loading. Fire poses a great threat to the users of  the building, because in addition to the direct adverse effects on health, it can lead to the  collapse of the entire building, and thus endanger persons in or near the building. There‐ Copyright: © 2022 by the authors. Li‐ fore, ensuring the fire safety of the building is extremely important and is reflected in the  censee  MDPI,  Basel,  Switzerland.  legislation of the member states of the European Union. Fire safety regulations impose  This article  is an open access article  strict requirements on building design, especially for timber buildings [2]. The collapse of  distributed under the terms and con‐ a building due to a fire can occur for several reasons, namely the failure of a building  ditions of the Creative Commons At‐  BY) license (https://cre‐ construction product, structural element, or structural system. When a building construc‐ tribution (CC ativecommons.org/licenses/by/4.0/).  tion’s capability to withstand the effects of a loading is reduced, e.g., below the applied  Buildings 2022, 12, 875. https://doi.org/10.3390/buildings12070875  www.mdpi.com/journal/buildings  Buildings 2022, 12, 875  2  of  17  loading, construction fails. The time to achieve this failure is presented as the value of fire  resistance, which in wooden structural elements exposed to fire, depends on the rate of  charred layer formation and the residual cross section, which is capable of transferring  the loading. The process of forming the charred layer must be considered whenever wood  surfaces or wood‐based panels are directly exposed to fire.  Wood is a complex heterogeneous colloidal system of substances consisting of main  and accompanying components. The main components are hemicelluloses, cellulose, and  lignin [3–6]. The fire resistance of the basic building blocks of wood varies, with hemicel‐ luloses being the least resistant to thermal decomposition, while lignin is the most re‐ sistant component of wood [7,8].  When wood is exposed to a sufficient thermal loading, a process of thermal degrada‐ tion occurs, which produces flammable gases, accompanied by loss of weight and cross‐ section [9]. Pinto et al. [10] stated that the lack of oxygen in the wood burning process  leads  to  the  decomposition  of  wood  into  several  components  and  the  formation  of  a  charred layer. According to Eurocode 5 [11], the process of forming a charred layer should  always be considered if wood surfaces or wood‐based panels are directly exposed to fire.  Fonseca and Barreira [12] stated that a wooden cross‐section exposed to fire consists of  the following zones: charred layer, pyrolysis zone and intact wood.  The burning boundary is the layer of material that is formed between the charred  layer and the wood in the process of wood burning. According to Eurocode 5 [11], this  limit is characterized by a temperature of 300 °C. However, the authors dealing with the  process of wood charring state other values [13]. Kačíková et al. [14] stated that charring  of wood can occur even at temperatures of 250 °C. Shaffer [15] quoted a temperature at  the interface of charred and uncharred wood of 288 °C. According to Osvald [16], charring  of the wooden surface occurs at temperatures of 290 °C. The depth of wood charring we  can define is the distance between the outer surface of the original element and the posi‐ tion of the charring line. The depth of the charred layer depends on the rate of carboniza‐ tion. The rate of charring of wood and the loss of properties depend on the type of wood.  New progressive and complex designs in the field of wooden constructions place  increasing demands on ensuring their fire safety. The calculations of fire resistance of com‐ plex  structures  according  to  Eurocode  5  [11]  are  complicated.  With  the  complexity  of  buildings, the possibility of calculation errors increases. Computer‐aided modeling based  on finite element analysis (FEA) is offered as a modern alternative, but extensive research  is still needed to collect suitable input data.  At present, fire safety design legislation does not consider the use of computer simula‐ tions as the equivalent method in the construction fire safety assessment in the Central Euro‐ pean countries (e.g., Slovakia and Czech Republic). One of the main reasons is the absence  of a functional model. Such a model should work on the principle of determining the worst  possible values, which in practice means that there cannot be a situation where the fire  resistance values obtained from the simulation will show better values than those from  the real fire tests. To use such a model, the difference between the values obtained from  real fire tests and simulations should be as small as possible, and at the same time smaller  than fire resistance values determined by manual calculations in accordance with the rele‐ vant technical standards. Despite the advantages provided by simulations, simple com‐ putational models are still preferred. The main reason is the non‐acceptance of computer  simulations in the European Union countries as a way for determining the fire resistance  of buildings. This is also related to the absence of technical standards and the necessary data  usable in simulations [17]. From a practical point of view, this fact has an impact on the con‐ struction possibilities, which are limited due to the use of simple computational models.  In the process of developing a computer model, the correct selection of data is ex‐ tremely important, because the modeling results are sensitive to the input data on the  materials that are used in the assessment process [18]. As the response of materials ex‐ posed to fire is often not known in advance, the results obtained are always viewed with  some uncertainty. Therefore, it is necessary to define the properties of the materials to be  Buildings 2022, 12, 875  3  of  17  used in the process of model preparation, while their choice must also be justified. As a  rule, further verification of the results obtained using validation tests are required. Ac‐ cording to Naser [18], Zhang et al. [19] Molina et al. [20], Couto et al. [21], Regueira and  Guaita [22], Dúbravská et al. [23], this illustrates the serious need for a systematic and  modern representation of various temperature‐dependent building material properties.  The development of such models is one of the first steps toward implementing a unified  approach to fire assessment [17].  Thermal conductivity is a parameter that describes the capability of a material to  transfer heat. It is one of the basic parameters used to determine properties such as ther‐ mal  resistance or alternative  heat transfer coefficient [24]. The thermal conductivity of  wood at a temperature of 20 °C is relatively low. It ranges from approximately 0.1 to 0.3  −1 −1 W∙m ∙K . Unique, compared to other materials, is the decrease in thermal conductivity  at a temperature from 200 to 320 °C. Subsequently, the thermal conductivity increases  again due to the formation of a charred layer. The values of thermal conductivity that  should be used in the calculations of fire resistance of wooden structures are given in Eu‐ rocode 5 [11]. According to Eurocode 5 [11], the thermal conductivity and heat capacity  data are similar for all types of softwoods and hardwoods. However, when those were  compared with results of other authors [25–35] studying the thermal conductivity of var‐ ious softwoods and hardwoods, expressed as a function of temperature, different values  from those reported in Eurocode 5 [11] were found (Figure 1).  0.7 16 Janssens (1994) Eurocode 5 Eurocode 5 ASCE (1992) Thomas (1996) Fuller et al. (1992) Mehaffey et al. (1994) Konig and Walleij (2000) 0.6 Fuller et al. (1992) Fredlund (1993) Fredlund (1988) Frangi (2001) Frangi (2001) Mehaffey et al. (1994) ASCE (1992) 0.5 Knudson et al. (1975) Hadvig (1981) Gammon (1987) Konig and Walleij (2000) 0.4 0.3 0.2 0.1 0.0 0 200 400 600 800 1000 0 200 400 600 800 1000 1200 Temperature (°C) Temperature (°C)     (a)  (b)  Figure 1. Properties of wood: (a) dependence of thermal conductivity of wood on temperature; (b)  dependence of specific heat capacity of wood on temperature.  According to Figure 1a, there is evidence of a significant variance of values in com‐ parison with the standard recommended values for wood from Eurocode 5 [11]. The rea‐ son for such diverse results is probably the heterogeneity and diversity of the wood, from  which it can be concluded that the right choice of input data is important for modeling  purposes.  From the point of view of modeling temperature profiles in cross‐section, the specific  heat capacity of wood is also considered to be an important property. It is defined as the  −1 −1 Thermal Conductivity (W∙m ∙K ) −1 −1 Specific Heat Capacity (kJ∙kg ∙K ) Buildings 2022, 12, 875  4  of  17  amount of heat that must be supplied to the “body” to increase its temperature by 1 K  −1 −1 (J∙g ∙K ). It describes the capacity of a material to absorb, store and release heat and is  greatly affected by its moisture. The graph of the dependence of the heat capacity of wood  on temperature is therefore characterized by a sharp increase in values at temperature  around 100 °C, when heat is consumed to change the state of the water and a subsequent  sharp drop, after evaporation of the residual water in the wood (Figure 1b).  As can be seen from the graph in Figure 1b, an increase in specific heat capacity val‐ ues has been recorded by several authors [27–31,35], and this increase in values is also  considered in Eurocode 5. An important input for the development of a fire model is in‐ formation about the investigated materials, i.e., wood in this case. The basic and at the  same time necessary input into modeling and development of a fire model is information  about the thermal conductivity of wood.  Wood burning is among the most dynamic of processes, which is difficult to simulate  by computer software. When designing a combustion simulation, it is necessary to imple‐ ment  many  boundary  conditions  into  the  simulations,  such  as,  e.g.,  heat  release  rate,  chemical composition of the material, chemical equations of combustion, material prop‐ erties, air flow, air temperature, etc. It would also be necessary to create a three‐dimen‐ sional model of the environment.  The widely used FEA software programs are SAFIR, ANSYS and ABAQUS. Peng  and Hadjisophocleus [36] used the software ABAQUS to conduct a thermal analysis to  determine the temperature profiles in timbers under fire exposure. Bedon and Fragiacomo  [37,38] studied fire resistance of in‐plane compressed log‐house unprotected timber walls  with  partial  thermal  insulation  with  ABAQUS  software.  In  another  study,  Bedon  and  Fragiacomo [39] analyzed fire resistance of thermally insulated log‐house timber walls  with ABAQUS software. Cachim and Franssen [40] performed FEA of timbers exposed to  fire with SAFIR software. Werther et al. [41] compared thermal analysis with the SAFIR,  ANSYS and ABAQUS software. The research shows that the programs give comparable  results to each other and real fire tests. Software ANSYS from ANSYS, Inc. located in Can‐ onsburg, Pennsylvania is one of the most used FEA software in the world and provides  reliable results [19–23,42].  Pecenko  Svensson  and  Hozjan  [43,44]  presented  a  new  numerical  model  named  PyCiF for determining the charring of wood exposed to standard and natural fire. The  new model couples an advanced 2D heat‐mass model with a pyrolysis model. The results  showed great model accuracy for the evaluation of charring depths of timber elements  exposed to the standard fire and natural fires.  The large number of boundary conditions creates a difficult problem to solve, in case  it is necessary to perform a complete combustion simulation, e.g., ANSYS software allows  one to perform combustion simulations, but from a practical point of view and mainly  due to many boundary conditions, it is used mainly for combustion simulations of homo‐ geneous gases. It was therefore necessary to find a simpler solution.  A simpler alternative is thermal analysis where the base element is heat conduction,  in which Frangi, Erchinger and Fontana [42], Zhang et al. [19] Molina et al. [20], Couto et  al. [21], Regueira and Guaita [22], and Dúbravská et al. [23] used this analysis to examine  different types of wooden construction elements exposed to fire with the software ANSYS.  In the case of the solution of heat conduction in wood, where it is heated above 100 °C,  which is common in fire conditions, a nonlinear problem arises, including phase changes  of the water contained in the wood. Wood as a hygroscopic material contains free and  bound water. The problem can be solved by setting the input as the temperature‐depend‐ ent properties regarding the data of the wood. Zhang et al. [19], Molina et al. [20], Couto  et al. [21], Regueira and Guaita [22], and Dúbravská et al. [23] used in their numerical  analysis studies a combination of three basic material properties: specific heat, density,  and thermal conductivity (specific heat approach), according to Eurocode 5 [11]. The sec‐ ond possible combination of material properties is density, thermal conductivity, and en‐ thalpy (enthalpy approach), which is not commonly used but has a few advantages. This  Buildings 2022, 12, 875  5  of  17  approach should be examined in more detail because it can solve the problem associated  with inaccurate results at temperatures around 100 °C [22,45].  