Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Abiotic Stresses: Alteration of Composition and Grain Quality in Food Legumes

Abiotic Stresses: Alteration of Composition and Grain Quality in Food Legumes agronomy Review Abiotic Stresses: Alteration of Composition and Grain Quality in Food Legumes 1 1 1 2 2 Sumi Sarkar , Marium Khatun , Farzana Mustafa Era , A. K. M. Mominul Islam , Md. Parvez Anwar , 3 , 4 , 1 , Subhan Danish * , Rahul Datta * and A. K. M. Aminul Islam * Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; sumisarkarnupur14@gmail.com (S.S.); mariumkhatun6225@gmail.com (M.K.); farzana@bsmrau.edu.bd (F.M.E.) Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; akmmominulislam@bau.edu.bd (A.K.M.M.I.); parvezanwar@bau.edu.bd (M.P.A.) Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan Department of Geology and Pedology, Mendel University, Zemedelska 1, 61300 Brno, Czech Republic * Correspondence: sd96850@gmail.com (S.D.); rahulmedcure@gmail.com (R.D.); aminulgpb@bsmrau.edu.bd (A.K.M.A.I.); Tel.: +880-1715-401519 (A.K.M.A.I.) Abstract: Abiotic stresses varyingly affect the grain composition and quality of food legumes. This paper is aimed at discussing the impact of abiotic stresses on the grain composition and quality of food legumes. As protein is the main grain constituent of food legumes for which it is being consumed by humans as a cheap protein source, abiotic stresses such as heat, cold, drought, salinity and heavy metals alter this grain protein content in different dimensions for different food legumes. Moreover, other valuable constituents such as starch, soluble sugar, oil, fatty acid and fiber content are affected Citation: Sarkar, S.; Khatun, M.; Era, differently by the abiotic stresses. The diverse impact of these abiotic stresses ultimately declines F.M.; Islam, A.K.M.M.; Anwar, M.P.; the grain quality and yield of food legumes. As food legumes play a vital role in the nutritional Danish, S.; Datta, R.; Islam, A.K.M.A. diet of millions of people in the world and are occasionally denoted as the meat of poor people, Abiotic Stresses: Alteration of it is important to recognize that the sustainable production of food legumes, even under various Composition and Grain Quality in environmental stresses, has the potential to ensure protein security for people globally. Therefore, Food Legumes. Agronomy 2021, 11, it has become a necessity to improve the productivity and quality of food legumes under abiotic 2238. https://doi.org/10.3390/ stresses through proper crop management and improved breeding strategies, thus enhancing food agronomy11112238 and economic security to the farmers, particularly in the developing countries of the world. Academic Editor: Ryoichi Araki Keywords: abiotic stress; heat stress; drought; salinity; heavy metals; legume; food quality Received: 2 October 2021 Accepted: 1 November 2021 Published: 4 November 2021 1. Introduction Publisher’s Note: MDPI stays neutral The increasing population along with global climate change are generating a great with regard to jurisdictional claims in influence on the agroecosystem and creating various abiotic stresses that are major threats published maps and institutional affil- for global food security. Therefore, one of the major challenges of this era is to maintain a iations. sustainable yield under these stresses and meet the global food demand with nutritional food. Food legumes are one of the major crops that may be included in the cropping system for attaining the nutritional and protein requirements of this growing population, as the protein gap is likely to increase with the increasing population [1]. Copyright: © 2021 by the authors. Food legumes from the second most important plant family Fabaceae, are agriculturally Licensee MDPI, Basel, Switzerland. important nourishing crops provided as a low-cost and rich source of protein to human This article is an open access article beings. In terms of world production, food legumes rank third after cereals and oilseeds, distributed under the terms and having a strong impact on the agro-ecosystem and human nutrition [1]. Nearly 27% of conditions of the Creative Commons global crop production is occupied with food legumes [2]. Food legumes are consumed Attribution (CC BY) license (https:// mostly for edible proteins and oil; those are considered as the major grain quality compo- creativecommons.org/licenses/by/ nents of food legumes. Food legumes are grown in variable climates and abiotic stresses 4.0/). Agronomy 2021, 11, 2238. https://doi.org/10.3390/agronomy11112238 https://www.mdpi.com/journal/agronomy Agronomy 2021, 11, x FOR PEER REVIEW  2  of  23  Agronomy 2021, 11, 2238 2 of 24 stresses such as temperature, drought, salinity and heavy metals can affect the grain com‐ position and quality of food legumes [3]. Grain starch, protein, oil, fatty acids, amino ac‐ such as temperature, drought, salinity and heavy metals can affect the grain composition ids, sugars, dietary fibers, minerals and vitamin contents are considered as the major com‐ and quality of food legumes [3]. Grain starch, protein, oil, fatty acids, amino acids, sugars, ponents of grain composition that help to determine the quality of food legumes [4]. Abi‐ dietary fibers, minerals and vitamin contents are considered as the major components of otic stresses disturb and distinctly change these grain components and the quality of food  grain composition that help to determine the quality of food legumes [4]. Abiotic stresses legumes. Heat stress has a damaging effect on the seed yield and the quality of food leg‐ disturb and distinctly change these grain components and the quality of food legumes. umes as the process of entire seed setting such as the development of a male and female  Heat stress has a damaging effect on the seed yield and the quality of food legumes as the gametophyte, fertilization and the development of seed is sensitive to heat stress [5]. Cold  process of entire seed setting such as the development of a male and female gametophyte, stress is one of the limiting factors for the early sowing of food legumes, as it disrupts the  fertilization and the development of seed is sensitive to heat stress [5]. Cold stress is one membrane stability and whole‐grain contents of food legumes [1]. Food legumes are com‐ of the limiting factors for the early sowing of food legumes, as it disrupts the membrane monly grown in rainfed production systems. As a result, food legumes are more suscep‐ stability and whole-grain contents of food legumes [1]. Food legumes are commonly grown tible to drought and the intensity and frequency of drought have been predicted to in‐ in rainfed production systems. As a result, food legumes are more susceptible to drought crease  according  to  global  climate  models.  Drought  affects  crop  growth  and  becomes  and the intensity and frequency of drought have been predicted to increase according to more devastating during reproduction and grain filling, thus decreasing grain yield [6].  global climate models. Drought affects crop growth and becomes more devastating during The productivity of grain legumes is frequently affected by terminal drought.  reproduction and grain filling, thus decreasing grain yield [6]. The productivity of grain Food legumes are highly sensitive to salinity stress, particularly at the seedling and  legumes is frequently affected by terminal drought. developmental stages [7]. Salinity stress declines water potential due to abundance in Na   Food legumes are highly sensitive to salinity stress, particularly at the seedling and and Cl ions in plant tissues resulting in stomatal closure, photosynthesis decline and in‐ developmental stages [7]. Salinity stress declines water potential due to abundance in Na hibition of growth those ultimately affect the grain composition, yield and quality of food  and Cl ions in plant tissues resulting in stomatal closure, photosynthesis decline and legumes [8]. Heavy metal is one of the major constraints in food legume production and  inhibition of growth those ultimately affect the grain composition, yield and quality of food the maintenance of grain quality. Heavy metals considerably diminish the grain protein  legumes [8]. Heavy metal is one of the major constraints in food legume production and content due to a lowered N uptake and supply to the emerging grains [9]. Ultra‐structural  the maintenance of grain quality. Heavy metals considerably diminish the grain protein and anatomical changes in plant cells take place due to the uptake and accumulation of  content due to a lowered N uptake and supply to the emerging grains [9]. Ultra-structural and heavy anatomical  metals atc hanges higher co inncentrations plant cells take  as pla place nt phys due iolog to theicuptake al activand ities accumulation such as nutrition of   heavy distrib metals ution, nitro at higher gen fix concentrat ation, enzymatic ions as plant  activiphysiological ty, photosynthesis, activities  funcsuch tion of as p nutrition ollen and  distribution, the nutritional nitr qua ogen lity fixation,  of seedsenzymatic  are adversactivity ely affect , photosynthesis, ed by heavy meta function l stressof [10 pollen ]. Reseand arch  the nutritional quality of seeds are adversely affected by heavy metal stress [10]. Research is is needed on the impact of abiotic stresses on food legume grain composition and quality  needed for  deve onlothe ping impact   progra ofms abiotic   to  improve stresses on thefood   grain legume   qualitgrain y  as  well composition   as  resist and ance quality   to  abiot foric  developing programs to improve the grain quality as well as resistance to abiotic stresses stresses  to  ensure  the  adequate  global  supply  of  food  legumes  as  the  most  significant  to ensure the adequate global supply of food legumes as the most significant source of source of vegetable proteins.  vegetable proteins. 2. Food Legumes  2. Food Legumes Mainly three types of legumes are used, namely forage legumes, food legumes and  Mainly three types of legumes are used, namely forage legumes, food legumes and cover crops, whereas food legumes are mostly used as a rich source of protein [1]. Most  cover crops, whereas food legumes are mostly used as a rich source of protein [1]. Most of the legume crops are consumed as food in the mature and dry seed form [11]. Food  of the legume crops are consumed as food in the mature and dry seed form [11]. Food legumes inhabit a minimum part of the cultivable land of the world, which is mostly con‐ legumes inhabit a minimum part of the cultivable land of the world, which is mostly quered by major cereal crops (e.g., rice, wheat, maize) [12]. The protein demands of the  conquered by major cereal crops (e.g., rice, wheat, maize) [12]. The protein demands of the growing population can be fulfilled by the insertion of food legumes into cropping sys‐ growing population can be fulfilled by the insertion of food legumes into cropping systems. tems. Food legumes play an important and diverse role as a nutritious staple of poor peo‐ Food legumes play an important and diverse role as a nutritious staple of poor people ple around the world as an inexpensive source of protein, complex carbohydrates, vita‐ around the world as an inexpensive source of protein, complex carbohydrates, vitamins mins and fiber [13]. Soybeans, peas, peanuts, lentils, different types of beans and chick‐ and fiber [13]. Soybeans, peas, peanuts, lentils, different types of beans and chickpeas are peas are commonly used food legumes (Table 1).  commonly used food legumes (Table 1). Table 1. Different kind of food legumes and their uses in human nutrition.  Table 1. Different kind of food legumes and their uses in human nutrition. Sources of Images  Sl.  Common  Sl. Common Scientific Sources of Images Picture  Scientific Name  Major Use  [Accessed on 22 May  Picture Major Use No  Name  No Name Name [Accessed on 22 May 2021] 2021]  Mainly used for soybean oil. https://zh-prod-1cc738ca-7d3 https://zh‐prod‐ Mainly used for soybean oil. Additionally  Additionally used as food b-4a72-b792-20bd8d8fa069 1cc738ca‐7d3b‐4a72‐ used as food products such as soymilk,  products such as soymilk, soy .storage.googleapis.com/s3fs- b792‐20bd8d8fa069.stor‐ 1.  Soybean  Glycine max  soy sauce, some beverages and whipped  1. Soybean Glycine max sauce, some beverages and public/styles/max_650$\ age.googleapis.com/s3fs‐ whipped toppings, toppings,  soy‐fortified soy-fortified  pastas, breakfast times$650/public/2020-   08/ pub‐ pastas, breakfast cereals and soybeans.jpg?itok=DuPfsOBn cereals and bars [14].  lic/styles/max_650×650/p bars [14]. (accessed on 22 May 2021)   Agronomy 2021, 11, 2238 3 of 24 Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  Agronomy    2021, 11, x FOR PEER REVIEW  3  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  Agronomy    2021, 11, x FOR PEER REVIEW  3  of  23   Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  Table 1. Cont. ublic/2020‐08/soy‐ ublic/2020‐08/soy‐ ublic/2020‐08/soy‐ ublic/2020‐08/soy‐ beans.jpg?itok ublic/2020‐08/soy =DuP‐‐ ublic/2020‐08/soy‐ ublic/2020‐08/soy‐ beans.jpg?itok=DuP‐ Sl. Common Scientific Sources of Images beans.jpg?itok=DuP‐ beans.jpg?itok=DuP‐ beans.jpg?itok ublic/2020 fsOBn‐08/soy   =DuP‐‐ Picture Major Use ublic/2020‐08/soy‐ beans.jpg?itok=DuP‐ beans.jpg?itok=DuP‐ fsOBn  No Name Name [Accessed on 22 May 2021] fsOBn  fsOBn  beans.jpg?itok fsOBn =DuP‐ https://ag‐ beans.jpg?itok=DuP‐ fsOBn  fsOBn  https://ag‐ https://ag‐ https://ag fsOBn  ‐ tfoods.co https://ag .za/wp‐‐con‐ fsOBn  https://ag https://ag‐‐ Used as a dry pulse and also as a https://agtfoods.co.za/wp- green  tfoods.co.za/wp‐con‐ tfoods.co.za/wp‐con‐ tfoods.co.za/wp‐con‐ 2.  Chickpea  Cicer arietinum  Used as a dry pulse and also as a green  tfoods.co https://ag tent/up .za/w‐p‐‐con‐ https://ag‐ Used as a dry pulse and also as a green  tfoods.co.za/wp‐con‐ Cicer Used Used as aasdry  a dry pulse  pulse and and also alas so as a green content/uploads/2018/06/   tfoods.co.za/wp‐con‐ 2.  Chickpea  Cicer arietinum  Used as a dry vegetable  pulse and  [14, al 15s]o.  as a green  tent/up‐ 2.  Chickpea  Cicer arietinum  Used as a dry pulse and also as a green  tent/up‐ 2. 2.  Chic Chickpea kpea  Cicer arietinum  Used as a dry pulse and also as a green  tent/up‐ 2.  Chickpea  Cicer arietinum  vegetable [14,15].  tfoods.co loads/2018/06/ tent/up .za/w‐pDesi ‐con‐‐ tfoods.co.za/wp‐con‐ 2.  Chickpea  Cicer arietinum  arietinum  a green vegetable vegetable [14 [,1 154,].15].  Desi-Chickpea_600x600_1.jpg tent/up‐ 2.  Chickpea  Cicer arietinum  vegetable [14,15].  tent/up‐ Used as a dry vegetable  pulse and  [14, al 15s]o.  as a green  loads/2018/06/Desi‐ Used as a dry pulse and also as a green  vegetable [14,15].  loads/2018/06/Desi‐ vegetable [14,15].  loads/2018/06/Desi‐ 2.    Chickpea  Cicer arietinum  Chickpea_600x600_1.jpg tent/up‐   loads/2018/06/Desi‐ 2.  Chickpea  Cicer arietinum  (accessed on 22tent/up May 2021) ‐ loads/2018/06/Desi‐ loads/2018/06/Desi‐   vegetable [14,15].  Chickpea_600x600_1.jpg  vegetable [14,15].    Chickpea_600x600_1.jpg    Chickpea_600x600_1.jpg    loads/2018/06/Desi‐ Chickpea_600x600_1.jpg https://www.allergicliv‐  loads/2018/06/Desi‐    Chickpea_600x600_1.jpg  Chickpea_600x600_1.jpg  Used both fresh and dried. Peas are rich  https://www.allergicliv‐ https://www.allergicliv‐   Chickpea_600x600_1.jpg https://www.allergicliv‐  Used both fresh and dried. Peas are rich  ihttps://www.al ng.com/wp‐content/u lergiclivp‐‐ Used both fresh and dried. Peas https://www Chickpea_600x600_1.jpg .allergicliving.   Used both fresh and dried. Peas are rich  https://www.allergicliv‐ Used both fresh and dried. Peas are rich  https://www.allergicliv‐ 3.  Pea  Pisum sativum  inUsed  protein,  both chol  fresesterol h and drie ‐freed. and  Peas have  are  good rich  ing.com/wp‐content/up‐ Used both fresh and dried. Peas are rich  ing.com/wp‐content/up‐ Used both fresh and dried. Peas are rich  ing.com/wp‐content/up‐ 3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good  https://www.al loads/2019/09/lerg Green icli‐v‐ Pisum are rich in protein, com/wp-in content/uploads/20 g.com/wp‐content/up‐ https://www.allergicliv‐ 3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good ing.com/wp‐content/up‐ 3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good  ing.com/wp‐content/up‐ Used amounts both fres hof and  die tdrie ary d. fiber  Pe as [14].  are  rich  loads/2019/09/Green‐ 3.3.  Pea Pea  Pisum sativum  in protein, cholesterol‐free and have good  Used both fresh and dried. Peas are rich  3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good  loads/2019/09/Green‐ 3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good  loads/2019/09/Green‐ sativum cholesterol-free and have good 19/09/Gri een- ng.cpeas.jpg om/wp peas.jpg ‐co (accessed ntent/u   p‐   amounts of dietary fiber [14].  loads/2019/09/Green‐ ing.com/wp‐content/up‐ amounts of dietary fiber [14].  loads/2019/09/Green‐ amounts of dietary fiber [14].  loads/2019/09/Green‐ 3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good  amounts of dietary fiber [14].  peas.jpg  3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good  amounts of dietary fiber [14].  peas.jpg    amounts amounts of dietary  of die fiber tary [14 fiber ].  [14].  on 22 Maypeas.jpg 2021)     loads/2019/09/Green‐ Groundnuts contains high level of mono‐ peas.jpg  loads/2019/09/Green‐ peas.jpg    peas.jpg    amounts of dietary fiber [14].  Groundnuts contains high level of mono‐ amounts of dietary fiber [14].  Groundnuts contains high level of mono‐ Groundnuts contains high level of mono‐ peas.jpg    Gunsaturated roundnuts contains  and polyunsaturated  high level of mono  fatty ‐ Groundnuts contains high level peas.jpg  Groundnuts contains high level of mono‐ Groundnuts contains high level of mono‐ unsaturated and polyunsaturated fatty  https://www.nutstop.co unsaturated and polyunsaturated fatty  unsaturated and polyunsaturated fatty  4.  