This scientific paper deals with the assessment of the computer‐aided fire modeling  and simulation suitability based on the enthalpy approach for determining the charred  layer of structural elements. The structural element selected for testing had to meet several  criteria. The first was the extent of its use in the construction system. The second important  criterion was that it must ensure the load‐bearing capacity and stability of the building.  In the case of wooden constructions, or constructions that at least partially use wooden  structural elements, the previous criteria were best met by a wooden beam. In cross sec‐ tion, wooden beams have different shapes. The most common being a square or rectan‐ gular and circular cross‐section beams. Wooden beams are widely used as vertical and  horizontal structural elements in the construction of roofs, ceilings, walls, etc. The cross‐ section of the wooden beams selected for the medium‐scale fire tests was of a square and  circular cross‐section. The beams were made from Norway spruce (lat. Picea abies) wood,  which is one of the most used in the construction industry.  2. Materials and Methods  2.1. Medium‐Scale Fire Tests of Wooden Beams  Based on the implementation of a medium‐scale fire test, the depth of charring and  temperature profiles measured in time at predetermined places on the beam were evalu‐ ated. The results of the medium‐scale fire test were used for FEM validation in the ANSYS  program. Test samples were made from Norway spruce trunks. A total of 6 samples were  made, of which 3 were of circular cross‐section (logs) and 3 were of square cross‐section  (prisms), see Figure 2a,b.      (a)  (b)  Figure 2. Samples for medium‐scale fire tests: (a) circular cross‐section (logs); (b) square cross‐sec‐ tion (prisms).  The length of all samples was 1000 mm. The dimension of the side of the square cross‐ section was of 177 ± 1 mm, and the diameter of the circular cross‐section was of 200 ± 1  mm. The individual test samples were dried in an air‐conditioned room to a moisture  content of 13.00% ± 1.00%. No surface treatment was applied to the test samples.  As mentioned above, a total of 6 test samples were subjected to medium‐scale fire  tests. The test sample was placed on a structure made of aerated concrete blocks so that  the thermally loaded area of the test sample was at a height level with the central axis of  the radiation panel. The distance of the test sample from the radiation panel was 100 mm.  Buildings 2022, 12, 875  6  of  17  The size of the radiation area was of 480 × 280 mm. The energy source of the ceramic  3 −1 radiation panel was propane–butane gas with a constant flow (15 m ∙h ). The prepared  test set‐up is shown in Figure 3a. The medium‐scale fire test lasted 60 min, during which  temperature profiles were recorded at predetermined locations of the test sample. Tempera‐ ture profile was measured using NiCr‐Ni type thermocouples with a measuring range of −40  °C to +1200 °C. The location of the thermocouples in the test sample is shown in Figure 3b.  (a)  (b)  Figure 3. (a) Assembly for medium‐scale fire test; (b) location of thermocouples in the test samples.  At every 20 mm from the edge of the thermally loaded side of the sample up to 100  mm, five thermocouples were placed in pre‐drilled openings for measuring the tempera‐ ture inside the sample (thermocouples number 1, 2, 3, 4, 5).  AHLBORN ALMEMO 2290‐8710 V7 was used to record temperatures. The thermo‐ couples were positioned to measure the temperature in the middle of the cross section of  the test sample. At the end of the test, the samples were allowed to cool. A cross‐section  about 1 cm wide was made from the sample center to determine the charring area.  2.2. Selection and Verification of Suitable Fire Models  Based on a previous study, the wood burning process was simplified to conduct heat  in the wood, where based on the achieved temperature, it was possible to determine the  area (extent) of the charred layer and the intact wood of the wooden beam capable of  carrying the load. To create a computer model, the ANSYS 2022/R1 software was selected,  where a transient thermal analysis was used. In the ANSYS software, thermal energy in  thermal analysis is quantified using Fourier’s law as follows [46]:  d𝑇 (1)  𝑞𝑘   d𝑥 Thermal conductivity 𝑘   represents the capability of a material to conduct heat but also  expresses  how  fast  the  material  conducts  thermal  energy.  If  the  thermal  conductivity  changes with temperature, Fourier’s law is modified as follows, where the thermal con‐ ductivity 𝑘  is a function of temperature 𝑇  [47]:  𝑞𝑘 𝑇 ∇𝑇   (2)  Buildings 2022, 12, 875  7  of  17  Equation (2) describes heat conduction in a one‐dimensional space. The dependence  of 𝑘  on temperature may not always be simple when considering a more complex two‐to  three‐dimensional geometry. In these cases, the Newton–Raphson method (ANSYS (b),  2020) is used to solve the problem.  The difference between steady‐state heat transfer and transient heat transfer is the  existence of a non‐stationary member with density, specific heat, and temperature deriva‐ tion over  time. Transient thermal analysis determines temperatures and other thermal  quantities that change over time. The main equation for heat conduction through a solid  is given by the relation using the thermal equilibrium as follows [48,49]:  𝜕 𝑇 𝜕 𝑇 𝜕 𝑇 𝜕𝑇 𝑘 𝑞𝜌 𝑐   (3)  𝜕𝑥 𝜕𝑦 𝜕𝑧 𝜕𝑡 𝜕𝑇 𝑘∇ 𝑇𝑞 𝜌 𝑐   (4)  𝜕𝑡 Here, 𝜌   is density of a material, 𝑐   is specific heat capacity, k is thermal conductivity,  𝑞   is heat flux and 𝑇   is thermodynamic temperature. In the equation for transient heat  conduction, the expression on the right side of the equation (𝜌 𝑐 ) represents the rate  of energy storage in the body. After some time, when the temperature distribution no  longer changes, the process has reached a steady state, which is governed by Fourier’s law  [48].  2.3. Modeling the Behavior of Structural Elements in Fire in ANSYS  The properties (density, thermal conductivity, enthalpy–enthalpy approach) of Nor‐ way spruce wood, which are necessary for the proper functioning of thermal analysis,  were entered in the initial phase of model design. The initial density of Norway spruce  −3 samples at 20 °C was determined to 464.10 kg∙m  by gravimetric method with moisture  content 13%. Graph of wood density dependence from temperature was created in ac‐ cordance  with  Eurocode  5  [11]  (Figure  4a).  Thermal  conductivity  values  were  imple‐ mented into wood properties in simulations according to the Eurocode 5 [11] (Figure 4b).  1.6 1.4 1.2 0.8 0.6 0.4 0.2 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 Temperature (°C) Temperature (°C) (a)  (b)  Figure 4. Properties of Norway spruce: (a) density; (b) thermal conductivity.  In the simulations, the definition of enthalpy is adjusted to represent the energy ab‐ sorbed by the “unit volume” of the body. For wet wood, the derivation of the enthalpy  curve is based on two different effects of heat, heating the wood, and evaporating the free  water contained in the wood. After reaching a temperature of 100 °C, the contained water  is converted into water vapor. This phase change consumes most of the heat received,  which results in a slowdown in the heating of the wood.  −3 Density (kg∙m ) −1 −1 Thermal conductivity (W∙m ∙K ) Buildings 2022, 12, 875  8  of  17  The enthalpy values (Figure 5a) were calculated and entered the wood properties  according to Equations (5)–(7) [50]. Calculation of enthalpy was based on values of specific  heat capacity of wood according to Eurocode 5 [11] (Figure 5b).  250 8 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 Temperature (°C) Temperature (°C) (a)  (b)  Figure 5. Properties of Norway spruce: (a) enthalpy; (b) specific heat capacity.  𝐻 𝐻 𝑐 𝜌 𝑇 𝑐 𝜌 𝑇 ; 0𝑇 99 (5)  𝐻 𝐻 𝑐 𝜌 𝑇 𝐻 𝜌 ; 99𝑇 120  (6)  𝐻 𝐻 𝑐 𝜌 𝑇 𝑇 ;120𝑇 1200 (7)  𝐻   represents the starting point of the volume enthalpy curve and is equal to 0, 𝑐   is thermal capacity of a dry wood, 𝑐   is thermal capacity of water, 𝜌   is density of the  dry wood, 𝜌   is density of water and 𝑤   is moisture content of the wet wood. In the case  of implementation of 𝐻   in simulations, simulation software usually does not tolerate  zero numbers; therefore, the value  lim   must be entered. Equation (5) represents the cal‐ culation of the enthalpy of dry wood and the water content of the wood at temperature  T1. Equation (6) represents the calculation of enthalpy, when the state of water changes up  to the temperature T2. In this equation, 𝐻   is enthalpy of evaporation. Equation (7)  represents the calculation of the enthalpy of dry wood at temperature T3. Enthalpy calcu‐ lations have been performed separately for any change in wood properties.  2.3.1. Geometry of the Model  After entering the input data on the properties of materials, a model was created us‐ ing the “SpaceClaim” environment. The one‐dimensional model is not suitable for this  study because it does not give information of the shape of the charred layer. The model  can be solved in two‐dimensional space but it is not possible to monitor the response of  the solid elements of FEM to the results and the total computational time of larger wooden  structures. According to the previous statement, the geometry of the model was made in  three‐dimensional space in an orthogonal coordinate system. The model was identical to  the elements used in the medium‐scale tests. For maximum simplification, the final model  does not consider the whole test set, as in the case of a real fire test. The radiation panel,  test  sample  (wood  prism  or  log)  supporting  structures  and  environmental  conditions  were not considered in the resulting three‐dimensional model. Their absence did not af‐ fect the simulation results and accelerated the calculation. As a replacement for the radia‐ tion panel, a simplified plate with a thickness of 1 mm was used in the model but with the  same parameters of the produced fire loading as in the real fir test.  −3 Enthalpy (J∙m ) *106  −1 −1 Specific heat capacity (J∙g ∙K ) 𝑇 𝑇 Buildings 2022, 12, 875  9  of  17  Within  thermal  conductivity,  isotropic  and  orthotropic  thermal  conductivity  are  available. As wood is not a homogeneous material and the thermal conductivity is differ‐ ent in the direction of the fibers and perpendicular to the wood fibers, the use of ortho‐ tropic thermal conductivity is appropriate. However, as part of the simplification of the  simulation, since the wooden  beam is heated evenly to almost one side of it and heat  transfer perpendicular to the fibers is dominant, the difference in results when using iso‐ tropic thermal conductivity or orthotropic thermal conductivity is negligible, while using  isotropic thermal conductivity simplifies and speeds up the calculation.  2.3.2. Model  In the “Model” section, the meshing of the prepared models in the “Mesh” section  was performed. Element sizes were entered using the “Body Sizing” function. For wooden  elements,  it  was  5  mm  and  for  the  radiation  panel,  1  mm.  The  “Patch  Conforming  Method” function was selected. For logs, it was a tetrahedral mesh and for a prism, a  hexahedral mesh. The radiation panel was automatically meshed with a hexahedral mesh.  In the case of the logs, the total number of elements was 2,561,900 and the nodes 5,279,000.  The prism contained a total of 539,200 elements and 3,589,000 nodes. Subsequently, a ther‐ mal connection between the radiation panel and the loaded surface of the samples was  created in the models with manual connection region.  2.3.3. Simulation Settings  In the “Setup” section, the initial temperature of 18 °C was set according to the values  found in the medium‐scale tests. The simulation time was 3600 s, and the numbers of sub‐ steps and iterations were set according to real fire tests. The duration of one sub‐step was  of 60 s. The maximum number of iterations was set to 1000. A change was made in the  section for nonlinear solution settings, where the original value of thermal convergence  was changed from 1.5% to 10%. This adjustment was necessary because the convergence  criterion was not met in the initial phase of the simulation calculation (the first sub‐step  of the calculation), which the software evaluated as an error. The problem arose due to an  imbalance in the system, where within one sub‐step, there was a sharp rise in temperature,  which the software could calculate only with a certain deviation, exceeding the pre‐set  criterion. As the only boundary condition in the simulation, a uniform surface radiation  panel temperature of 1000 °C was defined. The value was measured using thermocouples  during real fire tests from the radiational panel surface and was verified using the docu‐ mentation for the radiation panel. The surface temperature of the radiational panel was  constant throughout the tests.  2.3.4. Setting the Method of Solution and Processing of Results  Results processing has been set in the “Solution” and “Results” sections. Using the  “Temperature” function, temperature profile was recorded at predefined locations. These  were then processed into tabular form. The outputs from the simulation also included  images of sections of individual samples, which were used to determine the area of the  charred layer. According to Eurocode 5 [11], Zhang et al. [19], Couto et al. [21], Regueira  and Guaita [22], and Dúbravská et al. [23], the isotherm position of 300 °C is taken to  determine the depth of charring beyond the charring limit.  2.3.5. Validation of Applied Fire Models using the Results of Medium‐Scale Fire Tests  Validation of a FEM is a process of verification of the exactitude of the models and  the material characterization associated with the existing experimental results [51]. The  validation of the prepared model was performed using the data on temperature profiles  and the charred layer obtained from medium‐scale fire tests. The basis of the validation  process  was  the  comparison  of  results  from  real  fire  tests  and  simulations,  where  the  Buildings 2022, 12, 875  10  of  17  temperature profiles at different depths and the area of the charred layer were compared.  The key was to achieve the greatest possible degree of accuracy of the simulation.  3. Results  The results of the comparison of medium‐scale fire tests and simulations were pro‐ cessed in the form of graphs of temperature profiles and images of individual sections  showing the depth of charred layer and graphs of charring rate. Each graph contains a  record of the temperature from real fire tests from a certain depth, their average value and  the temperature profile obtained from simulations (Figures 6–10). Because the results of  the medium‐scale fire tests consist of three measurements, the following statistical indica‐ tors were processed: absolute temperature deviation, mean temperature deviation, stand‐ ard temperature deviation of three measurements, variation range and variation coeffi‐ cient. To compare the simulation results with real fire tests, the following statistical indi‐ cators were processed: absolute temperature deviation of simulation and average temper‐ ature of measurements, percentage deviation of simulation and average value from meas‐ urements, and simulation accuracy, which indicates the agreement of the simulation re‐ sults with the results from the medium‐scale fire tests (Tables 1 and 2).  800 400 S1 prism S1 prism 700 S2 prism 350 S2 prism S3 prism S3 prism Average 300 Average Simulation Simulation 500 250 0 10 20304050 60 020 40 60 Time (min) Time (min) (a)  (b)  Figure 6. Temperature profile: (a) depth of 20 mm (prisms); (b) depth of 40 mm (prisms).  120 50 S1 prism S1 prism S2 prism S2 prism S3 prism S3 prism Average Average Simulation Simulation 60 30 0 10 0 102030405060 0 102030 405060 Time (min) Time (min) (a)  (b)  Figure 7. Temperature profile: (a) depth of 60 mm (prisms); (b) depth of 80 mm (prisms).  Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C) Buildings 2022, 12, 875  11  of  17  29 1000 S1 prism S1 log S2 prism S2 log S3 prism S3 log Average Average Simulation Simulation 0 204060 0 102030405060 Time (min) Time (min) (a)  (b)  Figure 8. Temperature profile: (a) depth of 100 mm (prisms); (b) depth of 20 mm (logs).  700 300 S1 log S1 log S2 log S2 log S3 log S3 log Average Average Simulation Simulation 0 10 20304050 60 0 102030 40 5060 Time (min) Time (min) (a)  (b)  Figure 9. Temperature profile: (a) depth of 40 mm (logs); (b) depth of 60 mm (logs).  140 120 S1 log S1 log S2 log S2 log S3 log S3 log Average Average 100 Simulation Simulation 0 0 0 1020 30 405060 0 102030 40 5060 Time (min) Time (min) (a)  (b)  Figure 10. Temperature profile: (a) depth of 80 mm (logs); (b) depth of 100 mm (logs).      Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C) Buildings 2022, 12, 875  12  of  17  Table 1. Statistical indicators—Norway spruce prisms.  Medium Scale test  Simulation  Absolute Temperature   Average  Standard   Variation   Absolute   Prism  Temperature  Deviation  Simulation  Deviation (°C)  Temperature  Temperature  Coefficient  Temperature  Range (°C)  (%)  Accuracy (%)  S1  S2  S3  Deviation (°C)  Deviation (°C)  (%)  Deviation (°C)  2 cm  52.8  62.2  23.2  46.1  63.9  124.1  22.7  27.8  9.6  91.7  4 cm  9.2  0.8  9.2  6.1  9.2  18.3  5.1  17.0  21.1  83.7  6 cm  2.5  0.2  2.5  1.7  2.5  5.0  5.4  3.2  5.9  94.2  8 cm  4.7  3.2  1.8  3.3  4.3  8.1  16.8  1.2  4.3  95.7  10 cm  0.6  1.1  1.2  1.0  1.3  2.5  6.4  1.3  6.3  93.7  Average  14.0  13.3  7.6  11.6  16.2  31.6  11.3  10.1  9.5  91.8  Table 2. Statistical indicators—Norway spruce logs.  Medium Scale Test  Simulation  Absolute Temperature   Average   Standard   Variation   Absolute   Log  Temperature  Deviation  Simulation  Deviation (°C)  Temperature  Temperature  Coefficient  Temperature  Range (°C)  (%)  Accuracy (%)  S1  S2  S3  Deviation (°C)  Deviation (°C)  (%)  Deviation (°C)  2 cm  15.7  16.4  29.4  20.5  29.6  58.4  6.9  26.0  7.1  93.1  4 cm  9.4  37.4  35.0  27.3  37.4  72.4  19.2  23.4  9.0  91.8  6 cm  14.7  5.9  8.9  9.8  13.1  23.9  12.2  5.9  4.8  95.3  8 cm  2.7  5.5  6.6  4.9  6.7  12.7  13.1  4.9  8.5  91.5  10 cm  13.4  12.2  1.2  8.9  12.8  25.5  26.1  3.8  7.8  92.2  Average  11.2  15.5  16.2  14.3  19.9  38.6  15.5  12.8  7.5  92.8  The average absolute deviation of all simulations for Norway spruce prism samples  was 10.1 °C, the deviation was 9.5%, while the accuracy of the simulations was 91.8% on  average (Table 1). The resulting values of the simulation accuracy strongly influenced the  temperature profiles from the medium‐scale fire tests in a depth of 4 cm (Figure 7a), where  the simulation accuracy was only 83.7%.  The average absolute deviation of all simulations for Norway spruce logs was 12.8  °C, the deviation was 7.5%, while the accuracy of the simulations was 92.8% on average  (Table 2).  After the completion of medium‐scale fire tests and making cross‐sections, the indi‐ vidual sections were marked according to the sample number and scanned into a com‐ puter, where the area of the charred layer was measured using CAD software.  The boundary of the charred layer is clearly visible after increasing the color contrast,   approximations the interface was sharp enough. Figures 11 and 12 show  while at several the scanned individual samples. The average area of the charred layer for the prism sam‐ 2 2 ples (Figure 11) was 71.8 cm , with a standard deviation of 12.2 cm . In percentage terms,  the charred layer represented 22.9% of the original area. The average area of the charred  2 2 layer for log samples (Figure 12) was 81.0 cm , with a standard deviation of 8.4 cm . In  percentage terms, the charred layer represented 25.8% of the original area.  Figure 11. Sample slices—Norway spruce prisms.  Buildings 2022, 12, 875  13  of  17  Figure 12. Sample slices—Norway spruce logs.  The results of the simulation  are processed in  the form of  images of temperature  fields, where the area with a temperature exceeding 300 °C was removed (Figure 13a,b).     (a)  (b)  Figure 13. Simulation results: (a) Norway spruce prism; (b) Norway spruce log.  The area of the charred layer for the Norway spruce prism obtained from the simu‐ 2 2 lation (Figure 13a) was 80.3 cm , which represents a deviation of 0.7 cm  from the average  value  of  the real  fire tests.  The  accuracy  of the simulation  was 99.2%.  The area  of the  charred layer for the Norway spruce log obtained from the simulation (Figure 13b) was  80.3 cm2, which represents a deviation of 0.7 cm  from the average value of the real fire  tests. The accuracy of the simulation was 99.2%.  4. Discussion  The comparison of the obtained modeling results showed an accuracy of more than  90%. The temperature curves from the simulations also faithfully simulated the section  with a constant temperature at 100 °C, which Regueira and Guaito [22], Pecenko, Svensson  and Hozjan [43] simulated only partially. The results of Martínez et al. [45] did not simu‐ late this range at all.  Of all the simulations, the largest deviations showed temperature profiles at a depth  of 4 cm, which significantly reduced the overall accuracy of the simulations. According to  Couto et al. [21], who examined the fire resistance of cellular wooden slabs using medium‐ scaled fire tests and FEA, many differences between experimental and numerical results  may be due to different levels of moisture in the material as well as the relative position  of thermocouples where there may be a slight deviation from their intended deposition.  Therefore, the most probable cause of higher deviations at a depth of 4 cm is the deflection  of the template used for drilling, which was used to drill openings (holes) for the place‐ ment  of  thermocouples.  Pierin,  Silva  and  La  Rovere  [52]  stated  that  one  of  the  other  Buildings 2022, 12, 875  14  of  17  reasons for simulation deviations from real fire tests is that wood and wood products may  have different cavities filled with air, which transfers heat by convection and radiation to  neighboring areas when heated, which distorts the results obtained with FEA.  It is further clear from the simulation results that the accuracy of the simulation in‐ creased with increasing distance of the thermocouples position from the radiation panel,  which is the exact opposite of what Martínez et al. [45] stated. Their FEM did not consider  the effect of moisture, which had a significant effect on the results. They further stated  that it is necessary to examine the influence of parameters such as water evaporation, mass  transfer, pyrolysis, and various thermal properties of contacts between individual layers  of wood, which will help to optimize the results of simulations. Zhang et al. [19] investi‐ gated the fire resistance of wooden beams exposed to fire by FEA. The results showed the  high accuracy of FEM at 50 mm compared to real fire tests. At 25 mm from the edge, the  temperature from the real fire tests is slightly higher than the temperature determined  from the  FEA.  The  authors  justified this  by the  fact  that  during a  real fire test,  cracks  formed in the wood, which resulted in a faster course of the coaling process. They did not  consider the formation of cracks in the FEA.  It is the formation of cracks in the wood that causes higher deviations of the simula‐ tion results from the results obtained by real fire tests, within the total area of the charred  layer. Cracks were formed in different locations at each test sample.  The formation of  cracks in the layer of charred coal locally led to a significant increase in heat penetration  into the pyrolysis zone and thus an increase in temperature. Another possible cause of the  deviations could be the sporadic occurrence of flames at the front of the samples during  the test, with a partial flash of the flame to the unloaded side of the sample. Due to the  high unpredictability and dynamism of the process, this effect could not be simulated with  sufficient accuracy in this type of FEA.  Another possibility to improve the simulations is to refine the input data on materi‐ als. Molina et al. [20], Pierin, Silva and La Roverey [52], Couto et al. [21], Regueira and  Guaita, [22] and Martínez et al. [45] used the properties of wood specified in Eurocode 5  [11]. Molina et al. [20], who in their study performed a numerical analysis of the behavior  of structural wooden elements with a cross section of 6 × 16 cm in fire conditions using  ANSYS software, stated that to improve numerical results, research should focus on ob‐ taining data on thermal properties of different types of wood due to the lack of data; the  generalized data for hardwood and softwood available from technical standards [11] still  have to be used. This leads to inaccuracies in the numerical results of the simulation.  5. Conclusions  The aim of the study was to assess the suitability of the application of computer mod‐ eling in ANSYS on the example of assessing the charred layer of structural elements of  wooden buildings. The developed fire model was used in the process of modeling the  behavior of wooden beams in a fire. All simulations were performed using transient ther‐ mal  analysis.  The  modeling  results  were  compared  with  the  performed  medium‐scale  tests results, focusing on the charred layer of wooden beams.  The comparison of the results of real fire tests and simulations showed the following  facts. Information on the thermal properties of wood entered in the simulation, which was  based on Eurocode 5 [11], represents a good basis in the process of FEM creation after  additional modifications. The created FEM based on the enthalpy approach provides suf‐ ficiently accurate information about the temperature profiles and the formation of a charred  layer of wooden beams exposed to thermal loading. Due to the enthalpy approach, the tem‐ perature curves from the simulations also faithfully simulated the section with a constant tem‐ perature at about 100 °C. Within the temperature profiles, the accuracy of simulations aver‐ aged 91.7%. The accuracy of the simulations describing the total area of the charred layer was  93.0% on average. The accuracy of the simulations increased with increasing distance of  the thermocouples from the radiation panel. The shape of the charred wood layer pre‐ dicted by simulations is in good correspondence with real fire tests results.  Buildings 2022, 12, 875  15  of  17  Based on the high correlation of numerical and experimental results, the created FEM  is validated and usable for further research. Deviations of the simulation results from the  results of real fire tests could be caused by different values of moisture content in individ‐ ual layers of wood, relative position of thermocouples where there could be a slight devi‐ ation from their planned placement, and the water evaporation process from wood and  unpredictable cracking.  The FEM presented in this study can be used as a possible replacement for manual  calculations or medium‐scale tests in determining the fire resistance of wooden structural  elements using the residual cross‐section. It can also be used in the search for new con‐ struction solutions for wooden elements and modifications to the design of cross‐sections  of wooden beams or wooden joints so that they can better withstand fire conditions. The  model can be another step in the development of technical standards aimed at assessing  fire resistance using computer‐aided modeling.  