Groundnut  Arachis hypogaea  G acids roundnuts  that may  contains  keep the  high  heart  lev ehealthy l of mono  by‐  https://www.nutstop.co unsaturated of monounsaturated  and polyunsaturated and  fatty  Groundnuts contains high level of mono‐ unsaturated and polyunsaturated fatty  https://www.nutstop.co unsaturated and polyunsaturated fatty  https://www.nutstop.co m/how‐peanuts‐grow/  4.  Groundnut  Arachis hypogaea  acids that may keep the heart healthy https://www  by  https://www.nutstop.co .nutstop.com/ 4.  Groundnut  Arachis hypogaea  acids that may keep the heart healthy by  https://www.nutstop.co 4.  Groundnut  Arachis hypogaea  acids that may keep the heart healthy by  https://www.nutstop.co Arachis polyunsaturated munsaturated aintaining lower  and fatty polyunsaturated  blood acids chol thatesterol fatty  lev ‐ 4.  Groundnut  Arachis hypogaea  acids that may keep the heart healthy by  m/how‐peanuts‐grow/  unsaturated and polyunsaturated fatty  4.  Groundnut  Arachis hypogaea  acids that may keep the heart healthy by  m/how‐peanuts‐grow/  4.  Groundnut  Arachis hypogaea  acids that may keep the heart healthy by  m/how‐peanuts‐grow/  4. Groundnut how-peanuts- https://www.nutstop.co grow/ (accessed maintaining lower blood cholesterol lev‐ m/how‐peanuts‐grow/    https://www.nutstop.co maintaining lower blood cholesterol lev‐ m/how‐peanuts‐grow/  hypogaea may maintaining keep the heart lowerhealthy  blood chol by esterol lev‐ m/how‐peanuts‐grow/  4.    Groundnut  Arachis hypogaea  acids that may keep the heart healthy by    maintaining lower els blood  [16].  cholesterol lev‐ 4.    Groundnut  Arachis hypogaea  acids that may keep the heart healthy by  maintaining lower blood cholesterol lev‐ maintaining lower blood cholesterol levon ‐ 22 May 2021)   m/how‐peanuts‐grow/    els [16].  m/how‐peanuts‐grow/  maintaining lower blood els [16].  maintaining lower els blood  [16].  cholesterol lev‐ els [16].  https://jiraphas‐ maintaining lower blood cholesterol lev‐ els [16].    els [16].  Red lentils contain plenty of protein and  https://jiraphas‐ cholesterol levels [16]. https://jiraphas‐ els [16].  https://jiraphas‐ erviceltd.com/wp‐con‐ Red lentils contain plenty of protein and  https://jiraphas‐ els [16].  Red lentils contain plenty of protein and  https://jiraphas‐ Red lentils contain plenty of protein and  https://jiraphas‐ fiber; thus, it is called the meat of poor  Red lentils contain plenty of protein and  erviceltd.com/wp‐con‐ Red lentils contain plenty of protein and  erviceltd.com/wp‐con‐ Red lentils contain plenty of protein and  erviceltd.com/wp‐con‐ Red lentils contain plenty of https://jiraphas‐ 5.  Red lentil  Lens culinaris  fiber; thus, it is called the meat of poor  ervicelttent/up d.com/wp ‐ ‐con‐ https://jiraphas‐ erviceltd.com/wp‐con‐ fiber; thus, it is called the meat of poor  erviceltd.com/wp‐con‐ Red fiber; lenti  thus, ls con  it istain  calle  plenty d the  of meat  pro of tei poor n and   5.  Red lentil  Lens culinaris  fiber; people.  thus,  It  isit  ais h calle ealthier d the cho  meat ice  for of poor  the   tent/up‐ Red lentils contain plenty of protein and  fiber; thus, it is called the meat of poor  5.  Red lentil  Lens culinaris  prfiber; otein thus, and fiber; it is calle thus, d it the is meat of https://jiraphaserviceltd.com/  poor  tent/up‐ 5.  Red lentil  Lens culinaris  ervicelttent/up d.com/wp ‐ ‐con‐ 5.  Red lentil  Lens culinaris  people. It is a healthier choice for the  loads/2020/10/ tent/up‐7RLT1‐ erviceltd.com/wp‐con‐ 5.  Red lentil  Lens culinaris  tent/up‐ 5.  Red lentil  Lens culinaris  people. It is a healthier choice for the  tent/up‐ fiber; people.  thus,  It is it  ais h calle ealthier d the cho  meat ice  for of poor  the   people. heart instead  It is a  of he processed althier cho meat ice for [14].  the   loads/2020/10/7RLT1‐ fiber; thus, it is called the meat of poor  called people. the meat  It is of a hpoor ealthier people.  choice for wp- the content   /uploads/2020/10/ people. It is a healthier choice for the  loads/2020/10/7RLT1‐ 5.  Red lentil  Lens culinaris  loads/2020/10/ tent/up‐7RLT1‐ heart instead of processed meat [14].  loads/2020/10/ 1.jpg  7RLT1‐ 5. 5.  Red Red lenti lentil l  Len Lenss culinaris culinaris  tent/up‐ heart instead of processed meat [14].  loads/2020/10/ loads/2020/10/7RLT1 7RLT1‐‐ heart instead of processed meat [14].  people. heart instead  It is a  of he althier processed  cho meat ice for [14].  the   1.jpg    It ispeople. a healthier  It is achoice  healthier for the choice for7RL  theT1-   1.jpg (accessed on 22 heart heart  instead instead  of of  processed processed  meat meat  [14]. [14].   1.jpg    1.jpg    loads/2020/10/ https://www.grain 1.jpg  7RLT1‐‐   loads/2020/10/7RLT1‐ 1.jpg    1.jpg    heart instead of processed meat [14].  heart instead of processed meat May https://www.grain 2021) ‐ heart instead of processed meat [14].  https://www.grain‐ https://www.grain‐ 1.jpg    It is a rich source of protein and a good  star.com https://www.grain .au/wp‐con‐‐ 1.jpg    https://www.grain‐ https://www.grain‐ [14]. It is a rich source of protein and a good  star.com.au/wp‐con‐ It is a rich source of protein and a good  star.com.au/wp‐con‐ It is a rich source of protein and a good  star.com https://www.grain .au/wp‐con‐‐ 6.  Green lentil  Lens culinaris  supplement It is a rich sou  forrce meat.  of protein  It reduces  and  the a good  risk   star.com tent/up .au/w‐p‐con‐ https://www.grain‐ It is a rich source of protein and a good  star.com.au/wp‐con‐ It is a rich source of protein and a good  star.com.au/wp‐con‐ 6.  Green lentil  Lens culinaris  supplement for meat. It reduces the risk  tent/up‐ It is a rich source of protein and https://www.grainstar.com. 6.  Green lentil  Lens culinaris  supplement for meat. It reduces the risk  tent/up‐ 6.  Green lentil  Lens culinaris  supplement for meat. It reduces the risk  tent/up‐ 6.  Green lentil  Lens culinaris  supplement It is a richof sou  heart  forrce meat.   di ofs protein e ase It reduces s [17]  and .    the a good  risk   loads/2018/05/r star.com tent/up .au/w‐pichlea ‐con‐‐ It is a rich source of protein and a good  star.com.au/wp‐con‐ 6.6.   Green Green  lenti lentill   Len Lenss  culinaris culinaris   supplement supplement  for for  meat. meat.  ItIt  reduces reduces  the the  risk risk   tent/up tent/up‐‐ of heart diseases [17].  loads/2018/05/richlea‐ a good supplement for meat. It au/wp-content/uploads/2018 of heart diseases [17].  loads/2018/05/richlea‐ of heart diseases [17].  loads/2018/05/richlea‐ 6.  Green lentil  Lens culinaris  supplement of heart  for meat.  dise ase It reduces s [17].   the risk  loads/2018/05/r lentils tent/up .jpg‐i chlea‐ 6. Green lentil Lens culinaris 6.    Green lentil  Lens culinaris  supplement for meat. It reduces the risk  tent/up‐ of heart diseases [17].  loads/2018/05/richlea‐ of heart diseases [17].  loads/2018/05/richlea‐   reduces the risk of heart /05/richlea-lentils.jpg lentils(accessed .jpg  lentils.jpg  lentils.jpg     of heart diseases [17].  loads/2018/05/r lentils.jpgi chlea‐ https://fthmb.tqn.com/2J of heart diseases [17].  loads/2018/05/richlea‐ lentils.jpg  diseases [17]. on 22 Maylentils 2021).jpg  https://fthmb.tqn.com/2J https://fthmb.tqn.com/2J https://fthmb.t lentils.jpg qn.com/2J   https://fthmb.t dDB8mU qn.com/2J _‐ lentils.jpg  https://fthmb.tqn.com/2J https://fthmb.tqn.com/2J dDB8mU_‐ https://fthmb.tqn.com/ dDB8mU_‐ dDB8mU_‐ Brown lentils are a good source of nutri‐ https://fthmb.t S9vxjJ6bik4O763sg=/960 dDB8mU qn.com/2J _‐ https://fthmb.tqn.com/2J dDB8mU_‐ dDB8mU_‐ Brown lentils are a good source of nutri‐ S9vxjJ6bik4O763sg=/960 Brown lentils are a good source 2JdDB8mU_-S9vxjJ6bik4O763 Brown lentils are a good source of nutri‐ S9vxjJ6bik4O763sg=/960 Brown lentils are a good source of nutri‐ S9vxjJ6bik4O763sg=/960 7.  Brown lentil  Lens culinaris  ents Brown  and lentil  its lo s w are calori  a good e content  source and  of nutri  high‐  S9vxjJ6bik4O763sg=/960 x0/filters:no_u dDB8mU_‐ p‐ dDB8mU_‐ Brown lentils are a good source of nutri‐ S9vxjJ6bik4O763sg=/960 Brown lentils are a good source of nutri‐ S9vxjJ6bik4O763sg=/960 7.  Brown lentil  Lens culinaris  ofents nutrients  and its and  low its calori lowe calorie  content and high sg=/960x0/filters:   x0/filters:no_up‐ 7.  Brown lentil  Lens culinaris  ents and its low calorie content and high  x0/filters:no_up‐ 7. 7.  Brown Brown lentil lentil  Lens Lens culinaris culinaris  ents and its low calorie content and high  x0/filters:no_up‐ 7.  Brown lentil  Lens culinaris  ents Brown fiber  and lentil   helps its lo s w are  healthy  calori  a good e dig  content  sou estion rce and   of [16].  nutri  high   ‐  S9vxjJ6bik4O763sg=/960 scale()/1704605 x0/filters:no_u95 p‐‐ Brown lentils are a good source of nutri‐ S9vxjJ6bik4O763sg=/960 7.  Brown lentil  Lens culinaris  ents and its low calorie content and high  x0/filters:no_up‐ 7.  Brown lentil  Lens culinaris  content ents and and  its high low calori fiber helps e content and no_upscale high  x()/170460595- 0/filters:no_up‐ fiber helps healthy digestion [16].  scale()/170460595‐ fiber helps healthy digestion [16].  scale()/170460595‐ fiber helps healthy digestion [16].  scale()/170460595‐ 7.  Brown lentil  Lens culinaris  ents and its low calorie content and high  56a30edc5f9b5 x0/filters:no_u 8b7d0d03 p‐   fiber helps healthy digestion [16].  scale()/170460595‐ 7.  Brown lentil  Lens culinaris  ents and its low calorie content and high  x0/filters:no_up‐ healthy fiber helps digestion  healthy [16 dig ]. estion 56a30edc5f9b58b7d0d03627.jpg [16].  scale()/170460595‐   fiber helps healthy digestion [16].  scale()/170460595‐ 56a30edc5f9b58b7d0d03 56a30edc5f9b58b7d0d03   56a30edc5f9b58b7d0d03   fiber helps healthy digestion [16].  scale()/170460595‐ 56a30edc5f9b5 627.jpg8 b7d0d03 fiber helps healthy digestion [16]. (accessed   scale()/1704605 on 22 May 2021) 95‐ 56a30edc5f9b58b7d0d03 56a30edc5f9b58b7d0d03   627.jpg  627.jpg  56a30edc5f9b5 627.jpg8 b7d0d03 https://ag 627.jpg ‐ 56a30edc5f9b58b7d0d03 627.jpg  627.jpg  https://ag‐ Black lentils are the most https://agtfoods.co.za/wp- https://ag‐ https://ag 627.jpg ‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ https://ag‐ 627.jpg  https://ag‐ https://ag‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ flavorful lentils and are quite content/uploads/2018/06/ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ 8.  Black lentil  Lens culinaris  and are quite different from other lentils,  https://ag tent/up‐‐ 8. Black lentil Lens culinaris Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ https://ag‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ 8.  Black lentil  Lens culinaris  difand ferent  arefr quite om othe  different r lentils, from used other Black-  lentilLentils_3.jpg s,  tent/up (accessed ‐ on 8.  Black lentil  Lens culinaris  and are quite different from other lentils,  tent/up‐ 8.  Black lentil  Lens culinaris  and are quite different from other lentils,  tent/up‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ 8.  Black lentil  Lens culinaris  and are us ed quite  in  sala different ds and from  sou potsher  [17]. lentil   s, loads/2018/06/ tent/up Black ‐ ‐Len‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ 8.  Black lentil  Lens culinaris  and are quite different from other lentils,  tent/up‐ 8.  Black lentil  Lens culinaris  and in salads  are quite and different soups [17 from ].  other lentils, 22 May 2021) tent/up‐   used in salads and soups [17].  loads/2018/06/Black‐Len‐ used in salads and soups [17].  loads/2018/06/Black‐Len‐ 8.  Black lentil  Lens culinaris  and are us ed quite  in  sala different ds and from  sou pots her [17]. lentil   s, loads/2018/06/ tent/up Black ‐ ‐Len‐   used in salads and soups [17].  loads/2018/06/ tils_3.jpg Black   ‐Len‐ 8.  Black lentil  Lens culinaris  and are quite different from other lentils,  tent/up‐ used in salads and soups [17].  loads/2018/06/Black‐Len‐   used in salads and soups [17].  loads/2018/06/Black‐Len‐   tils_3.jpg    tils_3.jpg    Contains essential amino acids tils_3.jpg  Contains used essential  in salads amino  and sou  acids ps  [and 17].  anti‐ loads/2018/06/ tils_3.jpg Black   ‐Len‐ used in salads and soups [17].  loads/2018/06/Black‐Len‐ tils_3 tils_3.jpg .jpg   Contains essential amino acids and anti‐ and Contains antioxidants  essential that amino help acids to  and anti‐ Contains essential amino acids and anti‐ tils_3.jpg  oxidants Contains that  essential  help  to amino  neut ralize acids  and free  anti radi‐‐ https://www.espaceagro. tils_3.jpg  Contains essential amino acids and anti‐ Contains essential amino acids and anti‐ oxidants that help to neutralize free radi‐ https://www.espaceagro. neutralize free radicals, thus https://www.espaceagro.com/ oxidants that help to neutralize free radi‐ https://www.espaceagro. oxidants Contains that  essential  help  to amino  neut ralize acids  and free  anti radi‐‐ https://www.espaceagro. 9.  Mung bean  Vigna radiata  cals oxidants , thus  that work he ing lp  against to neut ralize chronic  free inf radi lam‐‐https://www.espaceagro. com/_AF‐ Contains essential amino acids and anti‐ oxidants that help to neutralize free radi‐ https://www.espaceagro. oxidants that help to neutralize free radi‐ https://www.espaceagro. 9.  Mung bean  Vigna radiata  cals, thus working against chronic inflam‐ com/_AF‐ 9. Mung bean Vigna radiata working against chronic _AFFAIRE/188567.jpg (accessed 9.  Mung bean  Vigna radiata  cals, thus working against chronic inflam‐ com/_AF‐ 9.  Mung bean  Vigna radiata  cals oxidants , thus  that work he ing lp  against to neut ralize chronic  free inf radi lam‐‐https://www.espaceagro. com/_AF‐ 9.  Mung bean  Vigna radiata  cals mati , thus on, heart  work di ing se against ase, cancers  chro nic and inf  other lam ‐ FAIRE/188567.j com/_AF‐ pg  oxidants that help to neutralize free radi‐ https://www.espaceagro. 9.  Mung bean  Vigna radiata  cals, thus working against chronic inflam‐ com/_AF‐ 9.  Mung bean  Vigna radiata  cals, thus working against chronic inflam‐ com/_AF‐ inflammation, mation, heart di heart sease disease, , cancers and other on 22FAIRE/188567.j May 2021) pg  mation, heart disease, cancers and other  FAIRE/188567.jpg  mation, heart disease, cancers and other  FAIRE/188567.jpg  9.  Mung bean  Vigna radiata  cals mati , thus on, heart  work disea  di ing ses against ase es [14,18] , cancers  chr .  o nic and inf other lam ‐ FAIRE/188567.j com/_AF‐ pg  9.  Mung bean  Vigna radiata  cals, thus working against chronic inflam‐ com/_AF‐ mation, heart disease, cancers and other  FAIRE/188567.jpg  cancers mation,and  heart other  disediseases ase, cancers and other  FAIRE/188567.jpg  diseases [14,18].  diseases [14,18].    diseases [14,18].    mation, heart disea  disesase es [14,18] , cancers .   and other  FAIRE/188567.jpg    https://ag‐ mation, heart disease, cancers and other  FAIRE/188567.jpg  [14disea ,18]. ses [14,18].     diseases [14,18].  https://ag‐ https://ag‐ diseases [14,18].  https://ag‐   Improves digestion and its adequate iron  tfoods.co https://ag .za/wp‐‐con‐ diseases [14,18].    https://ag‐ https://ag‐ Improves digestion and its adequate iron  tfoods.co.za/wp‐con‐ Improves digestion and its Improves digestion and its adequate iron  tfoods.co.za/wp‐con‐ Improves digestion and its adequate iron  tfoods.co.za/wp‐con‐ Black eyed  content Improves  helps  diges tot iprevent on and  itane s adequate mia. Ithttps://agtfoods.co.za/wp-  is  iron rich   tfoods.co https://ag tent/up .za/w‐p‐‐con‐ https://ag‐ Im Improves proves  di diges gesttiioonn  and and  ititss  adequate adequate  iron iron   tfoods.co tfoods.co.za/w .za/wpp‐‐con con‐‐ 10.  Black eyed  Vigna unguiculata  adequate content helps iron content to prevent helps  ane tomia. It is rich  tent/up‐ Black eyed  content helps to prevent anemia. It is rich  tent/up‐ Black eyed  content helps to prevent anemia. It content/uploads/2018/06/ is rich  tent/up‐ 10.  Black bean  eyed      Vigna unguiculata  in content Im potassium proves helps  diges  tha  tot itprevent o helps n and to  itane  sm adequate amintain ia. It  islower   iron rich    tfoods.co loads/2018/06/ tent/up .za/w‐p Black ‐con‐‐ Improves digestion and its adequate iron  tfoods.co.za/wp‐con‐ 10.  Black eyed  Vigna unguiculata  content helps to prevent anemia. It is rich  tent/up‐ 10.  Black Black eyed eyed  Vigna V unguiculata igna   pr content event helps anemia.  to prevent It is rich ane in mia. It is rich  tent/up‐ 10.  bean   Vigna unguiculata  in potassium that helps to maintain lower  loads/2018/06/Black‐ 10. 10.  bean   Vigna unguiculata  in potassium that helps to maintain lower Black-  Eyed- loads/2018/06/ Beans_600 Black‐ 10.  bean   Vigna unguiculata  in potassium that helps to maintain lower  loads/2018/06/Black‐ Black bean  eyed      in content  potassium  helps blood  tha  to pre  prevent t helps ssure to  ane [14,19]  mamintain ia..  It  islower  rich   loads/2018/06/ Eyedtent/up ‐Beans_60 ‐Black 0  ‐ Black eyed  content helps to prevent anemia. It is rich  tent/up‐ bean bean   unguiculata in potassium potassium that that helps helps to to maintain lower  loads/2018/06/Black‐ bean   in potassium that helps to maintain lower  loads/2018/06/Black‐ 10.    Vigna unguiculata  blood pressure [14,19].  Eyed‐Beans_600  10.  Vigna unguiculata  x600_1.jpg (accessed on 22 May blood pressure [14,19].  Eyed‐Beans_600  blood pressure [14,19].  Eyed‐Beans_600  bean   in potassium that helps to maintain lower  loads/2018/06/ x600_1.jpgBlack   ‐   blood pressure [14,19].  Eyed‐Beans_600  bean   maintain in potassium lower tha blood t helps pr essur to ma eintain lower  loads/2018/06/Black‐   blood pressure [14,19].  Eyed‐Beans_600    blood pressure [14,19].  Eyed‐Beans_600    x600_1.jpg  2021)   x600_1.jpg    x600_1.jpg  blood pressure [14,19].  