The created FEM also makes it possible to combine thermal analysis with static anal‐ ysis, due to which it is possible to monitor the effect of temperature on the mechanical  response of wooden beams. With the help of transient static analysis, it is possible to monitor  the size of the deflection of wooden beams and the mechanism of deformation, which makes  it easier to determine the loading criterion of a given structural element loaded with fire.  To improve the results of computer‐aided modeling, in the future, it is necessary to  focus research to the material properties of various species of wood. Due to the lack of  data, the generalized data for hard and soft woods available from technical standards [11]  must still be used. Data collection should focus on obtaining information on material den‐ sity, thermal conductivity, and mass thermal capacity as the most important properties  for non‐stationary thermal analyses. According to the mechanical properties, data collec‐ tion should focus on strength properties and the modulus of elasticity.  Author Contributions: Conceptualization, A.M. and P.T.; methodology, D.Š. and D.K.; software,  D.Š.; validation, D.Š. and A.M.; formal analysis, A.M. and D.K.; investigation, D.Š.; resources, D.Š.;  data curation, D.Š.; writing—original draft preparation, D.Š.; writing—review and editing, D.Š. and  D.K.; visualization, P.T.; supervision, A.M. All authors have read and agreed to the published ver‐ sion of the manuscript.  Funding: This research was funded by the Slovak Research and Development Agency, grant num‐ ber APVV‐17‐0005; the Slovak Research and Development Agency, grant number SK‐CN‐21‐0002;  Cultural and Educational Grant Agency Ministry of Education, Science, Research and Sport of the  Slovak Republic, grant number 001TU Z‐4/2020; Progressive research of performance properties of  wood‐based materials and products (LignoPro); ITMS 313011T720, supported by the Operational  Programme Integrated Infrastructure (OPII) funded by the ERDF.  Conflicts of Interest: The authors declare no conflict of interest.  References  1. Gosselin, A.; Cimon, Y.; Lehoux, N.; Blanchet, P. Main Features of the Timber Structure Building Industry Business Models.  Buildings 2021, 11, 170. https://doi.org/10.3390/buildings11040170.  2. Kincelova, K.; Boton, C.; Blanchet, P.; Dagenais, C. Fire Safety in Tall Timber Building: A BIM‐Based Automated Code‐Checking  Approach. Buildings 2020, 10, 121. https://doi.org/10.3390/buildings10070121.  3. Waliszewska, B.; Mleczek, M.; Zborowska, M.; Goliński, P.; Rutkowski, P.; Szentner, K. Changes in the chemical composition  and  the  structure  of  cellulose  and  lignin  in  elm  wood  exposed  to  various  forms  of  arsenic.  Cellulose  2019,  26,  6303–6315.  https://doi.org/10.1007/s10570‐019‐02511‐z.  4. Mania, P.; Wróblewski, M.; Wójciak, A.; Roszyk, E.; Moliński, W. Hardness of Densified Wood in Relation to Changed Chemical  Composition. Forests 2020, 11, 506. https://doi.org/10.3390/f11050506.  5. Faleeva, J.M.; Sinelshchikov, V.A.; Sytchev, G.A.; Zaichenko, V.M. Exothermic effect during torrefaction. In Proceedings of the  32nd International Conference on Interaction of Intense Energy Fluxes with Matter, Elbrus, Russia, 1–6 March 2017.  6. Carpita, N.C.; McCann, M.C. Redesigning plant cell walls for the biomass‐based bioeconomy. J. Biol. Chem. 2020, 295, 15144– 15157. https://doi.org/10.1074/jbc.rev120.014561.  7. Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86,  1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013.  Buildings 2022, 12, 875  16  of  17  8. Machová, D.; Oberle, A.; Zárybnická, L.; Dohnal, J.; Šeda, V.; Dömény, J.; Vacenovská, V.; Kloiber, M.; Pěnčík, J.; Tippner, J.; et  al. Surface Characteristics of One‐Sided Charred Beech Wood. Polymers 2021, 13, 1551. https://doi.org/10.3390/polym13101551.  9. Frangi,  A.;  Fontana,  M.  Charring  rates  and  temperature  profiles  of  wood  sections.  Fire  Mater.  2003,  27,  91–102.  https://doi.org/10.1002/fam.819.  10. Limin, L.; Zhaoyi, H.; Weidong, L.; Cheng, H.; Yang, L.; Pinto, E.; Machado, G.; Felipetto, R.; Christoforo, A.; Lahr, F.; et al.  Rutting and Fatigue Performance Evaluation of Qingchuan Rock Modified Asphalt Mixture. Open Constr. Build. Technol. J. 2016,  10, 511–523. https://doi.org/10.2174/1874836801610010450.  11. EN  1995‐1‐2;  Eurocode  5:  Design  of  timber  structures—Part  1‐2:  General—Structural  fire  design.  European  Committee  for  Standardization: Burssels, Belgium, 2004.  12. Fonseca, E.M.M.; Barreira, L.M.S. Charring rate determination of wood pine profiles submitted to high temperatures. WIT Trans.  Built Environ. 2009, 108, 449–457. https://doi.org/10.2495/safe090421.  13. Lange, D.; Boström, L.; Schmid, J.; Albrektsson, J. The Reduced Cross Section Method Applied to Glulam Timber Exposed to  Non‐standard Fire Curves. Fire Technol. 2015, 51, 1311–1340. https://doi.org/10.1007/s10694‐015‐0485‐y.  14. Kačíková, D.; Kačík, F.; Hrnčiarik, P. Temperature influence on chemical a mechanical properties of wood. Delta 2011, 5, 16–20.  15. Schaffer, E.L. Structural Fire Design: Wood; Forest Products Laboratory: Madison, WI, USA, 1984; Research Paper, FPL 450.  16. Osvald, A. Timber Structure ≠ Fire; Technical University in Zvolen: Zvolen, Slovakia, 2011; p. 336.  17. Ferreira, J.D.R.; Gernay, T.; Franssen, J.‐M. Discussion on a systematic approach to validation of software for structures in fire.  In Proceedings of the The 10th International Conference on Structures in Fire, Blefast, UK, 5–8 June 2018.  18. Naser, M. Properties and material models for modern construction materials at elevated temperatures. Comput. Mater. Sci. 2019,  160, 16–29. https://doi.org/10.1016/j.commatsci.2018.12.055.  19. Zhang, J.; Xu, Q.‐F.; Xu, Y.‐X.; Wang, B.; Shang, J.‐X. A numerical study on fire endurance of wood beams exposed to three‐side  fire. J. Zhejiang Univ. A 2012, 13, 491–505. https://doi.org/10.1631/jzus.a1200022.  20. Molina,  J.C.;  Calil, C.; Kimura,  F.A.;  Pinto, E.M.; Regobello,  R.; Scheer, M.B.;  Carneiro, C.; Bressan, O.A.; Dos Santos, K.G.  Análise Numérica do Comportamento de Elementos de Madeira em Situação de Incêndio. Floresta E Ambient. 2012, 19, 162–170.  https://doi.org/10.4322/floram.2012.019.  21. Couto, D.L.; Fonseca, E.M.; Piloto, P.; Meireles, J.M.; Barreira, L.M.; Ferreira, D.R. Perforated cellular wooden slabs under fire:  Numerical and experimental approaches. J. Build. Eng. 2016, 8, 218–224. https://doi.org/10.1016/j.jobe.2016.10.007.  22. Regueira, R.; Guaita, M. Numerical simulation of the fire behaviour of timber dovetail connections. Fire Saf. J. 2018, 96, 1–12.  https://doi.org/10.1016/j.firesaf.2017.12.005.  23. Dubravska, K.; Špilák, D.; Tereňová, L.; Štefková, J. Charring Layer on a Cross‐laminated Timber Panel Construction. Acta Fac.  Xylologiae Zvolen 2019, 61, 109–119. https://doi.org/10.17423/afx.2019.61.2.11.  24. Yoon, S.; Macphee, D.E.; Imbabi, M.S. Estimation of the thermal properties of hardened cement paste on the basis of guarded  heat flow meter measurements. Thermochim. Acta 2014, 588, 1–10. https://doi.org/10.1016/j.tca.2014.04.015.  25. Janssens, M.L.; White, R.H. Short communication: Temperature profiles in wood members exposed to fire. Fire Mater. 1994, 18,  263–265. https://doi.org/10.1002/fam.810180410.  26. Thomas, G. Fire Resistance of Light Timber Framed Walls and Floors. Ph.D. Thesis, Victoria University of Wellington, Weling‐ ton, New Zealand, 1996.  27. Mehaffey, J.R.; Cuerrier, P.; Carisse, G. A model for predicting heat transfer through gypsum‐board/wood‐stud walls exposed  to fire. Fire Mater. 1994, 18, 297–305. https://doi.org/10.1002/fam.810180505.  28. Fuller, J.J.; Leichti, R.J.; White, R.H. Temperature distribution in a nailed gypsum‐stud joint exposed to fire. Fire Mater. 1992, 16,  95–99. https://doi.org/10.1002/fam.810160206.  29. Fredlund, B. A Model for Heat and Mass Transfer in Timber Structures During Fire: A Theoretical, Numerical and Experimental  Study. Ph.D. Thesis, Lund University, Sweden Institute of Science and Technology, Department of Fire Safety Engineering:  Lund, Sweden, 1988.  30. Frangi,  A.,  Brandverhalten  von  Holz‐Beton‐Verbunddecken.  2001,  Birkhäuser.  https://www.research‐ collection.ethz.ch/bitstream/handle/20.500.11850/145666/eth‐24596‐01.pdf?sequence=1&isAllowed=y   31. Babrauskas, V. Structural Fire Protection—ASCE Manuals and Reports on Engineering Practice No. 78. In Structural Fire Engi‐ neering; American Society of Civil Engineers, New York, NY, USA, 1992.  32. Knudson, R.M.; Schniewind, A.P. Performance of structural wood members exposed to fire. Forest Prod. J.1975, 25, 23–32.  33. Hadvig,  S.  Charring  of  Wood  in  Building  Fires:  Practice,  Theory,  Instrumentation,  Measurements;  Technical  University  of  Den‐ mark/Laboratory of Heating and Air‐conditioning: Lyngby, Denmark, 1981.  34. Gammon, B.W. Reliability Analysis of Wood‐Frame Wall Assemblies Exposed to Fire; University of California, Berkeley, CA, USA,  1987.  35. König, J.; Walleij, L. Timber Frame Assemblies Exposed to Standard and Parametric Fires: Part 2: A Design Model for Standard Fire  Exposure; 2000. Swedish Institute for Wood Technology Research, Stockholm.  36. Peng, L.; Hadjisophocleus, G.; Mehaffey, J.; Mohammad, M. Predicting the Fire Resistance of Wood–Steel–Wood Timber Con‐ nections. Fire Technol. 2009, 47, 1101–1119. https://doi.org/10.1007/s10694‐009‐0118‐4.  37. Bedon, C.; Fragiacomo, M. Fire Resistance of In‐Plane Compressed Log‐House Timber Walls with Partial Thermal Insulation.  Buildings 2018, 8, 131. https://doi.org/10.3390/buildings8100131.  Buildings 2022, 12, 875  17  of  17  38. Bedon, C.; Fragiacomo, M. Experimental and numerical analysis of in‐plane compressed unprotected log‐haus timber walls in  fire conditions. Fire Saf. J. 2019, 107, 89–103. https://doi.org/10.1016/j.firesaf.2017.12.007.  39. Bedon, C.; Fragiacomo, M. Fire Resistance of Thermally Insulated Log‐House Timber Walls. Fire Technol. 2018, 55, 307–341.  https://doi.org/10.1007/s10694‐018‐0792‐1.  40. Cachim, P.B.; Franssen, J.‐M. Numerical modelling of timber connections under fire loading using a component model. Fire Saf.  J. 2009, 44, 840–853. https://doi.org/10.1016/j.firesaf.2009.03.013.  41. Werther, N.; OʹNeill, J.W.; Spellman, P.M.; Abu, A.K.; Moss, P.J.; Buchanan, A.H.; Winter, S. Parametric Study of Modelling  Structural Timber in Fire with Different Software Packages. In Proceedings of the 7th International Conference on Structures in  Fire, Zurich, Switzerland, 6–8 June 2012.  42. Frangi, A.; Erchinger, C.; Fontana, M. Charring model for timber frame floor assemblies with void cavities. Fire Saf. J. 2008, 43,  551–564. https://doi.org/10.1016/j.firesaf.2007.12.009.  43. Pečenko, R.; Hozjan, T. A novel approach to determine charring of wood in natural fire implemented in a coupled heat‐mass‐ pyrolysis model. Holzforschung 2020, 75, 148–158. https://doi.org/10.1515/hf‐2020‐0081.  44. Pečenko, R.; Svensson, S.; Hozjan, T. Modelling heat and moisture transfer in timber exposed to fire. Int. J. Heat Mass Transf.  2015, 87, 598–605. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.024.  45. Martínez‐Martínez, J.E.; Alonso‐Martínez, M.; Rabanal, F.P..; Díaz, J.J.D.C. Study of the influence of heat transfer of a CLT beam  through FEM. J. Physics: Conf. Ser. 2018, 1107, 032003. https://doi.org/10.1088/1742‐6596/1107/3/032003.  46. ANSYS.  Thermal  conductivity  in  Heat  Transfer.  Introduction  to  Fouriers  Law.  2020.  Available  online:  https://courses.an‐ sys.com/index.php/courses/learn‐physics‐structural‐mechanics‐heat‐transfer‐copy/lessons/lesson‐1‐introduction‐to‐fouriers‐ law‐2/ (accessed on 28 July 2020).  47. ANSYS. Thermal conductivity in Heat Transfer. Thermal Conductivity of Materials. 2020. Available online: https://courses.an‐ sys.com/index.php/courses/learn‐physics‐structural‐mechanics‐heat‐transfer‐copy/lessons/lesson‐2‐thermal‐conductivity‐of‐ materials‐2/ (accessed on 28 July 2020).  48. ANSYS.  Thermal  conductivity  in  Heat  Transfer.  Thermal  Contact  Conductance.  2020.  Available  online:  https://courses.an‐ sys.com/index.php/courses/learn‐physics‐structural‐mechanics‐heat‐transfer‐copy/lessons/thermal‐contact‐lesson‐3/ (accessed  on 28 July 2020).  49. ANSYS. Thermal capacitance in Heat Transfer Analysis. Specific Heat of Materials. 2020. Available online: https://courses.an‐ sys.com/index.php/courses/thermal‐capacitance‐in‐heat‐transfer/lessons/lesson‐2‐specific‐heat‐of‐materials/  (accessed  on  28  July 2020).  50. ANSYS. Thermal capacitance in Heat Transfer Analysis. Phase Change and Enthalpy. 2020. Available online: https://courses.an‐ sys.com/index.php/courses/thermal‐capacitance‐in‐heat‐transfer/lessons/lesson‐4‐phase‐change‐and‐enthalpy/ (accessed on 28  July 2020).  51. Suntharalingam, T.; Upasiri, I.; Nagaratnam, B.; Poologanathan, K.; Gatheeshgar, P.; Tsavdaridis, K.D.; Nuwanthika, D. Finite  Element Modelling to Predict the Fire Performance of Bio‐Inspired 3D‐Printed Concrete Wall Panels Exposed to Realistic Fire.  Buildings 2022, 12, 111. https://doi.org/10.3390/buildings12020111.  52. Pierin, I.; Silva, V.P.; La Rovere, H.L. Thermal analysis of two‐dimensional structures in fire. Rev. Ibracon De Estrut. Mater. 2015,  8, 25–36. https://doi.org/10.1590/s1983‐41952015000100005.  http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Buildings Multidisciplinary Digital Publishing Institute

Determining the Charred Layer of Wooden Beams with Finite Element Analysis Based on Enthalpy Approach

Loading next page...
 
/lp/multidisciplinary-digital-publishing-institute/determining-the-charred-layer-of-wooden-beams-with-finite-element-27GldWjoXx
Publisher
Multidisciplinary Digital Publishing Institute
Copyright
© 1996-2022 MDPI (Basel, Switzerland) unless otherwise stated Disclaimer The statements, opinions and data contained in the journals are solely those of the individual authors and contributors and not of the publisher and the editor(s). MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Terms and Conditions Privacy Policy
ISSN
2075-5309
DOI
10.3390/buildings12070875
Publisher site
See Article on Publisher Site

Abstract

Article  Determining the Charred Layer of Wooden Beams with Finite  Element Analysis Based on Enthalpy Approach  Dominik Špilák *, Andrea Majlingová, Danica Kačíková and Patrik Tischler  Department of Fire Protection, Faculty of Wood Sciences and Technology, Technical University in Zvolen,   960 01 Zvolen, Slovakia; majlingova@tuzvo.sk (A.M.); kacikova@tuzvo.sk (D.K.);   xtischlerp@is.tuzvo.sk (P.T.)  *  Correspondence: xspilakd@is.tuzvo.sk  Abstract: In the process of computer modeling the formation of a charred layer in wood materials,  it is important to implement the correct material data. In thermal analysis, there exist two different  approaches of implementation: the temperature‐dependent material data properties, heat capacity  approach and enthalpy approach, which is not commonly used but which has a few advantages.  This approach should be examined in more detail because it can solve the problem associated with  inaccurate results at temperatures around 100 °C. This scientific paper deals with the assessment of  the computer‐aided fire modeling and simulation suitability based on the enthalpy approach for  determining the charred layer of structural elements. The structural elements selected for testing  were spruce wooden beams with rectangular and circular cross‐sections. A finite element model  (FEM) was created in ANSYS software. The model was validated by medium‐scale fire tests data of  the spruce wooden beams loaded with a radiation panel. Boundary conditions were identical to the  medium‐scale fire test. Due to the enthalpy approach, the temperature curves from the simulations  also faithfully simulated the section with a constant temperature around 100 °C. Within the temper‐ ature profiles, the accuracy of simulations averaged 91.7%. The accuracy of the simulations describ‐ ing the total area of the charred layer was 93.0% on average. Presented FEM can be used in the  Citation: Špilák, D.; Majlingová, A.;  search for new construction solutions for wooden elements and modifications to the design of cross‐ Kačíková, D.; Tischler, P. Determining  sections of wooden beams or wooden joints so that they can better withstand fire conditions.  the Charred Layer of Wooden Beams  with Finite Element Analysis Based  Keywords: wood beams; fire resistance; finite element analysis; transient thermal analysis; ANSYS  on Enthalpy Approach. Buildings  2022, 12, 875. https://doi.org/    10.3390/buildings12070875  Academic Editors: Chiara Bedon,  1. Introduction  Vlatka Rajčič  Wood has excellent structural and mechanical properties and construction options.  Received: 11 May 2022  For timber building structures, this material ideally meets the increasingly dominant and  Accepted: 17 June 2022  uncompromising demand of the present and probably the foreseeable future for environ‐ Published: 21 June 2022  mental friendliness in the environment, housing, industrial production, and construction.  Publisher’s  Note:  MDPI  stays  neu‐ It turns out that the use of wood as a construction material in the construction industry  tral  with  regard  to  jurisdictional  and architecture will have a significantly progressive trend in the 21st century [1].  claims in published maps and institu‐ The role of the construction system of each building is to transfer the loading to its  tional affiliations.  foundations. During its lifetime, the building is exposed to the effects of permanent and  accidental loads, which also include fire loading. Fire poses a great threat to the users of  the building, because in addition to the direct adverse effects on health, it can lead to the  collapse of the entire building, and thus endanger persons in or near the building. There‐ Copyright: © 2022 by the authors. Li‐ fore, ensuring the fire safety of the building is extremely important and is reflected in the  censee  MDPI,  Basel,  Switzerland.  legislation of the member states of the European Union. Fire safety regulations impose  This article  is an open access article  strict requirements on building design, especially for timber buildings [2]. The collapse of  distributed under the terms and con‐ a building due to a fire can occur for several reasons, namely the failure of a building  ditions of the Creative Commons At‐  BY) license (https://cre‐ construction product, structural element, or structural system. When a building construc‐ tribution (CC ativecommons.org/licenses/by/4.0/).  tion’s capability to withstand the effects of a loading is reduced, e.g., below the applied  Buildings 2022, 12, 875. https://doi.org/10.3390/buildings12070875  www.mdpi.com/journal/buildings  Buildings 2022, 12, 875  2  of  17  loading, construction fails. The time to achieve this failure is presented as the value of fire  resistance, which in wooden structural elements exposed to fire, depends on the rate of  charred layer formation and the residual cross section, which is capable of transferring  the loading. The process of forming the charred layer must be considered whenever wood  surfaces or wood‐based panels are directly exposed to fire.  Wood is a complex heterogeneous colloidal system of substances consisting of main  and accompanying components. The main components are hemicelluloses, cellulose, and  lignin [3–6]. The fire resistance of the basic building blocks of wood varies, with hemicel‐ luloses being the least resistant to thermal decomposition, while lignin is the most re‐ sistant component of wood [7,8].  When wood is exposed to a sufficient thermal loading, a process of thermal degrada‐ tion occurs, which produces flammable gases, accompanied by loss of weight and cross‐ section [9]. Pinto et al. [10] stated that the lack of oxygen in the wood burning process  leads  to  the  decomposition  of  wood  into  several  components  and  the  formation  of  a  charred layer. According to Eurocode 5 [11], the process of forming a charred layer should  always be considered if wood surfaces or wood‐based panels are directly exposed to fire.  Fonseca and Barreira [12] stated that a wooden cross‐section exposed to fire consists of  the following zones: charred layer, pyrolysis zone and intact wood.  The burning boundary is the layer of material that is formed between the charred  layer and the wood in the process of wood burning. According to Eurocode 5 [11], this  limit is characterized by a temperature of 300 °C. However, the authors dealing with the  process of wood charring state other values [13]. Kačíková et al. [14] stated that charring  of wood can occur even at temperatures of 250 °C. Shaffer [15] quoted a temperature at  the interface of charred and uncharred wood of 288 °C. According to Osvald [16], charring  of the wooden surface occurs at temperatures of 290 °C. The depth of wood charring we  can define is the distance between the outer surface of the original element and the posi‐ tion of the charring line. The depth of the charred layer depends on the rate of carboniza‐ tion. The rate of charring of wood and the loss of properties depend on the type of wood.  New progressive and complex designs in the field of wooden constructions place  increasing demands on ensuring their fire safety. The calculations of fire resistance of com‐ plex  structures  according  to  Eurocode  5  [11]  are  complicated.  With  the  complexity  of  buildings, the possibility of calculation errors increases. Computer‐aided modeling based  on finite element analysis (FEA) is offered as a modern alternative, but extensive research  is still needed to collect suitable input data.  At present, fire safety design legislation does not consider the use of computer simula‐ tions as the equivalent method in the construction fire safety assessment in the Central Euro‐ pean countries (e.g., Slovakia and Czech Republic). One of the main reasons is the absence  of a functional model. Such a model should work on the principle of determining the worst  possible values, which in practice means that there cannot be a situation where the fire  resistance values obtained from the simulation will show better values than those from  the real fire tests. To use such a model, the difference between the values obtained from  real fire tests and simulations should be as small as possible, and at the same time smaller  than fire resistance values determined by manual calculations in accordance with the rele‐ vant technical standards. Despite the advantages provided by simulations, simple com‐ putational models are still preferred. The main reason is the non‐acceptance of computer  simulations in the European Union countries as a way for determining the fire resistance  of buildings. This is also related to the absence of technical standards and the necessary data  usable in simulations [17]. From a practical point of view, this fact has an impact on the con‐ struction possibilities, which are limited due to the use of simple computational models.  In the process of developing a computer model, the correct selection of data is ex‐ tremely important, because the modeling results are sensitive to the input data on the  materials that are used in the assessment process [18]. As the response of materials ex‐ posed to fire is often not known in advance, the results obtained are always viewed with  some uncertainty. Therefore, it is necessary to define the properties of the materials to be  Buildings 2022, 12, 875  3  of  17  used in the process of model preparation, while their choice must also be justified. As a  rule, further verification of the results obtained using validation tests are required. Ac‐ cording to Naser [18], Zhang et al. [19] Molina et al. [20], Couto et al. [21], Regueira and  Guaita [22], Dúbravská et al. [23], this illustrates the serious need for a systematic and  modern representation of various temperature‐dependent building material properties.  The development of such models is one of the first steps toward implementing a unified  approach to fire assessment [17].  Thermal conductivity is a parameter that describes the capability of a material to  transfer heat. It is one of the basic parameters used to determine properties such as ther‐ mal  resistance or alternative  heat transfer coefficient [24]. The thermal conductivity of  wood at a temperature of 20 °C is relatively low. It ranges from approximately 0.1 to 0.3  −1 −1 W∙m ∙K . Unique, compared to other materials, is the decrease in thermal conductivity  at a temperature from 200 to 320 °C. Subsequently, the thermal conductivity increases  again due to the formation of a charred layer. The values of thermal conductivity that  should be used in the calculations of fire resistance of wooden structures are given in Eu‐ rocode 5 [11]. According to Eurocode 5 [11], the thermal conductivity and heat capacity  data are similar for all types of softwoods and hardwoods. However, when those were  compared with results of other authors [25–35] studying the thermal conductivity of var‐ ious softwoods and hardwoods, expressed as a function of temperature, different values  from those reported in Eurocode 5 [11] were found (Figure 1).  0.7 16 Janssens (1994) Eurocode 5 Eurocode 5 ASCE (1992) Thomas (1996) Fuller et al. (1992) Mehaffey et al. (1994) Konig and Walleij (2000) 0.6 Fuller et al. (1992) Fredlund (1993) Fredlund (1988) Frangi (2001) Frangi (2001) Mehaffey et al. (1994) ASCE (1992) 0.5 Knudson et al. (1975) Hadvig (1981) Gammon (1987) Konig and Walleij (2000) 0.4 0.3 0.2 0.1 0.0 0 200 400 600 800 1000 0 200 400 600 800 1000 1200 Temperature (°C) Temperature (°C)     (a)  (b)  Figure 1. Properties of wood: (a) dependence of thermal conductivity of wood on temperature; (b)  dependence of specific heat capacity of wood on temperature.  According to Figure 1a, there is evidence of a significant variance of values in com‐ parison with the standard recommended values for wood from Eurocode 5 [11]. The rea‐ son for such diverse results is probably the heterogeneity and diversity of the wood, from  which it can be concluded that the right choice of input data is important for modeling  purposes.  From the point of view of modeling temperature profiles in cross‐section, the specific  heat capacity of wood is also considered to be an important property. It is defined as the  −1 −1 Thermal Conductivity (W∙m ∙K ) −1 −1 Specific Heat Capacity (kJ∙kg ∙K ) Buildings 2022, 12, 875  4  of  17  amount of heat that must be supplied to the “body” to increase its temperature by 1 K  −1 −1 (J∙g ∙K ). It describes the capacity of a material to absorb, store and release heat and is  greatly affected by its moisture. The graph of the dependence of the heat capacity of wood  on temperature is therefore characterized by a sharp increase in values at temperature  around 100 °C, when heat is consumed to change the state of the water and a subsequent  sharp drop, after evaporation of the residual water in the wood (Figure 1b).  As can be seen from the graph in Figure 1b, an increase in specific heat capacity val‐ ues has been recorded by several authors [27–31,35], and this increase in values is also  considered in Eurocode 5. An important input for the development of a fire model is in‐ formation about the investigated materials, i.e., wood in this case. The basic and at the  same time necessary input into modeling and development of a fire model is information  about the thermal conductivity of wood.  Wood burning is among the most dynamic of processes, which is difficult to simulate  by computer software. When designing a combustion simulation, it is necessary to imple‐ ment  many  boundary  conditions  into  the  simulations,  such  as,  e.g.,  heat  release  rate,  chemical composition of the material, chemical equations of combustion, material prop‐ erties, air flow, air temperature, etc. It would also be necessary to create a three‐dimen‐ sional model of the environment.  The widely used FEA software programs are SAFIR, ANSYS and ABAQUS. Peng  and Hadjisophocleus [36] used the software ABAQUS to conduct a thermal analysis to  determine the temperature profiles in timbers under fire exposure. Bedon and Fragiacomo  [37,38] studied fire resistance of in‐plane compressed log‐house unprotected timber walls  with  partial  thermal  insulation  with  ABAQUS  software.  