Eyed‐Beans_600  x600_1.jpg  [14,19]. blood pressure [14,19].  Eyed‐Beans_600  x600_1.jpg  x600_1.jpg  It is a source of dietary fiber that helps to  https://www.only‐ x600_1.jpg  It is a source of dietary fiber that helps to  https://www.only‐ x600_1.jpg  It is a source of dietary fiber that helps to  https://www.only‐ It is a source of dietary fiber that helps to  https://www.only‐ 11.  Fayot bean  Phaseolus vulgaris  Itprevent  is a sou rchole ce ofs dietary terol absorption  fiber that and  helps in ‐to  foods.net/diffe https://www.orent nly‐‐ ItIt  isis  aa  sou sourrce ce  of of  dietary dietary  fifibbeerr  tha thatt  helps helps  to to   https://www.o https://www.onnly ly‐‐ 11.  Fayot bean  Phaseolus vulgaris  prevent cholesterol absorption and in‐ foods.net/different‐ 11.  Fayot bean  Phaseolus vulgaris  prevent cholesterol absorption and in‐ foods.net/different‐ 11.  Fayot bean  Phaseolus vulgaris  prevent cholesterol absorption and in‐ foods.net/different‐ 11.  Fayot bean  Phaseolus vulgaris  Itprevent  is a crease sou rchole ce the  ofs  dietary fat terol el im absorption  fi ination ber tha [14]. t  and helps   in ‐to  types foods.net/diffe https://www.o ‐of‐beans.html rent nly‐‐  It is a source of dietary fiber that helps to  https://www.only‐ 11.  Fayot bean  Phaseolus vulgaris  prevent cholesterol absorption and in‐ foods.net/different‐ 11.  Fayot bean  Phaseolus vulgaris  prevent cholesterol absorption and in‐ foods.net/different‐ crease the fat elimination [14].  types‐of‐beans.html  crease the fat elimination [14].  types‐of‐beans.html  crease the fat elimination [14].  types‐of‐beans.html  11.  Fayot bean  Phaseolus vulgaris  prevent crease  chole  thes tfat erol el im absorption ination [14].  and  in‐ types foods.net/diffe ‐of‐beans.html rent‐  11.    Fayot bean  Phaseolus vulgaris  prevent cholesterol absorption and in‐ foods.net/different‐ crease the fat elimination [14].  types‐of‐beans.html  crease the fat elimination [14].  types‐of‐beans.html    crease the fat elimination [14].  types‐of‐beans.html  crease the fat elimination [14].  types‐of‐beans.html    Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  ublic/2020‐08/soy‐ beans.jpg?itok=DuP‐ fsOBn  https://ag‐ tfoods.co.za/wp‐con‐ Used as a dry pulse and also as a green  2.  Chickpea  Cicer arietinum  tent/up‐ vegetable [14,15].  loads/2018/06/Desi‐ Chickpea_600x600_1.jpg  https://www.allergicliv‐ Used both fresh and dried. Peas are rich  ing.com/wp‐content/up‐ 3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good  loads/2019/09/Green‐ amounts of dietary fiber [14].  peas.jpg  Groundnuts contains high level of mono‐ unsaturated and polyunsaturated fatty  https://www.nutstop.co 4.  Groundnut  Arachis hypogaea  acids that may keep the heart healthy by  m/how‐peanuts‐grow/  maintaining lower blood cholesterol lev‐ els [16].  https://jiraphas‐ Red lentils contain plenty of protein and  erviceltd.com/wp‐con‐ fiber; thus, it is called the meat of poor  5.  Red lentil  Lens culinaris  tent/up‐ people. It is a healthier choice for the  loads/2020/10/7RLT1‐ heart instead of processed meat [14].  1.jpg https://www.grain‐ It is a rich source of protein and a good  star.com.au/wp‐con‐ 6.  Green lentil  Lens culinaris  supplement for meat. It reduces the risk  tent/up‐ of heart diseases [17].  loads/2018/05/richlea‐ lentils.jpg  https://fthmb.tqn.com/2J dDB8mU_‐ Brown lentils are a good source of nutri‐ S9vxjJ6bik4O763sg=/960 7.  Brown lentil  Lens culinaris  ents and its low calorie content and high  x0/filters:no_up‐ fiber helps healthy digestion [16].  scale()/170460595‐ 56a30edc5f9b58b7d0d03 627.jpg https://ag‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ 8.  Black lentil  Lens culinaris  and are quite different from other lentils,  tent/up‐ used in salads and soups [17].  loads/2018/06/Black‐Len‐ tils_3.jpg  Contains essential amino acids and anti‐ oxidants that help to neutralize free radi‐ https://www.espaceagro. 9.  Mung bean  Vigna radiata  cals, thus working against chronic inflam‐ com/_AF‐ mation, heart disease, cancers and other  FAIRE/188567.jpg  Agronomy 2021, 11, 2238 4 of 24 diseases [14,18].  https://ag‐ Improves digestion and its adequate iron  tfoods.co.za/wp‐con‐ Table 1. Cont. Black eyed  content helps to prevent anemia. It is rich  tent/up‐ 10.  Vigna unguiculata  bean   in potassium that helps to maintain lower  loads/2018/06/Black‐ Sl. Common Scientific Sources of Images blood pressure [14,19].  Eyed‐Beans_600  Picture Major Use No Name Name [Accessed on 22 May 2021] x600_1.jpg  Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23   Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23  It is a source of dietary fiber that Agronomy     2021, 11, x FOR PEER REVIEW  4  of  23  It is a source of dietary fiber that helps to  https://www.only‐ https://www.onlyfoods.net/ Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23   Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23  Phaseolus helps to prevent cholesterol Agronomy 11. 11.   2021, 11, x FOR PEER REFayot Fayot VIEW bean   bean  Phaseolus vulgaris  prevent cholesterol absorption and dif fer in‐ent-types- foods.net/diffe of-beans.html rent 4  of‐  23  Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23    vulgaris absorption and increase the fat (accessed on 22 May 2021) crease the fat elimination [14].  types‐of‐beans.html  elimination [14]. https://www.thedailyme https://www.thedailyme https://www.thedailyme https://www.th al.com/sites/ edailyme de‐ https://www.thedailyme al.com/sites/de‐ This bean has anticancer potential. It also  al.com/sites/de‐ https://www https://www.th .thedailymeal. edailyme This bean has anticancer potential. It also  This bean has anticancer potential. It also  fault/files/ al.com/sites/ slideshows/16 de‐ https://www.thedailyme https://www.thedailyme https://www.thedailyme al.com/sites/de‐ fault/files/slideshows/16 12.  Navy bean  Phaseolus vulgaris  This helps This bean  bean to lower  has has ant  diabete anticancer icancesr  risk pote and ntial. greater  Itcom/sites/default/files/  also   fault/files/slideshows/16 al.com/sites/de‐ This bean has anticancer potential. It also  12.  Navy bean  Phaseolus vulgaris  helps to lower diabetes risk and greater  12.  Navy bean  Phaseolus vulgaris  helps to lower diabetes risk and greater  fau70994/2173040/21 lt/files/slideshows/16 ‐ This bean has anticancer potential. It al.com/sites/ also  al.com/sites/ de‐ de‐ fault/files/ al.com/sites/ slideshows/16 de‐ Phaseolus potential. It also helps to lower slideshows/1670994/2173040/ 70994/2173040/21‐ 12.  Navy bean  Phaseolus vulgarThis is   bean helps  has to ant lower icagut nc ediabete  rhealth  potential. s [14].  risk It   also and  greater  70994/2173040/21‐ This bean has anticancer potential. It also  fault/files/slideshows/16 12.  Navy bean  Phaseolus vulgaris  This helps bean  to lower  has ant  diabete icancesr  risk pote and ntial. greater  It also   12.   Navy bean gut health [14].  gut health [14].  fault/files/navy_beans slid70994/2173040/21 eshows/16‐Thinkstock ‐ ‐ 12.  Navy bean  Phaseolus vulgaris  helps to lower diabetes risk and greater  fault/files/slideshows/16   vulgaris diabetes risk and greater gut 21- fau navy_beans- 70994/2173040/21 lt/files/slideshows/16 ‐ 12.    Navy bean  Phaseolus vulgaris  helps to lower diabetes risk and greater  gut health [14].  navy_beans navy_beans‐‐Thinkstock Thinkstock‐‐ 12.  Navy bean  Phaseolus vulgaris  helps to lower diabetes risk and greater  70994/2173040/21‐ 12.  Navy bean  Phaseolus vulgaris  helps to lower gut diabete  healths [14].  risk  and greater    70994/2173040/21‐ Photos‐494876324.jpg  navy_beans 70994/2173040/21 ‐Thinkstock ‐ ‐ gut health [14].    health [14]. ThinkstockPhotos-494876324. gut health [14].  navy_beans 70994/2173040/21 ‐Thinkstock ‐ ‐   Photos‐494876324.jpg  gut health [14].  Photos‐494876324.jpg  navy_beans‐Thinkstock‐ navy_beans‐Thinkstock‐ gut health [14].  navy_beans Photos‐494876 ‐Thinkstock 324.jpg ‐ jpg (accessed on 22 May 2021) navy_beans Photos‐494876 ‐Thinkstock 324.jpg ‐ Photos‐494876 Photos 324.jpg ‐494876   324.jpg  Photos‐494876324.jpg  Photos‐494876324.jpg  Protects the body from free radical dam‐ http://productkg.com/sit Protects the body from free radical dam‐ http://productkg.com/sit Protects the body from free radical dam‐ http://productkg.com/sit 13.  Red bean  Vigna umbellata  age that helps in controlling blood sugar  es/default/files/to‐ Protects Protects the the body body fr from om fr free ee radical http://pr  dam‐ http://produ oductkg.com/sites/ ctkg.com/sit Protects the body from free radical dam‐ http://productkg.com/sit Protects the body from free radical dam‐ http://productkg.com/sit 13.  Red bean  Vigna umbellata  age that helps in controlling blood sugar  es/default/files/to‐ 13.  Red bean  Vigna umbellata  age that helps in controlling blood sugar  es/default/files/to‐ Protects the body from free radical dam‐ http://productkg.com/sit Vigna radical damagelevel that s helps  [16]. in default/files/tomatnaya- matnaya‐fasoltalas_0.jpg  13.  Red bean  Vigna umbellata  Protects age that  the helps  bo in dy controlling  from free radical  blood  su dam ga‐r  http://produ es/default/fi ctkgles/to .com‐/sit 13. 13.    Red Red bean  bean     Vign Vign a umbellat a umbellat a  aage    that Protects age helps  that   in helps the controlling  bo in dy controlling  from  blood  free su radical  b galood r    su dam es/default/fi gar‐  http://produ es/default/fi les/to‐ ctklges/to .com‐/sit 13. Red bean levels [16].  matnaya‐fasoltalas_0.jpg  levels [16].  matnaya‐fasoltalas_0.jpg  13.  Red bean  Vigna umbellata  age that helps in controlling blood sugar  es/default/files/to‐ umbellata controlling blood sugar levels fasoltalas_0.jpg (accessed on 22 13.  Red bean  Vigna umbellata  age that helps in level  controlling s [16].   blood sugar  matnaya es/default/fi ‐fasoltalas_0.jpg les/to‐   levels [16].  matnaya‐fasoltalas_0.jpg  13.  Red bean  Vigna umbellata  age that helps in level  controlling s [16].   blood sugar  matnaya es/default/fi ‐fasoltalas_0.jpg les/to‐   levels [16].  matnaya‐fasoltalas_0.jpg  [16]. May 2021)   levels [16].  matnaya‐fasoltalas_0.jpg  levels [16].  matnaya‐fasoltalas_0.jpg  https://www.foodsafe‐   Red kidney beans are full of folate (vita‐ https://www.foodsafe‐ https://www.foodsafe‐ Red kidney beans are full of folatehttps://www.fo  (vita‐ odsafe‐ Red kidney  Red kidney beans are full of folate (vita‐ tynews.com/files/2020/07 https://www.foodsafe‐ https://www.foodsafe‐   Red kidney  Red kidney beans are full of folate (vita‐ tynews.com/files/2020/07 14.  Red kidney  Phaseolus vulgaris  Red min kid  B9)n ey and be fib ans er, are  which  full  of helps  fola to te  (v pro ita‐‐ tynews.com/files/2020/07 https://www.foodsafe‐ https: Red kidney  Red kidney beans are full of folatynews.com/files/2020/07 te (vita‐ 14.  Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ 14.  Redbean  kidn  ey  Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ tynews.com/files/2020/07 https://www.fo /dreamstime_red odsafe ‐kid‐‐ Red Redkidney  kidneybeans  beansar are e full  fullof of folate (vita‐ https://www.foodsafe‐ 14.  Red kidney Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ tynews.com/files/2020/07 bean  /dreamstime_red‐kid‐ 14.  bean  Phaseolus vulgaris  minmote  B9)  and cardio  fibvas er, cwhich ular health  helps  [1 to8]. pro  ‐ /dreamstime_red‐kid‐   Red kidney  Red kidney beans are full of folat//www e (vita‐ .foodsafetynews.com/ tynews.com/files/2020/07 bean  Red kidney beans are full of folate/dreamstime_red  (vita‐ ‐kid‐ 14.  Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ mote cardiovascular health [18].    Red bean kidney   Phaseolus folatemote (vitamin  cardio B9) vas and cular fiber  health ,  [18].  /dreamstime_red ney‐bean‐lectins.jpg ‐kid ‐ 14.    Red kidney  Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ tynews.com/files/2020/07 Red kidney  mote cardiovascular health [18].  tynews.com/files/2020/07 bean  /dreamstime_red‐kid‐ ney‐bean‐lectins.jpg  14. mote cardiovascular health [18]. files/2020/07/dr   ney‐bean eamstime_ ‐lectins.jpg  14.    bean  Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ /dreamstime_red‐kid‐ ney‐bean‐lectins.jpg  14.  Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ mote cardiovascular health [18].    bean vulgaris which helps to promote https://ixivixi.com/wp ney‐bean‐lectins.jpg ‐ bean  mote cardiovascular health [18].  /dreamstime_red‐kid‐ bean  /dreamstime_red ney‐bean‐lectins.jpg ‐kid ‐ red-kidney-bean-lectins.jpg https://ixivixi.com/wp‐ mote cardiovascular health [1https://ixivixi.com/wp 8].  https://ixivixi.com/wp ney‐bean‐‐lectins.jpg ‐ cardiovascular mote cardiohealth vascul[ar 18 health ].  [18].  White kidney  It helps in blocking the carbs from being  https://ixivixi.com/wp ney‐bean content/u ‐lectins.jpg p‐  ‐ (accessed https://ixivixi.com/wp ney on‐22 bean May ‐lectins.jpg 2021)  ‐ White White kid kid neyn ey  It helpIts  help in blocking s in blocking  the carbs the fro carbs m being  fro m being content/u   pcontent/u ‐ p‐ White kidney  It helps in blocking the carbs from being  content/up‐ https://ixivixi.com/wp‐ 15.  White bean  kid (Can ney‐   Phaseolus vulgaris  absorbed It helps in and  blocking  metabolized  the carbs in  fro them human  being   https://ixivixi.com/wp loads/2015/07/ content/up White ‐ ‐‐ https://ixivixi.com/wp‐ 15.  White bean (Can  kid‐neyPha   seolus vulgaris  absorbed It help  ands  metabolized in blocking  in the the carbs  human  fro mloads/2015/07/  being  White content/u ‐ p‐ 15.  bean (Can‐ Phaseolus vulgaris  absorbed and metabolized in the human  loads/2015/07/White‐ 15.  bean (Can‐ Phaseolus vulgaris  absorbed and metabolized in the human https://ixivixi.com/wp-   loads/2015/07/White‐ White kidney  It helps in blocking the carbs from being  content/up‐ 15.  bean nellini)  (Can ‐ Phaseolus vulgaris  Itabsorbed helps in blocking and metabolized body the [18]. carbs    in the human  Kidney loads/2015/07/ ‐Bean‐Extrac Whitet‐‐ White kidney  It helps in blocking the carbs from being  content/up‐ White nellini) kid  ney  It helps in body  blocking  [18].   the carbs fromKidney  being ‐Bean‐Extrac content/u t‐ p‐ 15.  bean (Can‐ Phaseolus vulgaris  absorbed and metabolized in the human  loads/2015/07/White‐ White nellini) kidney   body [18].  content/uploads/2015/07/ Kidney‐Bean‐Extract‐   nellini)  body [18].  Kidney‐Bean‐Extract‐ 15.  bean (Can‐ Phaseolus vulgaris  absorbed and metabolized in the human  loads/2015/07/White‐ Phaseolus from being absorbed and   nellini)  body [18].  for Kidney ‐Weight ‐Bean‐Los‐Extrac s‐1.jpg t‐  15.    bean (Can‐ Phaseolus vulgaris  absorbed and metabolized in the human  loads/2015/07/White‐ for‐Weight‐Loss‐1.jpg  15. 15.  bean nellini) bean  (Can ‐ Phaseolus vulgaris  absorbed and metabolized body [18].   in the human White- Kid Kidney loads/2015/07/ ney-Bean- ‐Bean Extract- ‐Extrac Whitet‐‐ for‐Weight‐Loss‐1.jpg  for‐Weight‐Loss‐1.jpg    nellini)  body [18].  Kidney‐Bean‐Extract‐   vulgaris metabolized in the human body for‐Weight‐Loss‐1.jpg  nellini)  body [18].  hKidney ttps://cdn ‐Bean .sho‐pify Extrac .com t‐ /   https://cdn.shopify.com/ (Cannellini) for-Weight-Loss-1.jpg (accessed nellini)  body [18].  for Kidney ‐Weight ‐Bean‐Los‐Extrac s‐1.jpg t‐  https://cdn.shopify.com/   https://cdn.shopify.com/ for‐Weight‐Loss‐1.jpg  [18]. Contains a good amount of vitamin B1  s/files/1/1834/0943/prod‐ Contains a good amount of vitamin B1  h s/file for ttps://cdn ‐Weight s/1/1834/0 .sh‐Los o943/prod pify s‐1.jpg .com /‐ on 22 May 2021) for‐Weight‐Loss‐1.jpg  https://cdn.shopify.com/ Contains a good amount of vitamin B1  s/files/1/1834/0943/prod‐ Contains a good amount of vitamin B1  s/files/1/1834/0943/prod‐ https://cdn.shopify.com/ that helps to convert food into energy.  ucts/bean‐ Contains that helps a  to good  conv amount ert food of into  vit aenergy. min B1   s/files/1/1834/0 ucts/bean 943/prod ‐ ‐ https://cdn.shopify.com/ Contains a good amount of vitamin B1  h s/file ttps://cdn s/1/1834/0 .sho943/prod pify.com/‐ Contains that helps a good to conv amount ert food of into energy. https://cdn.shopify   ucts/bean .com/s/ ‐ that helps to convert food into energy.  ucts/bean‐ Contains a good amount of vitamin B1  s/files/1/1834/0943/prod‐ 16.  Pinto bean  Phaseolus vulgaris  Additionally, it contains many antioxi‐ pinto_569fa089‐dddd‐ 16.  Pinto bean  Phaseolus vulgaris  Addi that helps tionally  to ,conv  it contains ert food many  into  energy. antioxi‐  pinto_569fa089 ucts/bean‐‐dddd‐ Contains a good amount of vitamin B1  s/files/1/1834/0943/prod‐ vitamin Contains that helps B1 that  a  to good helps  conv amount ert to convert food of into  vit aenergy. mi files/1/1834/0943/pr n B1   s/files/1/1834/0 ucts/bean oducts/ 943/prod ‐ ‐ 16. 16.   Pinto Pinto  bean bean   Pha Phaseo seolus lus  vulga vulgarris is   Addi Additionally tionally,,  it it  contains contains  many many  antioxi antioxi‐‐ pinto_569fa089 pinto_569fa089‐‐ddd dddd d‐‐ that helps to convert food into energy.  ucts/bean‐ dants such as polyphenols and flavonoids  41b4‐856d‐ dants such as polyphenols and flavonoids  41b4‐856d‐ 16.  Pinto bean  Phaseolus vulgaris  Addi that helps tionally  to ,conv  it contains ert food many  into  energy. antioxi‐  pinto_569fa089 ucts/bean‐‐dddd‐ Phaseolus food into energy. Additionally, bean-pinto_569fa089-dddd-41 16.  Pinto bean  Phaseolus vulgaris  Addi that helps tionally  to ,conv  it contains ert food many  into  energy. antioxi‐  pinto_569fa089 ucts/bean‐‐dddd‐ dants such as polyphenols and flavonoids  41b4‐856d‐ dants such [16,17]. as polyphenols    and fla3db099771330_800x.png vonoids  41b4‐856d‐ 16. 16.  Pinto Pinto bean bean  Phaseolus vulgaris  Additionally, it contains many antioxi‐ pinto_569fa089‐dddd‐ [16,17].  3db099771330_800x.png 16.  