In  another  study,  Bedon  and  Fragiacomo [39] analyzed fire resistance of thermally insulated log‐house timber walls  with ABAQUS software. Cachim and Franssen [40] performed FEA of timbers exposed to  fire with SAFIR software. Werther et al. [41] compared thermal analysis with the SAFIR,  ANSYS and ABAQUS software. The research shows that the programs give comparable  results to each other and real fire tests. Software ANSYS from ANSYS, Inc. located in Can‐ onsburg, Pennsylvania is one of the most used FEA software in the world and provides  reliable results [19–23,42].  Pecenko  Svensson  and  Hozjan  [43,44]  presented  a  new  numerical  model  named  PyCiF for determining the charring of wood exposed to standard and natural fire. The  new model couples an advanced 2D heat‐mass model with a pyrolysis model. The results  showed great model accuracy for the evaluation of charring depths of timber elements  exposed to the standard fire and natural fires.  The large number of boundary conditions creates a difficult problem to solve, in case  it is necessary to perform a complete combustion simulation, e.g., ANSYS software allows  one to perform combustion simulations, but from a practical point of view and mainly  due to many boundary conditions, it is used mainly for combustion simulations of homo‐ geneous gases. It was therefore necessary to find a simpler solution.  A simpler alternative is thermal analysis where the base element is heat conduction,  in which Frangi, Erchinger and Fontana [42], Zhang et al. [19] Molina et al. [20], Couto et  al. [21], Regueira and Guaita [22], and Dúbravská et al. [23] used this analysis to examine  different types of wooden construction elements exposed to fire with the software ANSYS.  In the case of the solution of heat conduction in wood, where it is heated above 100 °C,  which is common in fire conditions, a nonlinear problem arises, including phase changes  of the water contained in the wood. Wood as a hygroscopic material contains free and  bound water. The problem can be solved by setting the input as the temperature‐depend‐ ent properties regarding the data of the wood. Zhang et al. [19], Molina et al. [20], Couto  et al. [21], Regueira and Guaita [22], and Dúbravská et al. [23] used in their numerical  analysis studies a combination of three basic material properties: specific heat, density,  and thermal conductivity (specific heat approach), according to Eurocode 5 [11]. The sec‐ ond possible combination of material properties is density, thermal conductivity, and en‐ thalpy (enthalpy approach), which is not commonly used but has a few advantages. This  Buildings 2022, 12, 875  5  of  17  approach should be examined in more detail because it can solve the problem associated  with inaccurate results at temperatures around 100 °C [22,45].  This scientific paper deals with the assessment of the computer‐aided fire modeling  and simulation suitability based on the enthalpy approach for determining the charred  layer of structural elements. The structural element selected for testing had to meet several  criteria. The first was the extent of its use in the construction system. The second important  criterion was that it must ensure the load‐bearing capacity and stability of the building.  In the case of wooden constructions, or constructions that at least partially use wooden  structural elements, the previous criteria were best met by a wooden beam. In cross sec‐ tion, wooden beams have different shapes. The most common being a square or rectan‐ gular and circular cross‐section beams. Wooden beams are widely used as vertical and  horizontal structural elements in the construction of roofs, ceilings, walls, etc. The cross‐ section of the wooden beams selected for the medium‐scale fire tests was of a square and  circular cross‐section. The beams were made from Norway spruce (lat. Picea abies) wood,  which is one of the most used in the construction industry.  2. Materials and Methods  2.1. Medium‐Scale Fire Tests of Wooden Beams  Based on the implementation of a medium‐scale fire test, the depth of charring and  temperature profiles measured in time at predetermined places on the beam were evalu‐ ated. The results of the medium‐scale fire test were used for FEM validation in the ANSYS  program. Test samples were made from Norway spruce trunks. A total of 6 samples were  made, of which 3 were of circular cross‐section (logs) and 3 were of square cross‐section  (prisms), see Figure 2a,b.      (a)  (b)  Figure 2. Samples for medium‐scale fire tests: (a) circular cross‐section (logs); (b) square cross‐sec‐ tion (prisms).  The length of all samples was 1000 mm. The dimension of the side of the square cross‐ section was of 177 ± 1 mm, and the diameter of the circular cross‐section was of 200 ± 1  mm. The individual test samples were dried in an air‐conditioned room to a moisture  content of 13.00% ± 1.00%. No surface treatment was applied to the test samples.  As mentioned above, a total of 6 test samples were subjected to medium‐scale fire  tests. The test sample was placed on a structure made of aerated concrete blocks so that  the thermally loaded area of the test sample was at a height level with the central axis of  the radiation panel. The distance of the test sample from the radiation panel was 100 mm.  Buildings 2022, 12, 875  6  of  17  The size of the radiation area was of 480 × 280 mm. The energy source of the ceramic  3 −1 radiation panel was propane–butane gas with a constant flow (15 m ∙h ). The prepared  test set‐up is shown in Figure 3a. The medium‐scale fire test lasted 60 min, during which  temperature profiles were recorded at predetermined locations of the test sample. Tempera‐ ture profile was measured using NiCr‐Ni type thermocouples with a measuring range of −40  °C to +1200 °C. The location of the thermocouples in the test sample is shown in Figure 3b.  (a)  (b)  Figure 3. (a) Assembly for medium‐scale fire test; (b) location of thermocouples in the test samples.  At every 20 mm from the edge of the thermally loaded side of the sample up to 100  mm, five thermocouples were placed in pre‐drilled openings for measuring the tempera‐ ture inside the sample (thermocouples number 1, 2, 3, 4, 5).  AHLBORN ALMEMO 2290‐8710 V7 was used to record temperatures. The thermo‐ couples were positioned to measure the temperature in the middle of the cross section of  the test sample. At the end of the test, the samples were allowed to cool. A cross‐section  about 1 cm wide was made from the sample center to determine the charring area.  2.2. Selection and Verification of Suitable Fire Models  Based on a previous study, the wood burning process was simplified to conduct heat  in the wood, where based on the achieved temperature, it was possible to determine the  area (extent) of the charred layer and the intact wood of the wooden beam capable of  carrying the load. To create a computer model, the ANSYS 2022/R1 software was selected,  where a transient thermal analysis was used. In the ANSYS software, thermal energy in  thermal analysis is quantified using Fourier’s law as follows [46]:  d𝑇 (1)  𝑞𝑘   d𝑥 Thermal conductivity 𝑘   represents the capability of a material to conduct heat but also  expresses  how  fast  the  material  conducts  thermal  energy.  If  the  thermal  conductivity  changes with temperature, Fourier’s law is modified as follows, where the thermal con‐ ductivity 𝑘  is a function of temperature 𝑇  [47]:  𝑞𝑘 𝑇 ∇𝑇   (2)  Buildings 2022, 12, 875  7  of  17  Equation (2) describes heat conduction in a one‐dimensional space. The dependence  of 𝑘  on temperature may not always be simple when considering a more complex two‐to  three‐dimensional geometry. In these cases, the Newton–Raphson method (ANSYS (b),  2020) is used to solve the problem.  The difference between steady‐state heat transfer and transient heat transfer is the  existence of a non‐stationary member with density, specific heat, and temperature deriva‐ tion over  time. Transient thermal analysis determines temperatures and other thermal  quantities that change over time. The main equation for heat conduction through a solid  is given by the relation using the thermal equilibrium as follows [48,49]:  𝜕 𝑇 𝜕 𝑇 𝜕 𝑇 𝜕𝑇 𝑘 𝑞𝜌 𝑐   (3)  𝜕𝑥 𝜕𝑦 𝜕𝑧 𝜕𝑡 𝜕𝑇 𝑘∇ 𝑇𝑞 𝜌 𝑐   (4)  𝜕𝑡 Here, 𝜌   is density of a material, 𝑐   is specific heat capacity, k is thermal conductivity,  𝑞   is heat flux and 𝑇   is thermodynamic temperature. In the equation for transient heat  conduction, the expression on the right side of the equation (𝜌 𝑐 ) represents the rate  of energy storage in the body. After some time, when the temperature distribution no  longer changes, the process has reached a steady state, which is governed by Fourier’s law  [48].  2.3. Modeling the Behavior of Structural Elements in Fire in ANSYS  The properties (density, thermal conductivity, enthalpy–enthalpy approach) of Nor‐ way spruce wood, which are necessary for the proper functioning of thermal analysis,  were entered in the initial phase of model design. The initial density of Norway spruce  −3 samples at 20 °C was determined to 464.10 kg∙m  by gravimetric method with moisture  content 13%. Graph of wood density dependence from temperature was created in ac‐ cordance  with  Eurocode  5  [11]  (Figure  4a).  Thermal  conductivity  values  were  imple‐ mented into wood properties in simulations according to the Eurocode 5 [11] (Figure 4b).  1.6 1.4 1.2 0.8 0.6 0.4 0.2 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 Temperature (°C) Temperature (°C) (a)  (b)  Figure 4. Properties of Norway spruce: (a) density; (b) thermal conductivity.  In the simulations, the definition of enthalpy is adjusted to represent the energy ab‐ sorbed by the “unit volume” of the body. For wet wood, the derivation of the enthalpy  curve is based on two different effects of heat, heating the wood, and evaporating the free  water contained in the wood. After reaching a temperature of 100 °C, the contained water  is converted into water vapor. This phase change consumes most of the heat received,  which results in a slowdown in the heating of the wood.  −3 Density (kg∙m ) −1 −1 Thermal conductivity (W∙m ∙K ) Buildings 2022, 12, 875  8  of  17  The enthalpy values (Figure 5a) were calculated and entered the wood properties  according to Equations (5)–(7) [50]. Calculation of enthalpy was based on values of specific  heat capacity of wood according to Eurocode 5 [11] (Figure 5b).  250 8 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 Temperature (°C) Temperature (°C) (a)  (b)  Figure 5. Properties of Norway spruce: (a) enthalpy; (b) specific heat capacity.  𝐻 𝐻 𝑐 𝜌 𝑇 𝑐 𝜌 𝑇 ; 0𝑇 99 (5)  𝐻 𝐻 𝑐 𝜌 𝑇 𝐻 𝜌 ; 99𝑇 120  (6)  𝐻 𝐻 𝑐 𝜌 𝑇 𝑇 ;120𝑇 1200 (7)  𝐻   represents the starting point of the volume enthalpy curve and is equal to 0, 𝑐   is thermal capacity of a dry wood, 𝑐   is thermal capacity of water, 𝜌   is density of the  dry wood, 𝜌   is density of water and 𝑤   is moisture content of the wet wood. In the case  of implementation of 𝐻   in simulations, simulation software usually does not tolerate  zero numbers; therefore, the value  lim   must be entered. Equation (5) represents the cal‐ culation of the enthalpy of dry wood and the water content of the wood at temperature  T1. Equation (6) represents the calculation of enthalpy, when the state of water changes up  to the temperature T2. In this equation, 𝐻   is enthalpy of evaporation. Equation (7)  represents the calculation of the enthalpy of dry wood at temperature T3. Enthalpy calcu‐ lations have been performed separately for any change in wood properties.  2.3.1. Geometry of the Model  After entering the input data on the properties of materials, a model was created us‐ ing the “SpaceClaim” environment. The one‐dimensional model is not suitable for this  study because it does not give information of the shape of the charred layer. The model  can be solved in two‐dimensional space but it is not possible to monitor the response of  the solid elements of FEM to the results and the total computational time of larger wooden  structures. According to the previous statement, the geometry of the model was made in  three‐dimensional space in an orthogonal coordinate system. The model was identical to  the elements used in the medium‐scale tests. For maximum simplification, the final model  does not consider the whole test set, as in the case of a real fire test. The radiation panel,  test  sample  (wood  prism  or  log)  supporting  structures  and  environmental  conditions  were not considered in the resulting three‐dimensional model. Their absence did not af‐ fect the simulation results and accelerated the calculation. As a replacement for the radia‐ tion panel, a simplified plate with a thickness of 1 mm was used in the model but with the  same parameters of the produced fire loading as in the real fir test.  −3 Enthalpy (J∙m ) *106  −1 −1 Specific heat capacity (J∙g ∙K ) 𝑇 𝑇 Buildings 2022, 12, 875  9  of  17  Within  thermal  conductivity,  isotropic  and  orthotropic  thermal  conductivity  are  available. As wood is not a homogeneous material and the thermal conductivity is differ‐ ent in the direction of the fibers and perpendicular to the wood fibers, the use of ortho‐ tropic thermal conductivity is appropriate. However, as part of the simplification of the  simulation, since the wooden  beam is heated evenly to almost one side of it and heat  transfer perpendicular to the fibers is dominant, the difference in results when using iso‐ tropic thermal conductivity or orthotropic thermal conductivity is negligible, while using  isotropic thermal conductivity simplifies and speeds up the calculation.  2.3.2. Model  In the “Model” section, the meshing of the prepared models in the “Mesh” section  was performed. Element sizes were entered using the “Body Sizing” function. For wooden  elements,  it  was  5  mm  and  for  the  radiation  panel,  1  mm.  The  “Patch  Conforming  Method” function was selected. For logs, it was a tetrahedral mesh and for a prism, a  hexahedral mesh. The radiation panel was automatically meshed with a hexahedral mesh.  In the case of the logs, the total number of elements was 2,561,900 and the nodes 5,279,000.  The prism contained a total of 539,200 elements and 3,589,000 nodes. Subsequently, a ther‐ mal connection between the radiation panel and the loaded surface of the samples was  created in the models with manual connection region.  