Pinto bean  Phaseolus vulgaris  dants Addi su tionally ch as polyphenols , it contains many  and fla antioxi vonoids ‐   pinto_569fa089 41b4‐856d‐ddd ‐ d‐ vulgaris it contains many antioxidants b4-856d-3db099771330_800x. 16.  Pinto bean  Phaseolus vulgaris  dants Addi su tionally ch as polyphenols , it contains  many and fla antioxi vonoids ‐   pinto_569fa089 41b4‐856d‐‐dddd‐ [16,17].  ?v=1505218437 3db099771330_800x.png   [16,17].  3db099771330_800x.png dants such as polyphenols and flavonoids  41b4‐856d‐ dants such su asch polyphenols  as polyphenols [16,17]. and   and fla png?v=1505218437 vonoids 3db099771330_800x.png ?v=1505218437 41b4 (accessed ‐856d‐  on dants such as polyphenols [16,17].   and flavonoids 3db099771330_800x.png 41b4‐856d‐ https://www.mexi‐   ?v=1505218437  ?v=1505218437    [16,17].  3db099771330_800x.png flavonoids [16,17]. 22 May 2021) [16,17].  3db099771330_800x.png https://www.mexi ?v=1505218437  ‐ [16,17].  canplease3db099771330_800x.png .com/wp‐con‐ ?v=1505218437  https://www.mexi https://www.mexi‐‐ ?v=1505218437  It is good for the heart as it contains vari‐ canplease.com/wp‐con‐ https://www.mexi ?v=1505218437  ‐ Cranberry  tent/up‐ https://www?v=1505218437 .mexicanplease.  https://www.mexi‐ It is good for the heart as it contains vari‐ canplease.com/wp‐con‐ canplease.com/wp‐con‐ 17.  Phaseolus vulgaris  ous powerful It is good  minerals for the and heart  enzas yme its that  https://www.mexi‐ Cranberry  It is good for the heart as it contains vari‐ tent/up‐ bean  It is good for the heart as it contains loads/2017/03/  vari‐ canplease https://www.mexi cranberry .com ‐ /wp‐con ‐ ‐ com/wp-content/uploads/20 canplease https://www.mexi .com/wp‐con ‐ ‐ Cranberry  tent/up‐ 17.  Cranberr Cranberry y  Phaseo Phaseolus lus vulgaris  help It ous contains  is to  powerful good  lower various for  ba dthe  minerals  chol heart powerful esterol   as and   [it18].  contains enz   ymes vari  that‐  tent/up‐ canplease.com/wp‐con‐ It is good for the heart as it contains vari‐ 17. 17.  Phaseolus vulgaris  ous powerful minerals and enzyme 17/03/cranberry- beans s that ‐spread   ‐onto‐ beans- cut‐ spread- 17.  Cranberr bean  y  Phaseolus vulgaris  ous powerful minerals and enzymes that loads/2017/03/ canplease tent/up .comcranberry /wp ‐ ‐con‐‐ It is good for the heart as it contains vari‐ Cranberry  canplease tent/up .com/‐wp‐con‐ bean bean  vulgaris minerals and enzymes that help loads/2017/03/cranberry‐ 17.  bean  Phaseolus vulgaris  Itous  is help  good powerful  to for lower  the  minerals  heart  bad chol  as and  itesterol   contains enzyme  [18]. s vari  that   ‐  loads/2017/03/cranberry‐ Cranberry  tent/up‐   It is good for the heart as it contains vari‐ 17.  Phaseolus vulgaris  ous powerful minerals and enzyme onto- ting s that ‐with cutt   ing- ‐solid with- s.jpg solids.jpg help to lower bad cholesterol [18].  Cranberr bean  y  help to lower bad cholesterol [18].  loads/2017/03/ beans‐spread tent/up‐cranberry ont ‐ o‐cut‐‐ 17.  Phaseolus vulgaris  ous powerful minerals and enzymes that    Cranberry  tent/up‐ bean  to lower bad cholesterol [18]. loads/2017/03/cranberry‐ beans‐spread‐onto‐cut‐ help to lower bad cholesterol [18].  beans‐spread‐onto‐cut‐ 17.  bean  Phaseolus vulgaris  ous powerful minerals and enzymes that  loads/2017/03/cranberry‐ 17.    Phaseolus vulgaris  ous powerful minerals and enzyme(accessed s that  on 22 May 2021) help to lower bad cholesterol [18]. https://www.sut   ‐ beans ting‐‐spread with‐solid ‐onts.jpg o‐cu t‐   bean  help to lower bad cholesterol [18].  loads/2017/03/cranberry‐ bean  loads/2017/03/cranberry‐   beans‐spread‐onto‐cut‐ ting‐with‐solids.jpg  ting‐with‐solids.jpg  help to lower bad cholesterol [18].  beans‐spread‐onto‐cut‐ It helps to balance sugar level and re‐ tonsbaytrading.com/wp‐   help to lower bad cholesterol [18].  ting‐with‐solids.jpg    beans https://www.sut ‐spread‐onto‐cu‐ t‐ https: beans ting‐‐spread with‐solid ‐onts.jpg o‐cu t‐ https://www.sut‐ 18.  Adzuki bean  Vigna angularis  duces the risk of diabetes. Improves the  content/u ting https://www.sut p‐‐with‐solids.jpg‐   It helps to balance sugar level It helps to balance sugar level and re‐ tonsbaytrading. ting https://www.sut ‐with‐solid com/wp s.jpg‐   ‐ //www.suttonsbaytrading. ting‐with‐solids.jpg  https://www.sut‐ It streng helps th to of bala  bones nce [20]  sug. ar level and loads/2013/06/  re‐ tonsbaytrading. adzuki‐ com/wp‐ It helps to balance sugar level and re‐ tonsbaytrading.com/wp‐ Vigna and reduces the risk of diabetes. https://www.sut‐ 18. 18.  Adzu Adzuki ki bean bean  Vigna angularis  du It ces help the s to risk  bala ofnce  diab suetes. gar  lev Imeproves l and com/wp-  re the‐   tonsbaytrading. content/uploads/20 content/ucpom/wp ‐ ‐ https://www.sut‐ https://www.sut‐ It helps to balance sugar level and re‐ beans.jpg tonsbaytrading.   com/wp‐ 18.  Adzuki bean  Vigna angularis  duces the risk of diabetes. Improves the  content/up‐ 18.  Adzuki bean  Vign angularis a angularis  Impr duoves ces the the risk str ength of diab ofetes. bones  Improves the  content/up‐ It helps to balance sugar level and re‐ tonsbaytrading.com/wp‐ 13/06/adzuki-beans.jpg 18.  Adzuki bean  Vigna angularis  duces thestreng  risk of th diab  of bones etes.  Im [20] proves .   the  loads/2013/06/ content/uadzuki p‐ ‐ It helps to balance sugar level and re‐ tonsbaytrading.com/wp‐ 18.  Adzuki bean  Vigna angularisIt  helpdu s Itto ces help  prev the sent to risk   birth bala of nce def  diab e su ctetes. sg as ar it  lev Im  is eproves inl ‐andhttp://storage.goog  re the‐   tonsbaytrading. content/u ‐ cpom/wp ‐ ‐ streng [20].th of bones [20].  loads/2013/06/adzuki‐ strength of bones [20].  loads/2013/06/adzuki‐ 18.  Adzuki bean  Vigna angularis  duces the risk of diabetes. Improves the  content/up‐ (accessed on 22 May 2021) strength of bones [20].  loads/2013/06/ beans.jpg adzuki   ‐ 18.  Adzuki bean  Vigna angularis  duces the risk of diabetes. Improves the  content/up‐ credibly nutritious and an excellent  leapis.com/powop‐as‐ 18.  Adzuki bean  Vigna angularis  duces thestreng  risk of th diab  of bones etes.  Im [20] proves .   the  loads/2013/06/ content/uadzuki p‐ ‐   beans.jpg beans.jpg   strength of bones [20].  loads/2013/06/adzuki‐ Faba bean    beans.jpg  19.  Vicia faba  sourIt ce help  of solu s to bstreng le prev  fibeent r,th protein,  of birth  bones   def manga  [20] ects‐.  assets/k  it is in ew_profil ‐ loads/2013/06/ http://storage.goog es/KPP‐ adzuki‐‐ It helps to pr streng eventth birth  of bones defects  [20].  loads/2013/06/ beans.jpg adzuki   ‐ It helps to prevent birth defects as it is in‐ http://storage.goog‐   (Broad bean)  It helps to prevent birth defects as it is in‐ http://storage.goog‐ beans.jpg  http:   nese, copper folate and many other mi‐ CONT_085134_fullsize.j It help credibly s to prev  nutritiou ent birth s and  def an ect exc s ase llent it is  in‐ leapis http://storage.goog .com/po beans.jpg w op‐as‐‐   as it is incredibly nutritious and beans.jpg  It helps to prevent birth defects as it is in‐ http://storage.goog‐ credibly nutritious and an excellent  leapis.com/powop‐as‐ Faba bean  credibly nutritious and an excellent  leapis.com/powop‐as‐ It helps to prevent birth defects as it is in‐ http://storage.goog‐ //storage.googleapis.com/ cronutrients [16].  pg  Faba bean  19.  Faba bean  Vicia faba  sou credibly rce of solu  nutritiou ble fibse and r, protein,  an exc manga ellent  ‐ sets/k leapisew_profil .com/poweop s/KPP ‐as‐‐ Faba bean an It help excellent s to prev sour ent ce birth of soluble  defects as it is in‐ http://storage.goog‐ It help credibly s to prev  nutritiou ent birth s and  def an ect exc s ase llent it is  in‐ leapis http://storage.goog .com/powop‐as‐‐ 19.  Vicia faba  source of soluble fiber, protein, manga‐ sets/kew_profiles/KPP‐ 19.  (Broad Faba bean  bean)    Vicia faba  source of soluble fiber, protein, manga‐ sets/kew_profiles/KPP‐ 19. Vicia faba credibly nutritious and an excellent powop-   assets/kew_pr leapis.com/poofiles/ wop‐as‐ Faba bean  19.  (Broad (Broad (Broad  bean) bean) bean)   Vicia faba  sou nese, fiber rce , copper pr of otein,  solu fob manganese, late le fib and er,  protein, many other  manga  mi‐‐https://ju CONT_085134_fullsize sets/k‐ew_profiles/KPP‐.j credibly nutritious and an excellent  leapis.com/powop‐as‐ Faba bean  19.  Vicia faba  sou credibly rce of solu  nutritiou ble fibse and r, protein,  an exc manga ellent  ‐ sets/k leapisew_profil .com/poweop s/KPP ‐as‐‐ Helps to prevent chronic disease, diseases    nese, nese,  copper copper  fo folate late  and and  many many  other other KPPCONT_085134_fullsize.jpg   mi mi‐‐ CONT_085134_fullsize CONT_085134_fullsize..jj (Broad Faba bean  bean)    19.  Vicia faba  source of soluble fiber, protein, manga‐ sets/kew_profiles/KPP‐ (Broad Faba bean  bean)    copper folate and many other diesblog.files.word‐   cronutrients [16].  pg  19.    Vicia faba  sou nese, rce copper  of solu fo bllate e fib and er, protein,  many other  manga  mi‐‐ CONT_085134_fullsize sets/kew_profiles/KPP‐.j (Broad bean)  19. 20.    Lima bean  Phaseolus Vicia  luna fa tus ba   associated sou nese, r wit ce copper  of h dig  solu e st fobion late le  fib an and der, st  protein, im many ulates other   manga  mi‐‐ CONT_085134_fullsize sets/kew_profiles/KPP‐.j (accessed on 22 May 2021) cronutrients [16].  pg    (Broad bean)  cronutrients [16].  pg  nese, copper folate and many other mi‐ CONT_085134_fullsize.j   (Broad bean)  micronutrients [16]. press.com/2010/10/img_ nese, copper cronu  folate trients  and  many [16].  other mi‐ CONT_085134_fullsize pg  .j blood circulation [14].  https://ju‐ nese, copper cronu  folate trients  and  many [16].   other mi‐ CONT_085134_fullsize pg  .j cronutrients [16].  5993.jpg  pg  Helps to prevent chronic disease, diseases  https://ju https://ju‐‐ cronutrients [16].  pg  Helps to prevent chronic disease, diseases  diesblog.files.word‐ Helps to prevent cronu chronic trients  [1 dis 6].ease,    diseases  https://ju pg  ‐ Helps to prevent chronic https: https://ju‐ 20.  Lima bean  Phaseolus lunatus  associated with digestion and stimulates  diesblog.files.word‐ Helps to prevent chronic disease, hdittps://cdn seases  .shdiesb opifyl.com og.fi/les.word‐ https://ju‐ Helps to prevent chronic disease, diseases  20.  Lima bean  Phaseolus lunatusGr  assassoc  pea iseed ateds  wit are h us dig ed as est aion  common  and st  imulates  press.com/2010/10/img_ 20.  Lima bean  Phaseolus lunatus  associated with digestion and stimulates  diesbhttps://ju log.files.word ‐ ‐ Phaseolus Helps disease,  to diseases prevent chronic associated  disease, di //judiesblog.files.wor seases  dpress. diesbhttps://ju log.files.word ‐ ‐ s/files/1/2333/6 press.com/2010/10/img_ 781/prod‐ 20.  Lima bean  Phaseolus lunatus  Helps assoc ito ated  prevent blood  with  circu  dig chronic est lation io dis n an [14]. edase,  st im  diusease latess   press.com/2010/10/img_ 20. Lima bean diesblog.files.word‐ 20.  Lima bean  Phaseolus lunatus  Helps assoc ito ated  prevent  with dig  chronic estion dis  anedase,  stim diusease latess   21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and  blood circulation [14].  lunatus with digestion blood and  circu stimulates lation [14].  com/2010/10/img_5993.jpg press.com/2010/10/img_ diesblog.fi 5993.jpg les.word   ‐ 20.    Lima bean  Phaseolus lunatus  associated with digestion and stimulates  press.com/2010/10/img_ diesblog.files.word‐ ucts/grass_pea_photo_53 5993.jpg  20.  Lima bean  Phaseolus lunatus  associatedblood  with  circu digest lat ion ion an [14]. d st imulates  5993.jpg    press.com/2010/10/img_ 20.  Lima bean  Phaseolus lunatus  associated Africa  wit h[21 dig ].  estion and stimulates  blood circulation [14].  blood circulation [14]. (accessed on 22 May 2021) press.com/2010/10/img_ 5993.jpg  blood circulation [14].    https://cdn.shopify.com/ 0x@2x.jpg?v=1578338252 press.com/2010/10/img_   5993.jpg  blood circulation [14].  5993.jpg  https://cdn.shopify.com/   Grass pea blood  seed circu s are lus atied on  as [14].  a c ommon  https://cdn.shopify.com/ 5993.jpg  Grass pea seeds are used as a common    Grass pea seeds are used as a common  h s/file ttps://cdn s/1/2333/6 5993.jpg .sho781/prod pify   .com/‐ https://cdn.shopify.com/ s/files/1/2333/6781/prod‐ 21.  Grass pea  Lathyrus sativus  staple Grass f ood pea  in seed  many s are cou  used ntries  as a of c oAs mmon ia and   s/files/1/2333/6781/prod‐ https://cdn.shopify.com/ Grass pea seeds are used as a common  21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and  21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and ucts/grass_pea hs/file ttps://cdn s/1/2333/6 .sho_pify 781/prod photo_53 .com/‐ Grass pea seeds are used as a common  https://cdn.shopify.com/ s/files/1/2333/6781/prod‐ ucts/grass_pea_photo_53 21.  Grass pea  Lathyrus sativus  staple food in many Africa cou  [21n]tries .   of Asia and ucts/grass_pea_photo_53 Grass pea seeds are used as a common  s/files/1/2333/6781/prod‐ Grass pea seeds are used as a common  21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and    Africa [21].  Africa [21].  ucts/grass_pea 0x@2x.jpg?v=1578338252 _photo_53  21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and s/files/1/2333/6781/prod‐ s/files/1/2333/6781/prod‐ ucts/grass_pea_photo_53   0x@2x.jpg?v=1578338252    Africa [21].  0x@2x.jpg?v=1578338252  21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and ucts/grass_pea_photo_53 21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and  Africa [21].    0x@2x.jpg?v=1578338252  Africa [21].  ucts/grass_pea_photo_53 ucts/grass_pea 0x@2x.jpg?v=1578338252 _photo_53    Africa [21].  0x@2x.jpg?v=1578338252  Africa [21].  0x@2x.jpg?v=1578338252  0x@2x.jpg?v=1578338252    Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23  https://www.thedailyme al.com/sites/de‐ This bean has anticancer potential. It also  fault/files/slideshows/16 12.  Navy bean  Phaseolus vulgaris  helps to lower diabetes risk and greater  70994/2173040/21‐ gut health [14].  navy_beans‐Thinkstock‐ Photos‐494876324.jpg  Protects the body from free radical dam‐ http://productkg.com/sit 13.  Red bean  Vigna umbellata  age that helps in controlling blood sugar  es/default/files/to‐ levels [16].  matnaya‐fasoltalas_0.jpg  https://www.foodsafe‐ Red kidney beans are full of folate (vita‐ Red kidney  tynews.com/files/2020/07 14.  Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ bean  /dreamstime_red‐kid‐ mote cardiovascular health [18].  ney‐bean‐lectins.jpg  https://ixivixi.com/wp‐ White kidney  It helps in blocking the carbs from being  content/up‐ 15.  bean (Can‐ Phaseolus vulgaris  absorbed and metabolized in the human  loads/2015/07/White‐ nellini)  body [18].  Kidney‐Bean‐Extract‐ for‐Weight‐Loss‐1.jpg  https://cdn.shopify.com/ Contains a good amount of vitamin B1  s/files/1/1834/0943/prod‐ that helps to convert food into energy.  ucts/bean‐ 16.  Pinto bean  Phaseolus vulgaris  Additionally, it contains many antioxi‐ pinto_569fa089‐dddd‐ dants such as polyphenols and flavonoids  41b4‐856d‐ [16,17].  3db099771330_800x.png ?v=1505218437  https://www.mexi‐ canplease.com/wp‐con‐ It is good for the heart as it contains vari‐ Cranberry  tent/up‐ 17.  Phaseolus vulgaris  ous powerful minerals and enzymes that  bean  loads/2017/03/cranberry‐ help to lower bad cholesterol [18].  beans‐spread‐onto‐cut‐ ting‐with‐solids.jpg  https://www.sut‐ It helps to balance sugar level and re‐ tonsbaytrading.com/wp‐ 18.  Adzuki bean  Vigna angularis  duces the risk of diabetes. Improves the  content/up‐ strength of bones [20].  loads/2013/06/adzuki‐   beans.jpg  It helps to prevent birth defects as it is in‐ http://storage.goog‐ credibly nutritious and an excellent  leapis.com/powop‐as‐ Faba bean  Agronomy 2021, 11, 2238 5 of 24 19.  Vicia faba  source of soluble fiber, protein, manga‐ sets/kew_profiles/KPP‐ (Broad bean)  nese, copper folate and many other mi‐ CONT_085134_fullsize.j cronutrients [16].  pg  https://ju‐ Table 1. Cont. Helps to prevent chronic disease, diseases  diesblog.files.word‐ 20.  Lima bean  Phaseolus lunatus  associated with digestion and stimulates  Sl. Common Scientific Sources of Images press.com/2010/10/img_ Picture Major Use blood circulation [14].  No Name Name [Accessed on 22 May 2021] 5993.jpg  https://cdn.shopify.com/s/ https://cdn.shopify.com/ Grass pea seeds are used as a Grass pea seeds are used as a common  files/1/2333/6781/products/ s/files/1/2333/6781/prod‐ Lathyrus common staple food in many Agronomy 2021, 11, x FOR PEER REVIEW  5  of  23  21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and  21. Grass pea grass_pea_photo_530x@2x.jpg? Agronomy    2021, 11, x FOR PEER REVIEW  5  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  5  of  23  sativus countries of Asia and Africa ucts/grass_pea_photo_53 Africa [21].  v=1578338252 (accessed on 22 Agronomy 2021, 11, x FOR PEER REVIEW  5  of  23  [21]. Agronomy Agronomy  2021 2021,,  11 11,,  xx  FOR FOR  P PEER EER     RE REV VIIE EW W   0x@2x.jpg?v=1578338252 55   of of   23 23    May 2021) Agronomy 2021, 11, x FOR PEER REVIEW  5  of  23  It contains antioxidants that https://www.firstfor‐ Agronomy 2021, 11, x FOR PEER REVIEW  5  of  23  https: It contains antioxidants that promote  https://www.firstfor‐ https://www.firstfor‐   promote proper digestion and It contains antioxidants that promote  women.com/wp‐con‐ It contains antioxidants that promote  //www.firstforwomen.com/ https://www.firstfor‐ proper digestion and keep intestines  women.com/wp‐con‐ keep intestines healthy. women. https://www.firstfor com/wp‐con‐‐ https://www.firstfor‐ It contains antioxidants that promote  proper digestion and keep intestines  tent/up‐ proper digestion and keep intestines wp-conte   nt/uploads/sites/2/ It It  contains contains  antioxidants antioxidants  that that  p prromote omote   women.com/wp‐con‐ 22. 22.  Lu Lupin pin bean bean   Lupinus Lupinus albus albus  healthy. Additionally  Additi , aids onally, in weight  aids in weight loss,  https://www.firstfor tent/up‐ ‐ tent/up‐ women. women.ccoom/wp m/wp‐‐con con‐‐ proper digestion and keep intestines  22.  Lupin bean   Lupinus albus  healthy. It contains  Additi  antioxidants onally, aids that  in weight  promote 2019/01/what-  los s, loads/sitear s/2/20 e-lupin- 19/01/wh 22.  Lupin bean   Lupinus albus  healthy. Additionally, aids in weight loss,  proper proper  dig digeestio stion n  and and  keep keep  inte intestines stines   tent/up‐ loss, provides essential vitamins provides essential vitamins and minerals  loads/ women. sites/2/20 com/wp 19/01/wh ‐con‐ loads/sites/2/2019/01/wh https://www.firstfor tent/up‐ ‐ tent/up‐ 22.  Lupin bean   Lupinus albus  healthy. Additionally, aids in weight beans-  loss,  benefits.jpg?w=715 provides proper  essen digestio tialn vitamins  and keep and  inte minerals stines    at‐are‐lupin‐beans‐bene‐ provides essential vitamins and minerals  22.  Lupin bean   Lupinus albus  healthy. It contains  Additi  antioxidants onally, aids that  in weight  promote  los s,  22.  Lupin bean   Lupinus albus  healthy. Additionally, aids in weight loss,  and minerals and reduces high loads/sites/2/2019/01/wh   and reduces high blood pressure [18,22].  at‐are‐lutent/up pin‐beans ‐ ‐bene‐ at‐are‐lupin‐beans‐bene‐ loads/ women. sites/2/20 com/wp 19/01/wh ‐con‐ loads/sites/2/2019/01/wh (accessed on 22 May 2021) provides essential vitamins and minerals  22.    Lupin bean   Lupinus albus  healthy. and reduces  Additi  high onally,  blood aids  pressure  in weight  [18,22].  loss ,  fits.jpg?w=715  and reduces high blood pressure [18,22].    provides proper  essen digestio tialn vitamins  and keep and  inte minerals stines    provides blood pr essen essur tial e [ vitamins 18,22].  and minerals  at‐are‐lupin‐beans‐bene‐ loads/fits.jpg?w=715 sites/2/2019/01/wh   at‐arefits.jpg?w=715 ‐lupin‐beans‐bene   ‐ at‐are‐lutent/up pin‐beans ‐ ‐bene‐   and reduces high blood pressure [18,22].  provides essential vitamins and minerals    and reduces high blood pressure [18,22].  22.    Lupin bean   Lupinus albus  healthy. and reduces  Additi  high onally,  blood aids  pressure  in weight  [18,22].  loss ,  fits.jpg?w=715  at‐are‐lupin‐beans‐bene‐ fits.jpg?w=715  loads/fits.jpg?w=715 sites/2/2019/01/wh   Beans are an excellent source of protein,  and reduces high blood pressure [18,22].  Beans are an excellent source of provides essential vitamins and minerals  Beans are an excellent source of protein,  https://gar‐ Beans are an excellent source of protein,  fits.jpg?w=715  at‐are‐lupin‐beans‐bene‐ Common  lower in calories and saturated fat than  https://gar‐ protein, lower in calories and https://garden.or https://gar g/pics/2018 ‐   and reduces high blood pressure [18,22].  Beans are an excellent source of protein,  23.  Common  Phaseolus vulgaris  lower in calories and saturated fat than  den.org/pics/2018‐09‐ Common Phaseolus Common  Beans lower  are in calori  an exes cellent  and saturate  source of d  fat protein,  than   Beans are an excellent source of protein,  fits.jpg?w=715  https://gar‐ 23.  bean  Phaseolus vulgaris  some other protein sources such as meat  den.org/pics/2018‐09‐ 23. saturated fat than some other -09-14/Alicemac/b92064.jpg 23.  Phaseolus vulgaris  den.org/pics/20 https://gar18‐ ‐09‐ https://gar‐ Common  lower in calories and saturated fat than  bean bean  vulgaris som Beans e other  are an protein  excellent  sou sou rcesr ce su of ch  protein, as meat   14/Alicemac/b92064.jpg  Common bean    som lower e other  in calori  protein es and  sou saturate rces such d fat  as  than meat   Common  lower in calories and saturated fat than  23.  Phaseolus vulgaris  den.org/pics/2018‐09‐ protein sources such [16,17]. as meat   (accessed on 22 https://gar May 2021) ‐ 14/Alicemac/b92064.jpg  23.  Phaseolus vulgaris  14/Alicemac/b9 den.org/pics/202064.jpg 18‐09‐   23.  Phaseolus vulgaris  den.org/pics/2018‐09‐ bean  some other protein sources such as meat  Common  lower in calories[16,17].  and saturate   d fat than  bean  some other protein [16,17].  sour ces such as meat  bean  som Beans e other  are an protein  excellent  sou sou rcesr ce su of ch  protein, as meat   [16,17]. 14/Alicemac/b92064.jpg  23.  Phaseolus vulgaris  den.org/pics/2018‐09‐ 14/Alicemac/b92064.jpg  14/Alicemac/b9 https://gar 2064.jpg ‐     [16,17].  bean  some other protein sources such as meat  [16,17].  Common  lower in calories[16,17].  and saturate   d fat than  http://peb‐ 14/Alicemac/b92064.jpg  23.    Phaseolus vulgaris  den.org/pics/2018‐09‐ http://peb‐   [16,17].  http://peb‐ bean  some other protein sources such as meat  The dried pods of runner bean The dried pods of runner bean have diu‐ bleandfern.ca/wp‐con‐ http://pebbleandfern.ca/wp- 14/Alicemac/b92064.jpg  http://peb‐ The dried pods of runner bean have diu‐ bleandfern.ca/wp‐con‐ The dried pods of runner bean have diu‐ bleandfern.ca/ http://peb wp‐ ‐con‐ http://peb‐ have diuretic properties [16,17].that   24.  Runner bean  P. multiflorus  retic properties that help to cure urinary  tent/up‐ content/uploads/2015/03/ The dried pods of runner bean have diu‐ bleandfern.ca/wp‐con‐ 24.  Runner bean  P. multiflorus  retic properties that help to cure urinary  http://peb tent/up‐‐ 24.    Runner bean  P. multiflorus  The retic dried  properties  pods  of that runner  help  to bean  cure have  urin di ary u‐  bleandfern.ca/ tent/upwp ‐ ‐con‐ 24. Runner bean P. multiflorus The help dried to cur pods e urinary  of runner tract bean have diu‐ bleandfern.ca/wp‐con‐ tract infections and reduce weight [18,23].  loads/2015/03/runner‐ runnerbean.jpg (accessed on 22 24.  Runner bean  P. multiflorus  retic properties that help to cure urinary  tent/up‐ tract The  dried infections  pods and  of runner  reduce bean  weigh have t [18,23].  diu‐  bleandfern.ca/ loads/2015/03/rwp unner ‐con‐‐   infections tract infections and r educe and reduce weight weight [18,23].  loads/2015/03/runner‐ 24. 24.   Runner Runner  bean bean   P. P.  multif multiflorus lorus   retic retic  properties properties  that that  help help  to to  cu cure re  uri urin nary ary   http://peb tent/up tent/up‐‐‐ May 2021) bean.jpg  tract infections [18,23 and ].  reduce weight [18,23].  loads/2015/03/runner‐ 24.  Runner bean  P. multiflorus  retic properties that help to cure urinary  bean.jpg tent/up‐  bean.jpg  tract The  dried infections  pods and  of runner  reduce bean  weigh have t [18,23].  diu‐   bleandfern.ca/ loads/2015/03/r wp unner ‐con‐‐ tract infections and reduce weight [18,23].  loads/2015/03/runner‐ It contains complex carbohydrates and a  https://www.healthbene‐ bean.jpg  tract infections and reduce weight [18,23].  loads/2015/03/runner‐ It contains complex carbohydrates and a  https://www.healthbene‐ 24.  Runner bean  P. multiflorus  It retic  contains  properties  comp that lex  carbohydrates help to cure uri and nary a   https://www.healthbene bean.jpg tent/up‐  ‐ It contains complex bean.jpg    good amount of zinc, which is useful to  fitstimes.com/9/gal‐ It contains complex carbohydrates and a  https://www.healthbene‐ bean.jpg  Hyacinth‐ good amount of zinc, which is useful to  fitstimes.com/9/gal‐ good carbohydrates  amount of and  zinc, a good  which is useful to  https://www fitstimes.com/9/gal . ‐ tract It It  contains contains  infections   com com and p plex lex reduce   carbohydrates carbohydrates  weight [18,23].   and and  aa   https://www.healthbene https://www.healthbene loads/2015/03/runner‐ ‐‐ 25.  Hyacinth‐ Lablab purpureus  lose weight and prevent cancer, respec‐ lery/hyacinth‐ Hyacinth‐ good amount of zinc, which is useful to  fitstimes.com/9/gal‐ 25.  bean  Lablab purpureus  amount Itlose  contains  weight of zinc,  com  an which dp lex prevent  carbohydrates is useful  cancer, respec healthbenefitstimes.com/9/  and ‐a  https://www.healthbene lery/hyacinth‐ ‐ 25.  Lablab purpureus  lose weight and prevent cancer, respec‐ lery/hyacinth‐ good good  amount amount  of of  zinc, zinc,  which which  is is  us useful eful  to to   fitstimes.com/9/gal fitstimes.com/9/gal bean.jpg  ‐‐ Hyacinth‐ bean  Lablab tively, as Zn prevents cells mutating and beans/Pods‐of‐Hyacinth‐ bean  Hyacinth‐ Hyacinth‐ 25. 25.  Hyacinthbean Lablab purpureus  to lose lose  weight weight  anand d prevent prevent cancer, respec gallery/hyacinth- ‐ lery/hyacinth beans/Pods- ‐ tively, good  amount as Zn prevents  of zinc,  cel which ls mu istating  useful and  to  beans/Pods fitstimes.com/9/gal ‐of‐Hyacinth ‐ ‐ tively, as Zn prevents cells mutating and beans/Pods‐of‐Hyacinth‐ 25.  Lablab purpureus  Itlose  contains  weight com  andp lex prevent  carbohydrates  cancer, respec  and ‐a  https://www.healthbene lery/hyacinth‐ ‐ 25.    Lablab purpureus  lose weight and prevent cancer, respec‐ lery/hyacinth‐ bean  purpureus Hyacinth‐ assists cell division [16,22].  beans.jpg  bean  bean    cancer, respectively, as Zn of-Hyacinth-beans.jpg   tively, as Zn prevents cells mutating and beans/Pods‐of‐Hyacinth‐ 25.  Lablab purpureus  lose weight assists an cedll prevent  division canc  [16,er, 22]. respec   ‐ lery/hyacinth beans.jpg  ‐ assists cell division [16,22].  beans.jpg  tively, good amount  as Zn prevents  of zinc,  cel which ls mu istating  useful and  to  beans/Pods fitstimes.com/9/gal ‐of‐Hyacinth ‐ ‐ tively, as Zn prevents cells mutating and beans/Pods‐of‐Hyacinth‐ bean  https://www.feedipe‐ Hyacinth‐ prevents cells mutating and (accessed on 22 May 2021)   assists cell division [16,22].  beans.jpg    tively, as Zn prevents cells mutating and beans/Pods‐of‐Hyacinth‐ https://www.feedipe‐ assists cell division [16,22].  https://www.fe beans.jpgedipe   ‐ 25.  Lablab purpureus  lose weight assists an cedll prevent  division canc  [16,er, 22]. respec   ‐ lery/hyacinth beans.jpg  ‐ dia.org/sites/de‐ assists cell division [16,22]. bean  https://www.feedipe‐ assists cell division [16,22].  beans.jpg  It helps to cure diseases such as edema  dia.org/sites/de‐ dia.org/sites/de‐ tively, as Zn prevents cells mutating and beans/Pods https://www.fe ‐of‐Hyacinth edipe‐ ‐ https://www.feedipe‐ 26.  Rice bean  V. umbellata  It helps to cure diseases such as edema  fault/files/im‐ It helps to cure diseases such as edema    https://www dia.org .feedipedia.or /sites/deg/‐ 26.  Rice bean  V. umbellata  and increases digestibility [17,23].  https://www.fe fault/files/im edipe ‐ ‐ 26.  Rice bean  V. umbellata  fault/files/im‐ assists cell division [16,22].  dia.org beans.jpg /sites/d  e‐ dia.org/sites/de‐ It helps It help tos cur to cu e diseases re disease such s suas ch as edema  and increases digestibility [17,23].  ages/vigna_umbel‐ It help and sincreas  to curee sdi dsease igestibi s su lity ch  [17 as ed ,23]. ema       It helps to cure diseases such as edema  sites/default/files/images/ 26.  Rice bean  V. umbellata  fault/files/im‐ ages/vigna_umbel dia.org/sites/de‐ ‐ 26.  Rice bean  V. umbellata  ages/vigna_umbel fault/files/im‐ ‐ 26.  Rice bean  V. umbellata  https://www.fe fault/files/im edipe ‐ ‐ 26.   Rice bean V. umbellata edema and increases   and increases digestibility [17,23].  It helps to cure diseases such as edema  lata_seeds.jpg  and increases digestibility [17,23].  and increases digestibility [17,23]. vigna_umbellata_seeds.jpg   ages/vigna_umbel‐ 26.  Rice bean  V. umbellata  lata_see fault/files/ ds.jpg im‐    digestibility [17,23]. ages/vigna_umbel lata_seeds.jpg  ‐ ages/vigna_umbel dia.org/sites/de‐ ‐   and increases digestibility [17,23].  (accessed on 22 May 2021) It helps to cure diseases such as edema  lata_seeds.jpg  ages/vigna_umbel‐ lata_seeds.jpg  26.  Rice bean  V. umbellata  lata_see fault/files/ ds.jpg im‐  It helps in boosting energy, protecting  https://cdn.shopify.com/ and increases digestibility [17,23].  ItIthelps  helpsin inboosting  boostingener  energy, gy,  protecting  https://cdn.shopify.com/ It helps in boosting energy, protecting  https://cdn lata_see .shds.jpg opify.com   / ages/vigna_umbel‐   cardiovascular health, improving immun‐ s/files/1/2600/9462/prod‐ pr It otecting helps in car boosting diovascular  energy, protecting  https://cdn.shopify.com/ cardiovascular health, improving immun‐ s/files/1/2600/9462/prod‐ cardiovascular health, improving immun‐ s/files/1/2600/9462/prod‐ It helps in boosting energy, protecting  https://cdn.shopify.com/ It helps in boosting energy, protecting  https://cdn lata_see .shds.jpg opify.com   / 27.  Black gram  V. mungo  ity, maintaining skin health, building  ucts/kali‐ health, improving immunity, https://cdn.shopify.com/s/ cardiovascular health, improving immun‐ s/files/1/2600/9462/prod‐ 27.  Black gram  V. mungo  Itity, help  maintainin s in boosting g skin energy,  health, protecting  building   https://cdn ucts.sh /kal opify i‐ .com/ 27.  Black gram  V. mungo  cardiova ity, maintainin scular health, g skin improv  health,ing  bu ilding immu n‐ s/files/1/2600/9 ucts/kal462/prod i‐ ‐ cardiovascular health, improving immun‐ s/files/1/2600/9462/prod‐ strong bones, managing diabetes and  black_large.jpg?v=15164 maintaining skin health, files/1/2600/9462/products/ 27.  Black gram  V. mungo  ity, maintaining skin health, building  ucts/kali‐ cardiova strongscu  bones, lar health,  managin  improv g diabing etes immu  and n‐ s/file black_large.jpg?v=15164 s/1/2600/9462/prod‐ 27. 27.  Black Black gram gram  V V. . mungo mungo  strong ity, maintainin  bones, managin g skin health, g diab betes uilding  and   black_large.jpg?v=15164 ucts/kali‐ 27.  Black gram  V. mungo  Itity, help  maintainin s in boosting g skin energy,  health, protecting  building   https://cdn ucts.sh /kal opify i‐ .com/ strengthening the nervous system [16,18].  78931  building strong bones, kaliblack_large.jpg?v=15164789 strong bones, managing diabetes and  black_large.jpg?v=15164 27.  Black gram  V. mungo  ity, maintaining skin health, building  ucts/kali‐ strengthening the nervous system [16,18].  78931  streng strong thening  bones, the managin  nervous g  diab system etes [16,18].  and   black_large.jpg?v=15164 78931  cardiova strongscu  bones, lar health,  managin  improv g diabing etes immu  and n‐ s/file black_large.jpg?v=15164 s/1/2600/9462/prod‐ managing diabetes and 31 (accessed on 22 May 2021)   strengthening the nervous system [16,18].  78931  strong bones, managing diabetes and  black_large.jpg?v=15164 strengthening the nervous system [16,18].  78931  27.  Black gram  V. mungo  streng ity, maintainin thening theg  nervous skin health,  syst em building  [16,18].    uc78931 ts/kal i‐ It str help engthening s to manage the nervous blood pressure, boost  https://www.specialty‐ It helps to manage blood pressure, boost  https://www.specialty‐   streng It helpthening s to manage  the nervous  blood pressure,  system [16,18].  boost   https://www.specialty 78931  ‐ strong bones, managing diabetes and  black_large.jpg?v=15164 system [16,18]. heart health and prevent anemia, thus  pro‐   It helps to manage blood pressure, boost  https://www.specialty‐ 28.  Pigeon pea   Cajanus cajan  heart health and prevent anemia, thus  pro‐ Itheart  help shealth  to manage  and prevent  blood pressure,  anemia,  thus boos t  https://www.specialty pro‐ ‐ streng It helpthening s to manage  the nervous  blood pressure,  system [16,18].  boost   https://www.specialty 78931  ‐ 28.  Pigeon pea   Cajanus cajan  strengthening the immune system  duce.com/sppics/11653.p 28.  Pigeon pea   Cajanus cajan  It helps to manage blood   heart health and prevent anemia, thus  pro‐ It help streng s tothening  manage the  blood  immune  pressure,  system  boo  st  duce.com/sppics/11653.p https://www.specialty‐   heart streng  health thening  and  the prevent  immune  ane m syia, stem  thus    duce.com/sppics/11653.p https: pro‐ heart health and prevent anemia, thus  pro‐ 28.    Pigeon pea   Cajanus cajan    [18,20,22].  ng  28.  Pigeon pea   Cajanus cajan  pressure, boost heart health and 28.  Pigeon pea   Cajanus cajan  strengthening the immune system  duce.com/sppics/11653.p heart health and prevent anemia, thus  pro‐ [18,20,22].  //www.specialtyproduce.com/ ng  strengthening [18,20,22]  the immune .   system  duce.com/sppics/11653.p ng  It help streng s tothening  manage the  blood  immune  pressure,  system  boo  st  duce.com/sppics/11653.p https://www.specialty‐ 28. 28.  Pig Pigeon eon pea pea   Cajanus Cajanus cajan cajan  prevent anemia, thus   Supplies L‐Dopa that turns into dopa‐ [18,20,22].  ng  sppics/11653.png (accessed on Sustreng ppliesthening  L‐Dopa the  that immune  turns in sy tostem  dopa  ‐ duce.com/sppics/11653.p Supplies L‐Do[18,20,22] pa that turns .   into dopa‐ ng  heart health and [18,20,22]  prevent .  anemia, thus  pro ng ‐   strengthening the immune mine, which helps to improve mood,  https://www.healthbene‐ 28.  Pigeon pea   Cajanus cajan  22 May 2021) Supplies L‐Dopa that turns into dopa‐ mine, which helps [18,20,22]  to improve .   mood,  https://www.healthbene ng  ‐ Su mine, streng pplies  which thening  L‐Do helps pa the  that  to immune   turns improve  in sy to mood, stem  dopa  ‐  https://www.healthbene duce.com/sppics/11653.p‐ Supplies system L‐[Do 18,pa 20 ,that 22]. turns into dopa‐ mental clarity, sense of well‐being, better  fitstimes.com/9/gal‐ mine, which helps to improve mood,  https://www.healthbene‐ 29.  Velvet bean  Mucuna pruriens  mental Supplies  clarity  L‐Do , sense pa that  of  turns well‐b in eing, to dopa  better‐   fitstimes.com/9/gal‐ mental mine, clarity  which,  sense helps [18,20,22]   of to  improve well .  ‐being,  mood,  better   https://www.healthbene fitstimes.com/9/gal ng  ‐ ‐ mine, which helps to improve mood,  https://www.healthbene‐ sleep and brain function. Additionally, it  lery/velvet‐bean/Pods‐ 29.  Velvet bean  Mucuna pruriens  Supplies L-Dopa that turns into 29.  Velvet bean  Mucuna pruriens  mental clarity, sense of well‐being, better  fitstimes.com/9/gal‐ mine, which helps to improve mood,  https://www.healthbene‐ sleep and brain function. Additionally, it  lery/velvet‐bean/Pods‐ mental sleep an clarity d brain , sense  function.  