2.3.3. Simulation Settings  In the “Setup” section, the initial temperature of 18 °C was set according to the values  found in the medium‐scale tests. The simulation time was 3600 s, and the numbers of sub‐ steps and iterations were set according to real fire tests. The duration of one sub‐step was  of 60 s. The maximum number of iterations was set to 1000. A change was made in the  section for nonlinear solution settings, where the original value of thermal convergence  was changed from 1.5% to 10%. This adjustment was necessary because the convergence  criterion was not met in the initial phase of the simulation calculation (the first sub‐step  of the calculation), which the software evaluated as an error. The problem arose due to an  imbalance in the system, where within one sub‐step, there was a sharp rise in temperature,  which the software could calculate only with a certain deviation, exceeding the pre‐set  criterion. As the only boundary condition in the simulation, a uniform surface radiation  panel temperature of 1000 °C was defined. The value was measured using thermocouples  during real fire tests from the radiational panel surface and was verified using the docu‐ mentation for the radiation panel. The surface temperature of the radiational panel was  constant throughout the tests.  2.3.4. Setting the Method of Solution and Processing of Results  Results processing has been set in the “Solution” and “Results” sections. Using the  “Temperature” function, temperature profile was recorded at predefined locations. These  were then processed into tabular form. The outputs from the simulation also included  images of sections of individual samples, which were used to determine the area of the  charred layer. According to Eurocode 5 [11], Zhang et al. [19], Couto et al. [21], Regueira  and Guaita [22], and Dúbravská et al. [23], the isotherm position of 300 °C is taken to  determine the depth of charring beyond the charring limit.  2.3.5. Validation of Applied Fire Models using the Results of Medium‐Scale Fire Tests  Validation of a FEM is a process of verification of the exactitude of the models and  the material characterization associated with the existing experimental results [51]. The  validation of the prepared model was performed using the data on temperature profiles  and the charred layer obtained from medium‐scale fire tests. The basis of the validation  process  was  the  comparison  of  results  from  real  fire  tests  and  simulations,  where  the  Buildings 2022, 12, 875  10  of  17  temperature profiles at different depths and the area of the charred layer were compared.  The key was to achieve the greatest possible degree of accuracy of the simulation.  3. Results  The results of the comparison of medium‐scale fire tests and simulations were pro‐ cessed in the form of graphs of temperature profiles and images of individual sections  showing the depth of charred layer and graphs of charring rate. Each graph contains a  record of the temperature from real fire tests from a certain depth, their average value and  the temperature profile obtained from simulations (Figures 6–10). Because the results of  the medium‐scale fire tests consist of three measurements, the following statistical indica‐ tors were processed: absolute temperature deviation, mean temperature deviation, stand‐ ard temperature deviation of three measurements, variation range and variation coeffi‐ cient. To compare the simulation results with real fire tests, the following statistical indi‐ cators were processed: absolute temperature deviation of simulation and average temper‐ ature of measurements, percentage deviation of simulation and average value from meas‐ urements, and simulation accuracy, which indicates the agreement of the simulation re‐ sults with the results from the medium‐scale fire tests (Tables 1 and 2).  800 400 S1 prism S1 prism 700 S2 prism 350 S2 prism S3 prism S3 prism Average 300 Average Simulation Simulation 500 250 0 10 20304050 60 020 40 60 Time (min) Time (min) (a)  (b)  Figure 6. Temperature profile: (a) depth of 20 mm (prisms); (b) depth of 40 mm (prisms).  120 50 S1 prism S1 prism S2 prism S2 prism S3 prism S3 prism Average Average Simulation Simulation 60 30 0 10 0 102030405060 0 102030 405060 Time (min) Time (min) (a)  (b)  Figure 7. Temperature profile: (a) depth of 60 mm (prisms); (b) depth of 80 mm (prisms).  Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C) Buildings 2022, 12, 875  11  of  17  29 1000 S1 prism S1 log S2 prism S2 log S3 prism S3 log Average Average Simulation Simulation 0 204060 0 102030405060 Time (min) Time (min) (a)  (b)  Figure 8. Temperature profile: (a) depth of 100 mm (prisms); (b) depth of 20 mm (logs).  700 300 S1 log S1 log S2 log S2 log S3 log S3 log Average Average Simulation Simulation 0 10 20304050 60 0 102030 40 5060 Time (min) Time (min) (a)  (b)  Figure 9. Temperature profile: (a) depth of 40 mm (logs); (b) depth of 60 mm (logs).  140 120 S1 log S1 log S2 log S2 log S3 log S3 log Average Average 100 Simulation Simulation 0 0 0 1020 30 405060 0 102030 40 5060 Time (min) Time (min) (a)  (b)  Figure 10. Temperature profile: (a) depth of 80 mm (logs); (b) depth of 100 mm (logs).      Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C) Buildings 2022, 12, 875  12  of  17  Table 1. Statistical indicators—Norway spruce prisms.  Medium Scale test  Simulation  Absolute Temperature   Average  Standard   Variation   Absolute   Prism  Temperature  Deviation  Simulation  Deviation (°C)  Temperature  Temperature  Coefficient  Temperature  Range (°C)  (%)  Accuracy (%)  S1  S2  S3  Deviation (°C)  Deviation (°C)  (%)  Deviation (°C)  2 cm  52.8  62.2  23.2  46.1  63.9  124.1  22.7  27.8  9.6  91.7  4 cm  9.2  0.8  9.2  6.1  9.2  18.3  5.1  17.0  21.1  83.7  6 cm  2.5  0.2  2.5  1.7  2.5  5.0  5.4  3.2  5.9  94.2  8 cm  4.7  3.2  1.8  3.3  4.3  8.1  16.8  1.2  4.3  95.7  10 cm  0.6  1.1  1.2  1.0  1.3  2.5  6.4  1.3  6.3  93.7  Average  14.0  13.3  7.6  11.6  16.2  31.6  11.3  10.1  9.5  91.8  Table 2. Statistical indicators—Norway spruce logs.  Medium Scale Test  Simulation  Absolute Temperature   Average   Standard   Variation   Absolute   Log  Temperature  Deviation  Simulation  Deviation (°C)  Temperature  Temperature  Coefficient  Temperature  Range (°C)  (%)  Accuracy (%)  S1  S2  S3  Deviation (°C)  Deviation (°C)  (%)  Deviation (°C)  2 cm  15.7  16.4  29.4  20.5  29.6  58.4  6.9  26.0  7.1  93.1  4 cm  9.4  37.4  35.0  27.3  37.4  72.4  19.2  23.4  9.0  91.8  6 cm  14.7  5.9  8.9  9.8  13.1  23.9  12.2  5.9  4.8  95.3  8 cm  2.7  5.5  6.6  4.9  6.7  12.7  13.1  4.9  8.5  91.5  10 cm  13.4  12.2  1.2  8.9  12.8  25.5  26.1  3.8  7.8  92.2  Average  11.2  15.5  16.2  14.3  19.9  38.6  15.5  12.8  7.5  92.8  The average absolute deviation of all simulations for Norway spruce prism samples  was 10.1 °C, the deviation was 9.5%, while the accuracy of the simulations was 91.8% on  average (Table 1). The resulting values of the simulation accuracy strongly influenced the  temperature profiles from the medium‐scale fire tests in a depth of 4 cm (Figure 7a), where  the simulation accuracy was only 83.7%.  The average absolute deviation of all simulations for Norway spruce logs was 12.8  °C, the deviation was 7.5%, while the accuracy of the simulations was 92.8% on average  (Table 2).  After the completion of medium‐scale fire tests and making cross‐sections, the indi‐ vidual sections were marked according to the sample number and scanned into a com‐ puter, where the area of the charred layer was measured using CAD software.  The boundary of the charred layer is clearly visible after increasing the color contrast,   approximations the interface was sharp enough. Figures 11 and 12 show  while at several the scanned individual samples. The average area of the charred layer for the prism sam‐ 2 2 ples (Figure 11) was 71.8 cm , with a standard deviation of 12.2 cm . In percentage terms,  the charred layer represented 22.9% of the original area. The average area of the charred  2 2 layer for log samples (Figure 12) was 81.0 cm , with a standard deviation of 8.4 cm . In  percentage terms, the charred layer represented 25.8% of the original area.  Figure 11. Sample slices—Norway spruce prisms.  Buildings 2022, 12, 875  13  of  17  Figure 12. Sample slices—Norway spruce logs.  The results of the simulation  are processed in  the form of  images of temperature  fields, where the area with a temperature exceeding 300 °C was removed (Figure 13a,b).     (a)  (b)  Figure 13. Simulation results: (a) Norway spruce prism; (b) Norway spruce log.  The area of the charred layer for the Norway spruce prism obtained from the simu‐ 2 2 lation (Figure 13a) was 80.3 cm , which represents a deviation of 0.7 cm  from the average  value  of  the real  fire tests.  The  accuracy  of the simulation  was 99.2%.  The area  of the  charred layer for the Norway spruce log obtained from the simulation (Figure 13b) was  80.3 cm2, which represents a deviation of 0.7 cm  from the average value of the real fire  tests. The accuracy of the simulation was 99.2%.  4. Discussion  The comparison of the obtained modeling results showed an accuracy of more than  90%. The temperature curves from the simulations also faithfully simulated the section  with a constant temperature at 100 °C, which Regueira and Guaito [22], Pecenko, Svensson  and Hozjan [43] simulated only partially. The results of Martínez et al. [45] did not simu‐ late this range at all.  Of all the simulations, the largest deviations showed temperature profiles at a depth  of 4 cm, which significantly reduced the overall accuracy of the simulations. According to  Couto et al. [21], who examined the fire resistance of cellular wooden slabs using medium‐ scaled fire tests and FEA, many differences between experimental and numerical results  may be due to different levels of moisture in the material as well as the relative position  of thermocouples where there may be a slight deviation from their intended deposition.  Therefore, the most probable cause of higher deviations at a depth of 4 cm is the deflection  of the template used for drilling, which was used to drill openings (holes) for the place‐ ment  of  thermocouples.  Pierin,  Silva  and  La  Rovere  [52]  stated  that  one  of  the  other  Buildings 2022, 12, 875  14  of  17  reasons for simulation deviations from real fire tests is that wood and wood products may  have different cavities filled with air, which transfers heat by convection and radiation to  neighboring areas when heated, which distorts the results obtained with FEA.  It is further clear from the simulation results that the accuracy of the simulation in‐ creased with increasing distance of the thermocouples position from the radiation panel,  which is the exact opposite of what Martínez et al. [45] stated. Their FEM did not consider  the effect of moisture, which had a significant effect on the results. They further stated  that it is necessary to examine the influence of parameters such as water evaporation, mass  transfer, pyrolysis, and various thermal properties of contacts between individual layers  of wood, which will help to optimize the results of simulations. Zhang et al. [19] investi‐ gated the fire resistance of wooden beams exposed to fire by FEA. The results showed the  high accuracy of FEM at 50 mm compared to real fire tests. At 25 mm from the edge, the  temperature from the real fire tests is slightly higher than the temperature determined  from the  FEA.  The  authors  justified this  by the  fact  that  during a  real fire test,  cracks  formed in the wood, which resulted in a faster course of the coaling process. They did not  consider the formation of cracks in the FEA.  It is the formation of cracks in the wood that causes higher deviations of the simula‐ tion results from the results obtained by real fire tests, within the total area of the charred  layer. Cracks were formed in different locations at each test sample.  The formation of  cracks in the layer of charred coal locally led to a significant increase in heat penetration  into the pyrolysis zone and thus an increase in temperature. Another possible cause of the  deviations could be the sporadic occurrence of flames at the front of the samples during  the test, with a partial flash of the flame to the unloaded side of the sample. Due to the  high unpredictability and dynamism of the process, this effect could not be simulated with  sufficient accuracy in this type of FEA.  Another possibility to improve the simulations is to refine the input data on materi‐ als. Molina et al. [20], Pierin, Silva and La Roverey [52], Couto et al. [21], Regueira and  Guaita, [22] and Martínez et al. [45] used the properties of wood specified in Eurocode 5  [11]. Molina et al. [20], who in their study performed a numerical analysis of the behavior  of structural wooden elements with a cross section of 6 × 16 cm in fire conditions using  ANSYS software, stated that to improve numerical results, research should focus on ob‐ taining data on thermal properties of different types of wood due to the lack of data; the  generalized data for hardwood and softwood available from technical standards [11] still  have to be used. This leads to inaccuracies in the numerical results of the simulation.  5. Conclusions  The aim of the study was to assess the suitability of the application of computer mod‐ eling in ANSYS on the example of assessing the charred layer of structural elements of  wooden buildings. The developed fire model was used in the process of modeling the  behavior of wooden beams in a fire. All simulations were performed using transient ther‐ mal  analysis.  The  modeling  results  were  compared  with  the  performed  medium‐scale  tests results, focusing on the charred layer of wooden beams.  The comparison of the results of real fire tests and simulations showed the following  facts. Information on the thermal properties of wood entered in the simulation, which was  based on Eurocode 5 [11], represents a good basis in the process of FEM creation after  additional modifications. The created FEM based on the enthalpy approach provides suf‐ ficiently accurate information about the temperature profiles and the formation of a charred  layer of wooden beams exposed to thermal loading. Due to the enthalpy approach, the tem‐ perature curves from the simulations also faithfully simulated the section with a constant tem‐ perature at about 100 °C. Within the temperature profiles, the accuracy of simulations aver‐ aged 91.7%. The accuracy of the simulations describing the total area of the charred layer was  93.0% on average. The accuracy of the simulations increased with increasing distance of  the thermocouples from the radiation panel. The shape of the charred wood layer pre‐ dicted by simulations is in good correspondence with real fire tests results.  