of well  Ad‐bdieing, tionally,  better it   lery/velvet fitstimes.com/9/gal ‐bean/Pods‐ ‐ mental Supplies  clarity  L‐Do , sense pa that  of  turns well‐b in eing, to dopa  better‐   fitstimes.com/9/gal‐ 29.  Velvet bean  Mucuna pruriens  dopamine, which helps to helps to combat Parkinson’s disease and  of‐Velvet‐beans.jpg  29.  Velvet bean  Mucuna pruriens  29.  Velvet bean  Mucuna pruriens  sleep and brain function. Additionally, it  lery/velvet‐bean/Pods‐   https: mental helps to clarity  comb,a sense t Park of inson’s  well‐ bdi eing, sease better  and   fitstimes.com/9/gal of‐Velvet‐beans.jpg‐  sleep helps  an to dcom  brain bat function.  Parkinson’s  Ad di ditionally, sease and it   lery/velvet of‐Velvet‐‐bea bean n/Pods s.jpg ‐ sleep mine,  an d which  brain helps  function.  to improve  Additionally,  mood,  it https://www.healthbene lery/velvet‐bean/Pods‐‐ improve mood, mental clarity, 29.    Velvet bean  Mucuna pruriens  depression [18].  helps to combat Parkinson’s disease //www  and  .healthbenefitstimes. of‐Velvet‐beans.jpg  sleep and brain depressi  function. on [18]  Ad. ditionally, it  lery/velvet‐bean/Pods‐ depression [18].  mental helps helps  to to clarity   com combb,aa sense tt  Park Park of inson’s inson’s  well‐  bdi di eing, sseease ase better   and and    fitstimes.com/9/gal of of‐‐Velvet Velvet‐‐bean beans.jpg s.jpg‐   Mucuna sense of well-being, better sleep 29.    Velvet bean  Mucuna pruriens  29. Velvet bean com/9/gallery/velvet-bean/ depression [18].  helps to combat Parkinson’s disease and  of‐Velvet‐beans.jpg  pruriens This sleep bean and  and brain   isbrain  rich depressi function.   function. in vitamin on [18]  Ad C. di and tionally,  vitamin  it   lery/velvet https://i.p ‐beain n/Pods ‐ ‐ depression [18].  Pods-of-Velvet-beans.jpg This bean is rich in vitamin C and vitamin  https://i.pin‐ This bean is rich in vitamin C and vitamin  https://i.pin‐ depression [18].  Additionally, it helps to combat helps A, which  to com  help ba tin Park  streng inson’s thening  dise the ase  im and‐   of‐img.com/origi Velvet‐beans.jpg ‐   (accessed on 22 May 2021) This bean is rich in vitamin C and vitamin  https://i.pin‐   Psophocarpus  A, which help in strengthening the im‐ img.com/origi‐ This A,  which bean is help  rich in in streng  vitamin thening  C and the  vitamin  im‐   img.com/origi https://i.pin‐‐ This bean is rich in vitamin C and vitamin  https://i.pin‐ Parkinson’s disease and 30.  Winged bean  Psophocarpus  mune system depressi  and supporting on [18].   the body  nals/21/29/fa/2129fa4b59 Psophocarpus  A, which help in strengthening the im‐ img.com/origi‐ 30.  Winged bean  tetragonolobus  This mune  bean  sy stem is rich and  in  vitamin supporting  C and  the vitamin  body   nals/21/29/fa/2129fa4b59 https://i.pin‐ 30.  Winged bean  mune A, which  system  help and  in streng  supporting thening the the body  im‐  nals/21/29/fa/2129fa4b59 img.com/origi‐ A, which depr ession help in[ 18 streng ]. thening the im‐ img.com/origi‐ Psophocarpus  tetragonolobus  against any possible infections and dis‐ 5f818e23046dd8aae4b290 te Psophocarpus tragonolobus   Psophocarpus  30.  Winged bean  mune system and supporting the body  nals/21/29/fa/2129fa4b59 against A, which any help  possib  in streng le infection thening s and  the  di ims‐‐ 5f818e23046dd8aae4b290 img.com/origi‐ against any possible infections and dis‐ 5f818e23046dd8aae4b290 30. 30.   Winged Winged  bean bean   This mune mune  bean   sy sy stem stem is rich  and and  in   vitamin supporting supporting  C and   the the vitamin   body body    nals/21/29/fa/2129fa4b59 nals/21/29/fa/2129fa4b59 https://i.pin‐ tetragonolobus  Psophocarpus  eases [16,22,23].  .png  te tetr tragon agonolob olobu uss   against any possible infections and dis‐ 5f818e23046dd8aae4b290 30.  Winged bean  mune system eases  and [16,22  supporting ,23].   the body  nals/21/29/fa/2129fa4b59 .png    eases [16,22,23].  .png  against against A, which  any any help   possib possib  in streng llee  infection infection thening ss  and and  the   di di imss‐‐‐ 5f818e23046dd8aae4b290 5f818e23046dd8aae4b290 img.com/origi‐ tetragonolobus    Psophocarpus  eases [16,22,23].  .png  against any possible infections and dis‐ 5f818e23046dd8aae4b290 30.  Winged bean  mune system eases  and [16,22  supporting ,23].   the body  nals/21/29/fa/2129fa4b59 .png  eases [16,22,23].  .png  tetragonolobus  eases [16,22,23].  .png  against any possible infections and dis‐ 5f818e23046dd8aae4b290 eases [16,22,23].  .png    Agronomy 2021, 11, x FOR PEER REVIEW  5  of  23  https://www.firstfor‐ It contains antioxidants that promote  women.com/wp‐con‐ proper digestion and keep intestines  tent/up‐ 22.  Lupin bean   Lupinus albus  healthy. Additionally, aids in weight loss,  loads/sites/2/2019/01/wh provides essential vitamins and minerals  at‐are‐lupin‐beans‐bene‐   and reduces high blood pressure [18,22].  fits.jpg?w=715  Beans are an excellent source of protein,  https://gar‐ Common  lower in calories and saturated fat than  23.  Phaseolus vulgaris  den.org/pics/2018‐09‐ bean  some other protein sources such as meat  14/Alicemac/b92064.jpg  [16,17].  http://peb‐ The dried pods of runner bean have diu‐ bleandfern.ca/wp‐con‐ 24.  Runner bean  P. multiflorus  retic properties that help to cure urinary  tent/up‐ tract infections and reduce weight [18,23].  loads/2015/03/runner‐ bean.jpg  It contains complex carbohydrates and a  https://www.healthbene‐ good amount of zinc, which is useful to  fitstimes.com/9/gal‐ Hyacinth‐ 25.  Lablab purpureus  lose weight and prevent cancer, respec‐ lery/hyacinth‐ bean  tively, as Zn prevents cells mutating and beans/Pods‐of‐Hyacinth‐ assists cell division [16,22].  beans.jpg  https://www.feedipe‐ dia.org/sites/de‐ It helps to cure diseases such as edema  26.  Rice bean  V. umbellata  fault/files/im‐ and increases digestibility [17,23].  ages/vigna_umbel‐ lata_seeds.jpg  It helps in boosting energy, protecting  https://cdn.shopify.com/ cardiovascular health, improving immun‐ s/files/1/2600/9462/prod‐ 27.  Black gram  V. mungo  ity, maintaining skin health, building  ucts/kali‐ strong bones, managing diabetes and  black_large.jpg?v=15164 strengthening the nervous system [16,18].  78931  It helps to manage blood pressure, boost  https://www.specialty‐ heart health and prevent anemia, thus  pro‐ 28.  Pigeon pea   Cajanus cajan  strengthening the immune system  duce.com/sppics/11653.p Agronomy 2021, 11, 2238   6 of 24 [18,20,22].  ng  Supplies L‐Dopa that turns into dopa‐ mine, which helps to improve mood,  https://www.healthbene‐ mental clarity, sense of well‐being, better  fitstimes.com/9/gal‐ Table 1. Cont. 29.  Velvet bean  Mucuna pruriens  sleep and brain function. Additionally, it  lery/velvet‐bean/Pods‐ Sl. Common Scientific Sources of Images helps to combat Parkinson’s disease and  of‐Velvet‐beans.jpg  Picture Major Use No Name Name [Accessed on 22 May 2021] depression [18].  This bean is rich in vitamin C This bean is rich in vitamin C and vitamin  https://i.pin‐ and vitamin A, which help in https://i.pinimg.com/ A, which help in strengthening the im‐ img.com/origi‐ Psophocarpus  Psophocarpus strengthening the immune originals/21/29/fa/2129fa4b5 30.  Winged bean  mune system and supporting the body  nals/21/29/fa/2129fa4b59 30. Winged bean tetragonolobus tetragonolobus  system and supporting the body 95f818e23046dd8aae4b290.png Agronomy 2021, 11, x FOR PEER REVIEW  6  of  23  against any possible infections and dis‐ 5f818e23046dd8aae4b290 against any possible infections (accessed on 22 May 2021) Agronomy 2021, 11, x FOR PEER REVIEW  eases [16,22,23].  .png  6  of  23  and diseases [16,22,23]. https://i.et‐ https: It enhances the function of the It enhances the function of the nervous  systatic.com/7772783/r/il //i.etsystatic.com/7772783/r/ https://i.et‐ Canavalia nervous system, prevents bone 31.  Sword bean  Canavalia gladiata  system, prevents bone resorption and in‐ /442d44/1253663464/il_fu 31. Sword bean il/442d44/1253663464/il_ It enhances the function of the nervous  systatic.com/7772783/r/il gladiata resorption and inhibits bone fullxfull.1253663464_bodq.jpg hibits bone turn over [16–18].  llxfull.1253663464_bodq. 31.  Sword bean  Canavalia gladiata  system turn , preven over [ts 16 bone –18]. resorption and in‐ /442d44/1253663464/il_fu (accessed on 22 May 2021) jpg  hibits bone turn over [16–18].  llxfull.1253663464_bodq. jpg  It is a fiber‐rich bean that helps in remov‐   It is a fiber-rich bean that helps ing toxins and waste products in the gut.  https://i.et‐ in removing toxins and waste It is a fiber‐rich bean that helps in remov‐ Helps in preventing constipation and ab‐ systatic.com/15567684/r/i products in the gut. Helps in ing toxins and waste products in the gut.  https://i.et‐ 32.  Jack bean  Canavalia. ensiformis  dominal distention. The Vitamin C pre‐ l/fff‐ preventing constipation and https://i.etsystatic.com/1556 Helps in preventing constipation and ab‐ systatic.com/15567684/r/i Canavalia. abdominal sent in this distention. bean helps The in defending 7684/r/il/f  the  def/2833501891 ffdef/2833501891 /il_794xN 32.  Jack bean  Canavalia. ensiformis  dominal distention. The Vitamin C pre‐ l/fff‐ 32. Jack bean ensiformis Vitamin C present in this bean /il_794xN.2833501891_8key.jpg body against disease‐causing microorgan‐ .2833501891_8key.jpg  sent in this bean helps in defending the  def/2833501891/il_794xN helps in defending the body (accessed on 22 May 2021) isms such as bacteria and viruses [23].  body against disease‐causing microorgan‐ .2833501891_8key.jpg  against disease-causing isms such as bacteria and viruses [23].  microorganisms such as 3. Economic Importance of Food Legumes  bacteria and viruses [23]. Food legumes are mainly essential to developing countries, as they offer a source of  3. Economic Importance of Food Legumes  protein, trace nutrients and calories to people who are not able to afford more pricy nutri‐ 3. Economic Food legu Importance mes are m of ain Food ly essen Legumes tial to developing countries, as they offer a source of  tional sources [24]. These are perfect crops for accomplishing developmental goals such  protein, trace nutrients and calories to people who are not able to afford more pricy nutri‐ Food legumes are mainly essential to developing countries, as they offer a source as improving the health and nutrition of humans, reducing poverty and enhancing the  tional sources [24]. These are perfect crops for accomplishing developmental goals such  of protein, trace nutrients and calories to people who are not able to afford more pricy resilience of the ecosystem [25]. Due to the involvement of food legumes such as pulses in  as improving the health and nutrition of humans, reducing poverty and enhancing the  nutritional sources [24]. These are perfect crops for accomplishing developmental goals nutritional diversity that helps to eliminate hunger and malnutrition, the Food and Agri‐ resilience of the ecosystem [25]. Due to the involvement of food legumes such as pulses in  such as improving the health and nutrition of humans, reducing poverty and enhancing culture Organization (FAO) of the United Nations stated 2016 as the International Year of  nutritional diversity that helps to eliminate hunger and malnutrition, the Food and Agri‐ the resilience of the ecosystem [25]. Due to the involvement of food legumes such as pulses Pulses [11]. Food legumes can potentially manage sustainable agriculture through the en‐ culture Organization (FAO) of the United Nations stated 2016 as the International Year of  in nutritional diversity that helps to eliminate hunger and malnutrition, the Food and hancement of productivity as well as crop diversity and a reduction in the dependency on  Pulses [11]. Food legumes can potentially manage sustainable agriculture through the en‐ Agriculture Organization (FAO) of the United Nations stated 2016 as the International Year external inputs, as food legumes have the capabilities of nitrogen (N) fixation by biological  hancement of productivity as well as crop diversity and a reduction in the dependency on  of Pulses [11]. Food legumes can potentially manage sustainable agriculture through the means, efficient roles in nutrient and water retention, the ability to increase soil organic mat‐ enhancement external inputs, of pr as oductivity  food leguas mes well  have as cr the op capabilities diversity and  of nitrogen a reduction  (N) in fixation the dependency  by biologic onal  ter (SOM) and aid the recovery of soil health by improving soil properties [26]. As one of  means, efficient roles in nutrient and water retention, the ability to increase soil organic mat‐ external inputs, as food legumes have the capabilities of nitrogen (N) fixation by biological the most important food legume producing countries, India has started introducing cool‐ means, ter (SOM) effi cient and aid roles  the in recovery nutrient of and  soil water  health retention  by improving , the ability  soil properties to increase [26]. soil As or ganic one of  season food legumes that fit the rice‐fallow ecology to change the rice‐fallow system into a  matter the most (SOM)  important and aid  food the legume recovery  producing of soil health  countries, by impr  India oving  has started soil properties  introduci [26 ng ]. cool As‐ rice‐food legume system that will help to not only uplift the socio‐economic condition of  one of the most important food legume producing countries, India has started introducing season food legumes that fit the rice‐fallow ecology to change the rice‐fallow system into a  smallholder rice farmers, ensuring their food and nutritional security, but also to break the  cool-season food legumes that fit the rice-fallow ecology to change the rice-fallow system rice‐food legume system that will help to not only uplift the socio‐economic condition of  pests and diseases cycle of rice and improve the soil’s structure and fertility through the  into a rice-food legume system that will help to not only uplift the socio-economic condition smallholder rice farmers, ensuring their food and nutritional security, but also to break the  augmentation of the overall sustainable productivity of the rice‐fallow system [27].  of smallholder rice farmers, ensuring their food and nutritional security, but also to break pests and diseases cycle of rice and improve the soil’s structure and fertility through the  the pests and diseases cycle of rice and improve the soil’s structure and fertility through augmentation of the overall sustainable productivity of the rice‐fallow system [27].  4. Grain Composition of Food Legumes  the augmentation of the overall sustainable productivity of the rice-fallow system [27]. The grain of a food legume is composed of protein, dietary fiber, starch or oil in the  4. Grain Composition of Food Legumes  4. Grain Composition of Food Legumes form of energy, macro and micronutrients, vitamins and several bioactive phytochemicals  The grain of a food legume is composed of protein, dietary fiber, starch or oil in the  such T h as e an gratio inx oidan f a fots o d[1l9] eg.u The me iprot s com ein po c so edntent of p rof ot efoo in,d d ileg etau rymes fibe (T r, sable tarch 2) o rva oiries l in tfrom he fo r20 m– form of energy, macro and micronutrients, vitamins and several bioactive phytochemicals  o40% f ene [28 rgy],. macro and micronutrients, vitamins and several bioactive phytochemicals such as such as antioxidants [19]. The protein content of food legumes (Table 2) varies from 20– antioxidants [19]. The protein content of food legumes (Table 2) varies from 20–40% [28]. 40% [28].  Table 2. Percent protein, carbohydrate and lipid present in different food legumes.  Table 2. Percent protein, carbohydrate and lipid present in different food legumes.  