Buildings 2022, 12, 875  15  of  17  Based on the high correlation of numerical and experimental results, the created FEM  is validated and usable for further research. Deviations of the simulation results from the  results of real fire tests could be caused by different values of moisture content in individ‐ ual layers of wood, relative position of thermocouples where there could be a slight devi‐ ation from their planned placement, and the water evaporation process from wood and  unpredictable cracking.  The FEM presented in this study can be used as a possible replacement for manual  calculations or medium‐scale tests in determining the fire resistance of wooden structural  elements using the residual cross‐section. It can also be used in the search for new con‐ struction solutions for wooden elements and modifications to the design of cross‐sections  of wooden beams or wooden joints so that they can better withstand fire conditions. The  model can be another step in the development of technical standards aimed at assessing  fire resistance using computer‐aided modeling.  The created FEM also makes it possible to combine thermal analysis with static anal‐ ysis, due to which it is possible to monitor the effect of temperature on the mechanical  response of wooden beams. With the help of transient static analysis, it is possible to monitor  the size of the deflection of wooden beams and the mechanism of deformation, which makes  it easier to determine the loading criterion of a given structural element loaded with fire.  To improve the results of computer‐aided modeling, in the future, it is necessary to  focus research to the material properties of various species of wood. Due to the lack of  data, the generalized data for hard and soft woods available from technical standards [11]  must still be used. Data collection should focus on obtaining information on material den‐ sity, thermal conductivity, and mass thermal capacity as the most important properties  for non‐stationary thermal analyses. According to the mechanical properties, data collec‐ tion should focus on strength properties and the modulus of elasticity.  Author Contributions: Conceptualization, A.M. and P.T.; methodology, D.Š. and D.K.; software,  D.Š.; validation, D.Š. and A.M.; formal analysis, A.M. and D.K.; investigation, D.Š.; resources, D.Š.;  data curation, D.Š.; writing—original draft preparation, D.Š.; writing—review and editing, D.Š. and  D.K.; visualization, P.T.; supervision, A.M. All authors have read and agreed to the published ver‐ sion of the manuscript.  Funding: This research was funded by the Slovak Research and Development Agency, grant num‐ ber APVV‐17‐0005; the Slovak Research and Development Agency, grant number SK‐CN‐21‐0002;  Cultural and Educational Grant Agency Ministry of Education, Science, Research and Sport of the  Slovak Republic, grant number 001TU Z‐4/2020; Progressive research of performance properties of  wood‐based materials and products (LignoPro); ITMS 313011T720, supported by the Operational  Programme Integrated Infrastructure (OPII) funded by the ERDF.  Conflicts of Interest: The authors declare no conflict of interest.  References  1. Gosselin, A.; Cimon, Y.; Lehoux, N.; Blanchet, P. Main Features of the Timber Structure Building Industry Business Models.  Buildings 2021, 11, 170. https://doi.org/10.3390/buildings11040170.  2. Kincelova, K.; Boton, C.; Blanchet, P.; Dagenais, C. Fire Safety in Tall Timber Building: A BIM‐Based Automated Code‐Checking  Approach. Buildings 2020, 10, 121. https://doi.org/10.3390/buildings10070121.  3. Waliszewska, B.; Mleczek, M.; Zborowska, M.; Goliński, P.; Rutkowski, P.; Szentner, K. Changes in the chemical composition  and  the  structure  of  cellulose  and  lignin  in  elm  wood  exposed  to  various  forms  of  arsenic.  Cellulose  2019,  26,  6303–6315.  https://doi.org/10.1007/s10570‐019‐02511‐z.  4. Mania, P.; Wróblewski, M.; Wójciak, A.; Roszyk, E.; Moliński, W. Hardness of Densified Wood in Relation to Changed Chemical  Composition. Forests 2020, 11, 506. https://doi.org/10.3390/f11050506.  5. Faleeva, J.M.; Sinelshchikov, V.A.; Sytchev, G.A.; Zaichenko, V.M. Exothermic effect during torrefaction. In Proceedings of the  32nd International Conference on Interaction of Intense Energy Fluxes with Matter, Elbrus, Russia, 1–6 March 2017.  6. Carpita, N.C.; McCann, M.C. Redesigning plant cell walls for the biomass‐based bioeconomy. J. Biol. Chem. 2020, 295, 15144– 15157. https://doi.org/10.1074/jbc.rev120.014561.  7. Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86,  1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013.  Buildings 2022, 12, 875  16  of  17  8. Machová, D.; Oberle, A.; Zárybnická, L.; Dohnal, J.; Šeda, V.; Dömény, J.; Vacenovská, V.; Kloiber, M.; Pěnčík, J.; Tippner, J.; et  al. Surface Characteristics of One‐Sided Charred Beech Wood. Polymers 2021, 13, 1551. https://doi.org/10.3390/polym13101551.  9. Frangi,  A.;  Fontana,  M.  Charring  rates  and  temperature  profiles  of  wood  sections.  Fire  Mater.  2003,  27,  91–102.  https://doi.org/10.1002/fam.819.  10. Limin, L.; Zhaoyi, H.; Weidong, L.; Cheng, H.; Yang, L.; Pinto, E.; Machado, G.; Felipetto, R.; Christoforo, A.; Lahr, F.; et al.  Rutting and Fatigue Performance Evaluation of Qingchuan Rock Modified Asphalt Mixture. Open Constr. Build. Technol. J. 2016,  10, 511–523. https://doi.org/10.2174/1874836801610010450.  11. EN  1995‐1‐2;  Eurocode  5:  Design  of  timber  structures—Part  1‐2:  General—Structural  fire  design.  European  Committee  for  Standardization: Burssels, Belgium, 2004.  12. Fonseca, E.M.M.; Barreira, L.M.S. Charring rate determination of wood pine profiles submitted to high temperatures. WIT Trans.  Built Environ. 2009, 108, 449–457. https://doi.org/10.2495/safe090421.  13. Lange, D.; Boström, L.; Schmid, J.; Albrektsson, J. The Reduced Cross Section Method Applied to Glulam Timber Exposed to  Non‐standard Fire Curves. Fire Technol. 2015, 51, 1311–1340. https://doi.org/10.1007/s10694‐015‐0485‐y.  14. Kačíková, D.; Kačík, F.; Hrnčiarik, P. Temperature influence on chemical a mechanical properties of wood. Delta 2011, 5, 16–20.  15. Schaffer, E.L. Structural Fire Design: Wood; Forest Products Laboratory: Madison, WI, USA, 1984; Research Paper, FPL 450.  16. Osvald, A. Timber Structure ≠ Fire; Technical University in Zvolen: Zvolen, Slovakia, 2011; p. 336.  17. Ferreira, J.D.R.; Gernay, T.; Franssen, J.‐M. Discussion on a systematic approach to validation of software for structures in fire.  In Proceedings of the The 10th International Conference on Structures in Fire, Blefast, UK, 5–8 June 2018.  18. Naser, M. Properties and material models for modern construction materials at elevated temperatures. Comput. Mater. Sci. 2019,  160, 16–29. https://doi.org/10.1016/j.commatsci.2018.12.055.  19. Zhang, J.; Xu, Q.‐F.; Xu, Y.‐X.; Wang, B.; Shang, J.‐X. A numerical study on fire endurance of wood beams exposed to three‐side  fire. J. Zhejiang Univ. A 2012, 13, 491–505. https://doi.org/10.1631/jzus.a1200022.  20. Molina,  J.C.;  Calil, C.; Kimura,  F.A.;  Pinto, E.M.; Regobello,  R.; Scheer, M.B.;  Carneiro, C.; Bressan, O.A.; Dos Santos, K.G.  Análise Numérica do Comportamento de Elementos de Madeira em Situação de Incêndio. Floresta E Ambient. 2012, 19, 162–170.  https://doi.org/10.4322/floram.2012.019.  21. Couto, D.L.; Fonseca, E.M.; Piloto, P.; Meireles, J.M.; Barreira, L.M.; Ferreira, D.R. Perforated cellular wooden slabs under fire:  Numerical and experimental approaches. J. Build. Eng. 2016, 8, 218–224. https://doi.org/10.1016/j.jobe.2016.10.007.  22. Regueira, R.; Guaita, M. Numerical simulation of the fire behaviour of timber dovetail connections. Fire Saf. J. 2018, 96, 1–12.  https://doi.org/10.1016/j.firesaf.2017.12.005.  23. Dubravska, K.; Špilák, D.; Tereňová, L.; Štefková, J. Charring Layer on a Cross‐laminated Timber Panel Construction. Acta Fac.  Xylologiae Zvolen 2019, 61, 109–119. https://doi.org/10.17423/afx.2019.61.2.11.  24. Yoon, S.; Macphee, D.E.; Imbabi, M.S. Estimation of the thermal properties of hardened cement paste on the basis of guarded  heat flow meter measurements. Thermochim. Acta 2014, 588, 1–10. https://doi.org/10.1016/j.tca.2014.04.015.  25. Janssens, M.L.; White, R.H. Short communication: Temperature profiles in wood members exposed to fire. Fire Mater. 1994, 18,  263–265. https://doi.org/10.1002/fam.810180410.  26. Thomas, G. Fire Resistance of Light Timber Framed Walls and Floors. Ph.D. Thesis, Victoria University of Wellington, Weling‐ ton, New Zealand, 1996.  27. Mehaffey, J.R.; Cuerrier, P.; Carisse, G. A model for predicting heat transfer through gypsum‐board/wood‐stud walls exposed  to fire. Fire Mater. 1994, 18, 297–305. https://doi.org/10.1002/fam.810180505.  28. Fuller, J.J.; Leichti, R.J.; White, R.H. Temperature distribution in a nailed gypsum‐stud joint exposed to fire. Fire Mater. 1992, 16,  95–99. https://doi.org/10.1002/fam.810160206.  29. Fredlund, B. A Model for Heat and Mass Transfer in Timber Structures During Fire: A Theoretical, Numerical and Experimental  Study. Ph.D. Thesis, Lund University, Sweden Institute of Science and Technology, Department of Fire Safety Engineering:  Lund, Sweden, 1988.  30. Frangi,  A.,  Brandverhalten  von  Holz‐Beton‐Verbunddecken.  2001,  Birkhäuser.  https://www.research‐ collection.ethz.ch/bitstream/handle/20.500.11850/145666/eth‐24596‐01.pdf?sequence=1&isAllowed=y   31. Babrauskas, V. Structural Fire Protection—ASCE Manuals and Reports on Engineering Practice No. 78. In Structural Fire Engi‐ neering; American Society of Civil Engineers, New York, NY, USA, 1992.  32. Knudson, R.M.; Schniewind, A.P. Performance of structural wood members exposed to fire. Forest Prod. J.1975, 25, 23–32.  33. Hadvig,  S.  Charring  of  Wood  in  Building  Fires:  Practice,  Theory,  Instrumentation,  Measurements;  Technical  University  of  Den‐ mark/Laboratory of Heating and Air‐conditioning: Lyngby, Denmark, 1981.  34. Gammon, B.W. Reliability Analysis of Wood‐Frame Wall Assemblies Exposed to Fire; University of California, Berkeley, CA, USA,  1987.  35. König, J.; Walleij, L. Timber Frame Assemblies Exposed to Standard and Parametric Fires: Part 2: A Design Model for Standard Fire  Exposure; 2000. Swedish Institute for Wood Technology Research, Stockholm.  36. Peng, L.; Hadjisophocleus, G.; Mehaffey, J.; Mohammad, M. Predicting the Fire Resistance of Wood–Steel–Wood Timber Con‐ nections. Fire Technol. 2009, 47, 1101–1119. https://doi.org/10.1007/s10694‐009‐0118‐4.  37. Bedon, C.; Fragiacomo, M. Fire Resistance of In‐Plane Compressed Log‐House Timber Walls with Partial Thermal Insulation.  Buildings 2018, 8, 131. https://doi.org/10.3390/buildings8100131.  Buildings 2022, 12, 875  17  of  17  38. Bedon, C.; Fragiacomo, M. Experimental and numerical analysis of in‐plane compressed unprotected log‐haus timber walls in  fire conditions. Fire Saf. J. 2019, 107, 89–103. https://doi.org/10.1016/j.firesaf.2017.12.007.  39. Bedon, C.; Fragiacomo, M. Fire Resistance of Thermally Insulated Log‐House Timber Walls. Fire Technol. 2018, 55, 307–341.  https://doi.org/10.1007/s10694‐018‐0792‐1.  40. Cachim, P.B.; Franssen, J.‐M. Numerical modelling of timber connections under fire loading using a component model. Fire Saf.  J. 2009, 44, 840–853. https://doi.org/10.1016/j.firesaf.2009.03.013.  41. Werther, N.; OʹNeill, J.W.; Spellman, P.M.; Abu, A.K.; Moss, P.J.; Buchanan, A.H.; Winter, S. Parametric Study of Modelling  Structural Timber in Fire with Different Software Packages. In Proceedings of the 7th International Conference on Structures in  Fire, Zurich, Switzerland, 6–8 June 2012.  42. Frangi, A.; Erchinger, C.; Fontana, M. Charring model for timber frame floor assemblies with void cavities. Fire Saf. J. 2008, 43,  551–564. https://doi.org/10.1016/j.firesaf.2007.12.009.  43. Pečenko, R.; Hozjan, T. A novel approach to determine charring of wood in natural fire implemented in a coupled heat‐mass‐ pyrolysis model. Holzforschung 2020, 75, 148–158. https://doi.org/10.1515/hf‐2020‐0081.  44. Pečenko, R.; Svensson, S.; Hozjan, T. Modelling heat and moisture transfer in timber exposed to fire. Int. J. Heat Mass Transf.  2015, 87, 598–605. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.024.  45. Martínez‐Martínez, J.E.; Alonso‐Martínez, M.; Rabanal, F.P..; Díaz, J.J.D.C. Study of the influence of heat transfer of a CLT beam  through FEM. J. Physics: Conf. Ser. 2018, 1107, 032003. https://doi.org/10.1088/1742‐6596/1107/3/032003.  46. ANSYS.  Thermal  conductivity  in  Heat  Transfer.  Introduction  to  Fouriers  Law.  2020.  Available  online:  https://courses.an‐ sys.com/index.php/courses/learn‐physics‐structural‐mechanics‐heat‐transfer‐copy/lessons/lesson‐1‐introduction‐to‐fouriers‐ law‐2/ (accessed on 28 July 2020).  47. ANSYS. Thermal conductivity in Heat Transfer. Thermal Conductivity of Materials. 2020. Available online: https://courses.an‐ sys.com/index.php/courses/learn‐physics‐structural‐mechanics‐heat‐transfer‐copy/lessons/lesson‐2‐thermal‐conductivity‐of‐ materials‐2/ (accessed on 28 July 2020).  48. ANSYS.  Thermal  conductivity  in  Heat  Transfer.  Thermal  Contact  Conductance.  2020.  Available  online:  https://courses.an‐ sys.com/index.php/courses/learn‐physics‐structural‐mechanics‐heat‐transfer‐copy/lessons/thermal‐contact‐lesson‐3/ (accessed  on 28 July 2020).  49. ANSYS. Thermal capacitance in Heat Transfer Analysis. Specific Heat of Materials. 2020. Available online: https://courses.an‐ sys.com/index.php/courses/thermal‐capacitance‐in‐heat‐transfer/lessons/lesson‐2‐specific‐heat‐of‐materials/  (accessed  on  28  July 2020).  50. ANSYS. Thermal capacitance in Heat Transfer Analysis. Phase Change and Enthalpy. 2020. Available online: https://courses.an‐ sys.com/index.php/courses/thermal‐capacitance‐in‐heat‐transfer/lessons/lesson‐4‐phase‐change‐and‐enthalpy/ (accessed on 28  July 2020).  51. Suntharalingam, T.; Upasiri, I.; Nagaratnam, B.; Poologanathan, K.; Gatheeshgar, P.; Tsavdaridis, K.D.; Nuwanthika, D. Finite  Element Modelling to Predict the Fire Performance of Bio‐Inspired 3D‐Printed Concrete Wall Panels Exposed to Realistic Fire.  Buildings 2022, 12, 111. https://doi.org/10.3390/buildings12020111.  52. Pierin, I.; Silva, V.P.; La Rovere, H.L. Thermal analysis of two‐dimensional structures in fire. Rev. Ibracon De Estrut. Mater. 2015,  8, 25–36. https://doi.org/10.1590/s1983‐41952015000100005. 

Journal

BuildingsMultidisciplinary Digital Publishing Institute

Published: Jun 21, 2022

Keywords: wood beams; fire resistance; finite element analysis; transient thermal analysis; ANSYS

There are no references for this article.