Food Legumes  Protein %  Carbohydrate%  Lipid%  Chickpea  21  62.95  6.04  Food Legumes  Protein %  Carbohydrate%  Lipid%  Groundnut  26  16.13  49.24  Chickpea  21  62.95  6.04  Lentil  25  63.35  1.06  Groundnut  26  16.13  49.24  Black gram  25  60  1.64  Lentil  25  63.35  1.06  Mung bean  24  62.62  1.15  Black gram  25  60  1.64  Soybean  40  6.4  21.3  Mung bean  24  62.62  1.15  Pea  25  51.3  1.2  Soybean  40  6.4  21.3  Pigeon pea  22  62.78  1.49  Pea  25  51.3  1.2  Cowpea  24  35.5  0.91  Pigeon pea  22  62.78  1.49  Faba bean  29  44.7  1.4  Cowpea  24  35.5  0.91  Faba bean  29  44.7  1.4    Agronomy 2021, 11, 2238 7 of 24 Table 2. Percent protein, carbohydrate and lipid present in different food legumes. Food Legumes Protein % Carbohydrate% Lipid% Chickpea 21 62.95 6.04 Groundnut 26 16.13 49.24 Lentil 25 63.35 1.06 Black gram 25 60 1.64 Mung bean 24 62.62 1.15 Soybean 40 6.4 21.3 Pea 25 51.3 1.2 Pigeon pea 22 62.78 1.49 Cowpea 24 35.5 0.91 Faba bean 29 44.7 1.4 White lupin 38 0.0 10.0 Adzuki bean 20 62.90 0.53 Navy bean 22 60.75 1.50 Lima bean 21 63.38 0.69 Source: Jukanti1 et al. [15,19], Kamboj and Nanda [17], Amarowicz [22], USDA [29], Ge [30]. It also contains oligosaccharides, phytoestrogens, phyto hemagglutinins (lectins), saponins and phenolic compounds that play metabolic roles in humans who consume these foods frequently [22]. The primary phenolic compounds found in a legume seed and seed coats are phenolic acids, condensed tannins and flavonoids [19]. The phenolic compounds are varyingly distributed in different legume seeds (Table 3) and colored legumes are found with more phenolic compounds than uncolored legumes [19]. The total phenolic content (TPC) provides a wide variability in various food legumes and the antioxidant activity of these legumes is directly related to their TPC [31]. Table 3. Variable phenolic compounds present in food legumes. Legume Phenolic Compounds Quantity (g/g) Found in References Hydroxybenzoics 5.69 Dihydroxybenzoic acid 3.68 p-hydroxybenzoic acid 1.48 Protocatechuic acid 0.36 Protocatechuic aldehyde 0.13 2,3,4-trihydroxybenzoic acid 16.9–29.2 Gallic acid 90.9–136.8 Lentil Seed [18,32,33] Vanillic acid 0.59–3.22 Hydroxycinnamics 3.76 Trans-p-coumaroyl malic acid 10.02 Trans-p-coumaroyl glycolic acid 2.88 Trans-p-coumaric acid 5.74 Sinapic acid 1099–2217 chlorogenic acid 159–213 Trans-p-coumaric acid 37.3 Green Trans-p-coumaric acid derivative 6.4 Seed [18,32] lentil Trans-ferulic acid 10.1 Hydroxybenzoics, 84.92 Salicyclic acid 44.89 Vanillic acid 17.01 P-hydroxybenzoic acid 12.20 Pinto Seed [18,32,33] P-hydroxyphenyl acetic acid 8.42 bean Protocatechuic acid 2.40 Hydroxycinnamic acids 36.31 Trans-ferulic acid 11.80 Agronomy 2021, 11, 2238 8 of 24 Table 3. Cont. Legume Phenolic Compounds Quantity (g/g) Found in References Hydroxybenzoics, 21.66 Vanillic acid 10.71 P-hydroxyphenyl acetic acid 6.92 Cannellini [32,33] Seed P-hydroxybenzoic acid 4.30 bean Hydroxycinnamic acids 23.52 Trans-ferulic acid 8.95 Protocatechuic acid 67.6 Crude [18,20,32] Protocatechuic aldehyde 7.71 Adzuki extract Trans-p-coumaric acid 31.3 bean [18,32,33] Seed Trans-p-coumaroyl malic acid 4.57 Gallic 27 Protocatechuic 18.9 Seed coat Cowpea P-hydroxybenzoic 5.81 [32] Ferulic 26.25 Seed Coumaric acid 1.25 Protocatechuic 217 Cranberry [32,34] Seed coat P-hydroxybenzoic acid 239 beans P-hydroxybenzoic acid 19.2 to 60.5 Chickpea Syringic acid 45.9 Seed [18,32,35] Gentisic acid 8.1 to 26.0 Protocatechuic acid 12.1 to 163.5 Pea Seed [32,35] P-hydroxybenzoic acid 45.4 to 101.7 Benzoic acids 57 Seed soybean Protocatechuic acids 44 [32,33] Ferulic acid 95 10.33 Bean kidney P-hydroxybenzoic [32] 10 Sprout 5. Nutritional and Health Benefits Food legumes are essential for the human diet as an important source of nutrients and amino acids, and it has been suggested by the Finnish National Nutrition Council and the Eatwell Guide in the UK to increase the consumption of vegetable protein predominantly from food legumes rather than the consumption of animal protein [35]. Replacing animal protein with vegetable protein has beneficial and significant positive effects on human health such as reducing cholesterol, useful in the diet of diabetics, controlling hypertension, maintaining a healthy weight, improving the health of the cardiovascular system and preventing some cancers [36,37]. The physiological effects of various food legumes differ significantly based on the variability of phytochemicals present in them, as the intake of these phytochemicals may provide various health benefits and protection against several diseases [16]. Food legumes have a comparatively high vitamins and minerals content (Table 4), mainly potassium, calcium, magnesium, zinc, iron and thiamin (vitamin B1) [23]. It has been suggested by several researchers to decrease animal protein consumption and replace it with proteins derived from plants because a positive correlation was found between a high intake of animal protein and a rise in cardiovascular disease, whereas a negative correlation was found between a high intake of plant protein and a reduction in cardiovascular diseases and overall mortality [38]. Agronomy 2021, 11, 2238 9 of 24 Table 4. Vitamins and minerals constituent of different food legumes. Soybean Chickpea Pea (Per Pigeon Pea Groundnut Lentil Mung Bean Faba Bean Vitamins and Grass Pea (Per Cowpea (Per Lupin (Per (Per 100 g (Per 100 g 100 g (Per 100 g (Per 100 g (Per 100 (Per 100 g (Per 100 g Minerals 100 g Seed) 100 g Seed) 100 g Seed) Seed) Seed) Seed) Seed) Seed) g Seed) Seed) Seed) tocopherol 6.5 mg 2.24 mg 0.11 mg - - - - - - 0.08 mg 1.1 mg tocopherol 23.0 mg 10.68 mg 5.0 mg - - - - - - - 15.3 mg Vitamin B1 1.0 mg 0.477 mg 0.7 mg 0.37–0.54 mg 0.345 mg 0.643 mg 0.64 mg 0.87 mg 0.621 mg 0.55 mg 0.32 mg Vitamin B2 0.46 mg 0.212 mg 0.27 mg 0.18–0.27 mg 0.094 mg 0.187 mg 0.135 mg 0.21 mg 0.233 mg 0.23 mg 0.59 mg Vitamin B3 - 1.541 mg - 1.23–2.02 mg - 2.96 mg 12.06 mg 2.6 mg 2.251 mg - - Vitamin B5 - 1.588 mg - 1.44–2.24 mg 0.703 mg 1.26 mg 1.76 mg 2.14 mg - - - Vitamin B6 1.1 mg 0.55 mg 0.12 mg 0.49–0.66 mg 0.171 mg 0.283 mg 0.348 mg 0.5 mg 0.382 mg 0.37 mg 0.4 mg -Carotene - 40.00 mg - 24.08–41.01 g - - - - 68 g - - Vitamin K - 9.00 mg - - 1.7 g - - 5.0 g - - - Calcium 0.21 g 160 mg 0.05 g 0.97–1.03 g - 130 mg 92 mg 35 mg 132 mg 0.14 g 0.24 g Potassium 1.8 g 875.0 mg 1 g 8.75–9.2 g 475 mg 1392 mg 705 mg 677 mg 1246 mg 1.2 g 1.1 g Magnesium 0.22 g 138 mg 0.12 g 1.14–1.24 g 91 mg 183 mg 168 mg 47 mg 189 mg 0.15 g 0.13 g Phosphorus - 366.0 mg - 4.68–5.13 g 267 mg - 376 mg 281 mg 367 mg - - Iron 8.0 mg 5.0 mg 5.2 mg 1.33–1.53 mg 4.29 mg 5.23 mg 4.58 mg 6.51 mg 6.74 mg 6.7 mg 5.4 mg Copper 1.2 mg 0.847 mg 0.66 mg 6.98–7.95 g 0.458 mg 1.057 mg 1.144 mg 0.75 mg 0.941 g 1.1 mg 0.6 mg Zinc 4.2 mg 4.1 mg 3.2 mg 4.35 mg 2.21 mg 2.76 mg 3.27 mg 3.27 mg 2.68 mg 4.1 mg 5.1 mg Selenium 19 g - 1.6 g - - - - 0.1 g 8.2 g 2 g 4.7 g Source: Jukanti1 et al. [15], Arslan [19,21], Celmeli et al. [14], Mathobo et al. [31], Budhathoki et al. [39–46]. Agronomy 2021, 11, 2238 10 of 24 6. Abiotic Stresses Although food legumes grow in diverse climates, different abiotic stresses such as temperature stress, drought, salinity and heavy metals may hamper the grain quality of food legumes [47]. Food legumes contain essential minerals and nutrients essential for human beings and a deficiency of these elements may lead to malnutrition or other health issues in the human body [48]. These essential elements of food legumes are affected and altered by variable abiotic stresses [49,50]. 6.1. Temperature Stress Food legumes can be alienated into two groups based on different growing seasons, specifically warm- or tropical-season and cool-season food legumes [51]. Common beans, black grams, cowpeas, pigeon peas, mung beans, peanuts and soybeans are mainly grown in hot and humid weather and are known as warm-season food legumes [52]. On the other hand, lentils, peas, chickpeas, grass peas, broad beans and dry beans are known as cool-season food legumes [53]. Food legumes exhibit variable levels of sensitivity to high and low-temperature stresses, which diminishes their performance at different growing stages [54]. Both high and low temperatures may act as abiotic stresses for food legumes if the temperature rises or falls beyond the required temperature level needed for the proper growth and development of the food legumes. 6.1.1. High Temperature Mainly, cool-season food legumes are more sensitive to a high temperature than warm-season food legumes and if the temperature rises above the threshold temperature (Table 5), it turns into severe heat stress at particular growth stages [55]. Agronomy 2021, 11, 2238 11 of 24 Table 5. Effect of heat stress on food legumes at different stages of growth. Threshold Heat Stress Food Legumes Growth Stage Effects References Temp. (Day/Night) Lentil 15–30 Reproductive stage 38/23 Reduced electron flow during photosynthesis [56–59] 30–35 Vegetative development Decreased pollen production, impaired photosystem II Peanut Anthesis 38/22 [56,57] Pod and grain yield Reduced photosynthetic activity; impeded electron donation by OEC (Oxygen-Evolving Pea 15–25 Vegetative growth 30/25 Center) of PS II; reduced oxygen evolution and photochemical energy storage; shutting [57,59,60] of PSI reaction center 15–30 Growth Impaired RuBisCO and sucrose metabolism in leaves; disrupted PSII; damaged structure Chickpea 35/16 [56,59] 25 Reproductive growth and functioning of related enzymes and proteins; decreased stigma receptivity Pigeon pea 18–30 Flowering 45/40 Damaged PSII [56,59] Cowpea 18–28 Flowering 36/27 Tapetal cells degeneration and anther indehiscence [56,57,59] 26 Reproductive 38/30 Abscission of flower, reduced reproductive development; pollen germination, pollen tube 23 Post-anthesis 35 Soybean growth and yield; shrunken pollen; damaged PSII; reduced chlorophyll content and [56–61] 30.2 Pollen germination 35 photosynthesis; decreased Fv/Fm 36.1 Pollen tube growth 38/30 Common bean 20–24 Flowering 32/27 Carbon assimilation limited and NADPH supply reduced; reduced photosynthetic rate [59,62] Efficiency of photosynthesis impaired; reduced sucrose in leaves due to decreased Flowering Mung bean [57,59,63] 28–35 >40/25 sucrose synthesizing enzymes and RuBisCO activity Pod development Broad bean 25–35 Flowering 42 Reduced photosynthesis [57,59,64] Black gram 25–35 Flowering 35 Reduced photosynthesis [65] Cytokinin level reduced in seed leading to diminished seed cell numbers and growth Lupin 20–30 Flowering 38 [57,59] rates of seed, reduced seed growth and development processes Agronomy 2021, 11, 2238 12 of 24 Seed filling is intently associated with the whole-plant senescence process and early senescence takes place by heat stress during the seed filling process that enhances the remobilization of assimilating from the source to sink, thus reducing the seed filling du- ration [66]. The grain development of food legumes is affected by heat stress because the tapetum layer of the grain is disintegrated by heat stress, which decreases the nutrient supply to the microspores and such an impairment leads to anther dehiscence prematurely, impedes carbohydrate synthesis and distribution to the grain and develops fractured em- bryos and poor pods, which ultimately reduces the grain yield [59]. Heat stress significantly decreased the yield of lentils by 70% when it was exposed to a heat wave of 35 C for six days, as lentils are a cool seasoned food legume [66]. The grain composition and quality of food legumes is affected by heat stress in many ways, as heat stress mainly affects the reproductive phases (Figure 1). Figure 1. Effect of heat stress on the reproductive stage of food legumes [64]. Heat stress hampers grain composing elements such as sugar, starch, protein, fatty acids and protein (Table 6). It also alters various components accumulating, primarily, in grain-like starch and proteins by preventing the enzymatic processes required for starch and protein synthesis [67]. The temperature of air and soil increases under heat stress, which adversely affect the grain protein content and quality of food legumes [68]. In most of the food legumes, the grain oil content was found to be increased under heat stress, whereas the protein content was found to be decreased [69,70]. The oil content in the grain was increased under heat stress by 20 and 37% in peanuts and soybeans, respectively [71]. However, in kidney beans, the oil content was found to be declined by 23% under heat stress [72]. The fatty acid composition in the grain of food legumes changes due to heat stress. Heat stress considerably enhanced the oleic acid content, whereas the linoleic acid content was found to be decreased in different food legumes [1]. The N and P content of the soybean grain declined when the temperature rose above 40/30 C [73]. A decrease in total nonstructural carbohydrates was found with increasing temperatures and the ratio of soluble sugars to starch was also found to be decreased in various food legumes, particularly in soybeans [74]. Sucrose and oligosaccharides such as the raffinose content in grains increases with an increasing temperature and monosaccharides such as glucose and fructose decrease with an eminent temperature [75]. Agronomy 2021, 11, 2238 13 of 24 Table 6. Alteration in grain composition of food legumes under heat stress. Temperature Increase % (+) or Grain Food Legumes Decrease % () References Control Heat Stress Composition over Control (Day/Night) (Day/Night) Oleic acid +104% 15/30 C 40/30 C Linolenic acid 48.6 Soybean [1,66] 18/13 C 33/28 C Oil content +37% 18/13 C 33/28 C Sucrose 56% Total sugars 24.5% Starch 53% 20/14 C 32/26 C Protein 19.6% [1,66] Peanut Oil content +20% 20/14 C 26/20 C Oleic acid +24% 25 35/16 Soluble proteins +20% Chickpea [1,66,68,76] 25 >32/20 C Sucrose content 9% Kidney bean 28/18 C 34/24 C Oil content 22.7% [1,66,71] 6.1.2. Low Temperature Low-temperature stress or cold stress can be expressed as a temperature that causes injury or irreversible damage to a crop as it falls under the optimum temperature required for the proper growth and development of the crop. Cold stress not only hampers the vegetative stages of food legumes but also alters reproductive growth and grain compo- sitions (Table 7). During the seed germination of food legumes, cold stress enhances the susceptibility to soil-borne diseases, leading to the poor establishment of crops and even the death of seedlings [54,77]. Table 7. Impact of low temperature on some highly important food legumes. Food Legumes Cold Stress Effects Early vegetative phase damage, impaired microsporogenesis and megasporogenesis, loss of pollen germination, inhibition of pollen tube Soybean 1 C for 4, 6 and 8 h growth, abnormal pod formation and seed filling [54] and alteration in starch, protein, fat and fiber composition [78] Early vegetative phase damage, reduction in embryogenesis and poor seed Pea 3 C quality [54] Early vegetative phase damage, impaired microsporogenesis and <10 C; 10 C for megasporogenesis, pollen viability loss, loss of pollen germination, stigma Chickpea 15–30 min receptivity loss, abnormal pod formation [79] and seed filling [54] and alteration in starch, protein, fat and fiber composition [78] Broad bean 5 C for 24 h Early vegetative phase damage and poor seed quality [54] Food legumes grown in cool seasons are mainly sensitive to cold stress, mostly during the formation of a pod and seed filling [78,80]. Carbohydrate metabolism is impaired by cold stress that may lead to the energy deficiency of different reproductive organs such as style, tapetum and endosperm that ultimately causes the sterility of the gametophyte [81]. In various food legumes, it has been well recognized that phenology and grain filling were damaged by cold stress [82]. The grain filling duration and rate reduce under cold stress as grain filling depends on the source–sink relationship that declines under cold stress. The storage of amino acids, minerals and proteins in the grain of food legumes is inhibited by cold stress. In chickpeas, the sugar concentration in the grain increased, whereas storage amino acids, protein, starch, fat and crude fiber accumulation decreased under cold stress [83]. Agronomy 2021, 11, 2238 14 of 24 6.2. Drought Drought is one of the major constraints that limits food legume production, mainly in the arid and semi-arid tropics and the occurrence of drought during the grain development stages is more critical as it causes a significant yield loss [84]. In food legumes, drought highly affects the composition and quality of the grain (Table 8). Abiotic stress, particularly drought, highly influences the grain protein, fat and carbohydrate contents of food legumes. Although, a mild water scarcity during flowering may prefer an increased grain protein content in some food legumes. However, in maximum food legumes, drought reduces the N, P, Fe and Zn content of the grain that ultimately decreases the total grain protein content [85]. The fatty acid composition of a soybean grain was altered by drought that finally altered the total oil composition, oil stability and oil level in the soybean, especially during grain filling [86]. Table 8. Influences of drought stress on growth stages and grain constituents of food legumes. Drought Stress at Food Legumes Effects References Growth Stages Pod development and Lentil Yield reduction by 70 and 24%, respectively [87] reproductive phase Reproductive phase, Yield loss by 49–54, 27–40 and 49–54%, respectivelyGrain Chickpea anthesis and late protein, sodium, potassium and calcium content reduced by 41, [88,89] ripening 33, 25 and 7%, respectively Oil content of grain reduced by 3% and protein content Reproductive phase, Soybean increased by 5% [90–92] pod set and Seed filling Loss of grain yield by 46–71, 45–50 and 42%, respectively Sucrose and starch content reduced in grain by 29–47 and Reproductive, flowering Common bean 18–20% [93] and Pod filling stage Yield loss by 58–87, 49 and 40%, respectively Reproductive and Grain protein content increased by 8 and 3%, respectively Mung bean [94] vegetative stage Yield reduction by 26% Carbohydrate, fat and protein content increased by 4, 5 and Faba bean Grain filling 3–9%, respectively [83] Grain yield loss by 68% Spotted bean Reproductive stage Protein content of grain increased by 6% [87] Black gram (Mash Flowering and Loss of grain yield by 31–57 and 26%, respectively [95] bean) reproductive Reproductive and pod Cowpea Yield loss by 34–66 and 29%, respectively [92] filling Reproductive phase and Pigeon pea Grain yield loss by 40–55 and 42–57% [83] flowering Reduction in soluble sugar, crude fiber and starch in grain by Lupins 15 days after anthesis [83] 18, 11 and 43%, respectively The oil and oleic acid content in soybeans decrease simultaneously when the grain filling period faces drought [96–98]. The oil content of peanuts is influenced by drought, as drought decreases the digestible carbohydrates such as the sucrose, glucose and fructose concentration affecting the composition of fatty acids in the grain through decreasing the unloading of sugars from the stem to the developing seeds [99,100]. During pod filling, a free amino acid pool increased on cowpea grains but the incorporation of these amino acids into the protein chain was suppressed due to drought, which ultimately reduces the protein-amino acid fraction in the grain [76]. The soluble sugars and starch content decreased in the mature grain of the soybean and the common bean, respectively, under drought [100]. The oil contents of the lupin grain dropped by 50–55% under drought. Drought has a distinct effect on the mineral composition of grains of food legumes. In soybeans, the calcium (Ca), phosphorus (P), copper (Cu), manganese (Mn), molybdenum (Mo) and zinc (Zn) concentrations improved under drought, whereas, the sodium (Na), potassium (K) and calcium (Ca) content reduced but the proline content increased in Agronomy 2021, 11, 2238 15 of 24 chickpeas under drought [1]. Under drought, -tocopherol increased in soybean grains by 2–3 fold, which is helpful for preventing the auto-oxidation of a lipid as the tocopherols found in vegetable oils are well-known antioxidants [6]. During the preliminary stage of seed expansion, the seed sink ability reduces due to drought, which results in a decreasing number of endosperm cells and amyloplasts [76]. Acid invertase is a vital enzyme for the seed development of food legumes and its activity decreases due to drought, thus inhibiting sucrose import. As a result, the scarcity of energy sources and prominent levels of abscisic acid (ABA) lead to a poor grain set under drought [101]. 6.3. Salinity Salt stress is one of the major concerns in arid and semi-arid regions, which comprise about 40% of the land area of the earth. It is a significant constraint for food legume production. Salinity stress interrupts grain composition and the quality of food legumes (Table 9) by affecting hormonal interactions, causing a nutritional imbalance, osmotic effects and ionic toxicity [102,103]. Salt stress disturbs the uptake, accumulation and transport of competitive nutrients in food legumes. The nutritional imbalance in legume plants takes place due to the profusion of the sodium (Na ) and chloride (Cl ) ion concentration at the rhizosphere region because these ions interfere with essential nutrients such as N, P, K, Ca, Zn, boron (B), Mg, Cu and iron (Fe) [104]. Salt stress causes an ionic imbalance + 2+ 2+ + 2+ mainly of K and Ca , creating harmful effects on plants [8]. Ca , K and Mg play a vital role in plant photosynthetic activity, but their concentration decreases under higher + + salt contents due to a competitive uptake of Na and K ion flux, resulting in a deficiency of K and significant yield losses [105]. Salt stress highly affects the oil content and grain protein content because of disturbance in nitrate (NO ) uptake and N metabolism of food legumes [106]. A reduction in stigma receptivity, pollen viability and photo assimilates supply during grain filling takes place due to salt stress that eventually reduces the grain yield of food legumes [107]. In mung beans, the total amount of amino acids, protein, carbohydrates and polysaccharides in the grain decreased with the increasing salt stress and the reduction in carbohydrate and polysaccharide contents headed to a reduced photosynthesis, a nutritional imbalance, ion toxicity and hyperosmotic stress [108,109], whereas N uptake was reduced due to the decline in the total amino acids in the grain of the mung bean under salt stress [109]. The K and P concentrations also declined in the grain of the mung bean with increasing salt stress; however, the concentrations of Na, Ca, Mg and chlorine (Cl) increased [110]. Table 9. Effects of salinity stress on the grain composition and quality of food legumes. Food Legumes Concentration of Salt Impacts Grain protein reduction by 29, 60 and 79%, respectively NaCl 3, 6 and 9 dS m Soybean NaCl 9 dS m Oil content of grain reduced by 77% 7 dS m in loam soil and Yield loss around 46% 6.3 dS m clay soil 3 and 3.8 dS m Loss of grain yield by 50 and 69%, respectively 50 and 100 mM Sodium increased by 200 and 271%, respectively Chickpea 50 and 100 mM Potassium decreased by 79.09 and 72.72%, respectively 2 and 9 dS m Sodium increased by 79.80% and Potassium increased by 0.58% NaCl 40 mM Increase in sodium, 51.03%; potassium, 40.31%; and chloride, 58.41% Lentil (cv. 6796) 3.1 and 2 dS m Grain yield loss found to be 100 and 14%, respectively Reduction in grain protein content of 11 and 20%, respectively Reduction in total soluble sugars of 29 and 32%, respectively Reduction in total amino acids of 19 and 21%, respectively 4500 and 6000 ppm Mung bean Nitrogen content in grain decreased by 37 and 24%, respectively Grain phosphorus content decreased by 30 and 20%, respectively Reduction in grain potassium content by 13 and 8%, respectively 250 mM NaCl 80–100% yield loss Agronomy 2021, 11, 2238 16 of 24 Table 9. Cont. Food Legumes Concentration of Salt Impacts Mungbean (cv. 50 mM NaCl Yield loss by 41% Pusavishal) 6.6 dS m in loam soil Total yield loss around 50% 5.6 dS m in clay soil Yield loss by 52% Total carbohydrates of grain reduced by 9.97 and 33.40%, respectively Faba bean Decrease in grain potassium content of 3.30 and 11.57%, respectively 50 and 100 mM Increase in sodium content of around 12.5 and 62.5%, respectively Magnesium content reduction in grain by 28.57% in both salt concentration Pinto bean (cv. Talash) 8 and 12 dS m Reduction in grain yield by 26 and 41% Source: Farooq et al. [1], Torabian et al. [102], Zhou et al. [105], Ghassemi-Golezani et al. [108], Khan et al. [110], Narula et al. [111]. 6.4. Heavy Metals The accumulation of heavy metals such as mercury (Hg), lead (Pb), cadmium (Cd), chromium (Cr), Cu, Zn, arsenic (As) and nickel (Ni) in the soil is a serious constraint for the crops grown in that soil [112,113]. When these heavy metals are present above the optimum level in the rhizosphere zone, they limit the yield and quality of food legumes (Table 10) as well as cause human health concerns through accumulating in the grains of food legumes [114]. The predominant use of heavy metals leads to a decrease in the yield of food legumes and dangerously affects human health through entering into the food chain [9]. Heavy metal toxicity causes weak plant growth, chlorosis, a yield reduction supplemented by decreased nutrient uptake, plant metabolism disorders and a reduced molecular nitrogen-fixing ability [115]. The uptake of mineral nutrients is altered by heavy metals, which inhibits the opening of the stomata by cooperating with plant water balance, thus disturbing the enzymes of the Calvin cycle, carbohydrate metabolism, photosynthesis and, ultimately, reducing the productivity of food legumes [116]. Cd is a heavy metal highly toxic to plants, humans, animals and causes oxidative stress in plants. Agronomy 2021, 11, 2238 17 of 24 Table 10. Impacts of different level of heavy metals on grain constituents of food legumes. Heavy Metals Food Legumes Level of Metals in Soil or Growth Media Effects References Groundnut - Xerophytic anatomical features and reduction in grain quality [1,9,10] Changes in lipid composition and alteration in the structural component of Common bean 5 g mL [117,118] thylakoid membrane 50 M CdCl Chloroplast damage, reduction in grain filling rate Cadmium (Cd) Pea [119] 2.5 mM Decrease in starch content of seeds Chickpea 23 mg kg Decrease in grain protein by 22% [1,9,120] Green gram 24 mg kg Grain protein reduction by 8% [1,9] Soybean 0.1, 0.5 and 1.0 mM Reduction in grain oil by 23, 28 and 33%, respectively [1,9,97,117] Pigeon pea 56 and 112 mg L Reduced photosynthesis up to 50% [1] Grass pea 25, 50, 100, 200 and 300 ppm Chromosomal abnormalities [1,120] Lead (Pb) Chickpea 195 and 390 mg kg Grain proteins increase by 3 and 6%, respectively [1,9] Soybean - Inhibited growth [98,117] Common bean 500 ppm Reduced seed germination up to 48% [117] Chromium (Cr) Chickpea 67.5 and 135 mg kg Grain protein increased by 3% and decreased by 2%, respectively [1,9,120] Green gram 68 and 136 mg kg Increase in grain protein by 7 and 11%, respectively [1,9] Black gram [1] Mung bean [117,120] Reduced 50% seed germination potential, contamination in the entire food 20 ppm Mercury (Hg) Pea [1] chain Lentil [1,120] Soybean 0.1, 0.5 and 1.0 mM Grain oil reduction by 38, 58 and 68%, respectively [1,97,117] Changes in the ultra-structure of chloroplasts, Pea (50 and 75 M) [1,117,120] swelling of starch grains in the stroma Copper (Cu) Chickpea Reduced grain protein of 9 and 18%, respectively [1,116] 66.9 and 143.8 mg kg Cowpea 5 ppm Adversely affected the germination process Green gram 334.5 and 669 mg kg Grain protein reduced by 4 and 5%, respectively [1] 50, 100, 200 and 400 ppm Reduction in seed germination and seedling growth Chickpea [1,116] 290.1 and 580.2 mg kg Reduced grain protein by 2 and 16%, respectively Nickel (Ni) Cowpea 5 ppm adversely influenced the germination process [1] Pigeon pea 1.0 mM 32% reduction in net photosynthesis, decrease enzyme activity [1,10] Cowpea 5 ppm Adversely influenced the germination process [1] Zinc (Zn) Chickpea 4890 and 9780 mg kg Increased grain protein by 10 and 19%, respectively [1,116,120] Peas 12.5–73.3 mg of sodium arsenate kg Caused interference in mineral nutrient balance [1,114,116] Arsenic (As) Considerable inhibition in seed reserves accumulation such as starch, proteins, Chickpea 5 mg kg [1,114,121] sugars and minerals, reduced the quality of seeds Agronomy 2021, 11, 2238 18 of 24 An accumulation of Cd has potential health risks, and it mostly happens due to the consumption of soybeans grown in contaminated areas as soybeans have more potential in absorbing heavy metals compared to other food legumes [119]. However, the detrimental effects on soybean oil content were found to be greater for Hg than Cd. The grain oil content of soybeans was reduced when exposed to higher Cd and Hg concentrations and the oil content reduction rate was higher with an individual metal rather than a combined effort of metals, which emphasizes the antagonistic effect of heavy metals on the grain oil content [1,120]. Heavy metal changes major and minor fatty acids in food legumes; oleic and linoleic acid decreased significantly in soybeans under heavy metal stress, whereas palmitic, linolenic and stearic acid were markedly increased [120]. The starch content of pea seeds decreased when grown in 2.5 mM Cd [121]. Pb is another heavy metal, and its toxic effects mainly depend on how it reacts with functional groups such as carboxyl, sulfhydryl and amine, which results in a reduction in or loss of enzymatic activity vital for cell function. The total soluble sugars, soluble proteins and starch content of the common bean decreased with the increase in the Cd and Pb concentration when extended with 1 1 different concentrations of Cd and Pb (1.5, 2.0, 2.5, 3.0 g kg for Cd and 2, 4, 6, 8 g kg for Pb) compared to control plants [118]. Pea grains store Fe and Zn, while lentils accumulate low levels of Pb. The grain protein content of maximum food legumes decreased with the increase in Cd, Cr, Ni, Zn, Pb and Cu, except for chickpeas and mung beans. A Zn application in chickpeas decreased the grain protein content [9]. The minerals’ uptake, accumulation and nutritional composition of legume seeds and shoots may be altered by As. The nutrient balance of Zn, Mn and Mg in peas was altered by As when exposed to 12.5 to 73.3 mg of sodium arsenate/kg dry weight of soil [117]. The accumulation of seed reserves such as starch, proteins, sugars and minerals was significantly inhibited in chickpeas when grown in As (5 mg/kg of dry soil) compared to the controls, indicating that As prominently reduced the grain quality of chickpeas [121]. 7. Impacts of Abiotic Stresses on Nodulation and Nitrogen Fixation Abiotic stresses affect the nodulation and nitrogen fixation of legumes. Most impor- tantly, the drought stress because the formation, growth and functioning of nodules are being affected when there is a shortage of water in soil [122]. Under drought stress, different factors interfere with the nitrogenase enzymatic activity such as reducing the stock of ATP, reducing the respiration efficiency, altering the pH gradient across the bacteroid membrane and regulating nitrogenase by substrate or gene expression. A Considerable decrease in nitrogen fixation during soil dehydration has been found in many grain legumes such as chickpeas, peas, cowpeas, faba beans, etc. The stunted growth of a nodule and a partially developed root cortex-embedded organ was found when a nodule was subjected to dry conditions. Nitrogen fixation as well as nodule respiration degrades equivalently to the degree of water insufficiency under drought stress [123]. Nodule oxygen permeability re- duces under drought stress. As a result, nodules face a limited ability to carry out oxidative phosphorylation, although maintaining relatively high photosynthesis [124]. On the other hand, salinity is one of the most limiting factors for leguminous nitrogen fixation. Nodule formation significantly decreases under soil salinity, simultaneously reduc- ing the symbiotic nitrogen fixation. Salt stress reduces root hair formation, thus inhibiting infection threads and, ultimately, degrading the number of nodules. This happens because of the deleterious effect of salt stress on the colonization of the legume root, which restricts the Rhizobia bacterial growth [125]. Heavy metals are another constraint for nitrogen fixation by bacteria in a legume plant. Such metals firstly affect the soil microorganisms. The composition and activities of microbes are being changed dramatically by a high concentration of heavy metals in the soil [126]. The morphology, growth and many activities of multiple groups of microorganisms are found to be altered by the heavy metals such as Ni, Cu, Cd, As and Zn [127]. These metals have been found to enhance lipid peroxidation [128], thus creating oxidative stress for both rhizobia and host legumes. The induction of nodal genes was Agronomy 2021, 11, 2238 19 of 24 found to be inhibited by a high concentration of heavy metals, which cause a loss of the N-fixing ability of rhizobia in association with some leguminous hosts [9]. 8. Conclusions The diverse climatic changes are significantly affecting the agroecosystem. Besides abiotic stresses, pandemic situations created by viruses such as COVID-19 have also hampered the economic and agricultural systems globally. Under such a situation, food legumes are the cheapest source of protein acquisition. The consumption of good quality legumes can be a replacement for animal protein. That is why there is considerable scope for exploring these safe protein sources in the cropping pattern. However, grain legumes’ production, grain composition and quality are hindered by several abiotic stresses, as stated in this review. A collection of stress tolerance diverse germplasms, the development of tolerant variety/varieties through plant breeding or advanced biotechnologies and the introduction of suitable agronomic management packages could be helpful to overcome the abiotic stress effects on legumes for their yield and nutritional quality improvement. This review not only provides an overview on the research that has been conducted, but also to identify the areas in which research on grain legumes is still needed in order to mitigate the abiotic stress effects on legumes. Author Contributions: Conceptualization, S.S. and A.K.M.A.I.; methodology, S.S. and A.K.M.A.I.; validation, S.S. and A.K.M.A.I.; formal analysis, S.S., F.M.E. and A.K.M.A.I.; investigation, S.S., F.M.E. and A.K.M.A.I.; resources, S.S., F.M.E. and A.K.M.A.I.; data curation, S.S., F.M.E. and A.K.M.A.I.; writing—original draft preparation, S.S., M.K., F.M.E. and A.K.M.A.I.; writing—review and editing, A.K.M.A.I., M.P.A., S.D., R.D. and A.K.M.M.I.; visualization, S.S., A.K.M.M.I. and A.K.M.A.I.; super- vision, A.K.M.A.I.; project administration, A.K.M.A.I.; funding acquisition, A.K.M.A.I., R.D. and S.D. All authors have read and agreed to the published version of the manuscript. Funding: This research received no external funding. Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable. Data Availability Statement: Not applicable. Acknowledgments: The authors would like to acknowledge their gratitude towards university authority for the support from Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh through research program of Department of Genetics and Plant Breeding. Conflicts of Interest: The authors declare no conflict of interest. References 1. Farooq, M.; Hussain, M.; Usman, M.; Farooq, S.; Alghamdi, S.S.; Siddique, K.H.M. Impact of Abiotic Stresses on Grain Composition and Quality in Food Legumes. J. Agric. Food Chem. 2018, 66, 8887–8897. [CrossRef] [PubMed] 2. Ullah, A.; Romdhane, L.; Rehman, A.; Farooq, M. Adequate zinc nutrition improves the tolerance against drought and heat stresses in chickpea. Plant Physiol. Biochem. 2019, 143, 11–18. [CrossRef] 3. Gobal Network against Food Crisis. Global Report on Food Crises. Food Security Information Network. 2020. Available online: https://www.sadc.int/files/8415/8818/9448/GRFC_2020_ONLINE.pdf (accessed on 22 May 2021). 4. Jimenez-Lopez, J.C.; Singh, K.B.; Clemente, A.; Nelson, M.N.; Ochatt, S.; Smith, P.M.C. Editorial: Legumes for Global Food Security. Front. Plant Sci. 2020, 11, 926. [CrossRef] 5. Liu, Y.; Li, J.; Zhu, Y.; Jones, A.; Rose, R.J.; Song, Y. Heat Stress in Legume Seed Setting: Effects, Causes, and Future Prospects. Front. Plant Sci. 2019, 10, 938. [CrossRef] 6. El Sabagh, A.; Hossain, A.; Barutcular, C.; Gormus, O.; Ahmad, Z.; Hussain, S.; Islam, M.S.; Alharby, H.; Bamagoos, A.; Kumar, N.; et al. Effects of drought stress on the quality of major oilseed crops: Implications and possible mitigation strategies—A review. Appl. Ecol. Environ. Res. 2019, 17, 4019–4043. [CrossRef] 7. Sehrawat, N.; Yadav, M.; Bhat, K.; Sairam, R.; Jaiwal, P. Effect of salinity stress on mungbean [Vigna radiata (L.) Wilczek] during consecutive summer and spring seasons. J. Agric. Sci. 2015, 60, 23–32. [CrossRef] 8. Garg, N.; Bhandari, P. Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant. Growth Regul. 2016, 78, 371–387. [CrossRef] Agronomy 2021, 11, 2238 20 of 24 9. Lebrazi, S.; Fikri-Benbrahim, K. Rhizobium-Legume symbioses: Heavy metal effects and principal approaches for bioremediation of contaminated soil. In Legumes Soil Health Sustainable Managent; Springer: Singapore, 2018; pp. 205–233. [CrossRef] 10. Ali, Q.; Malik, A. Genetic evaluation of legume species under heavy metal and biogas. Biol. Clin. Sci. Res. J. 2021, 2021, 1–6. [CrossRef] 11. Considine, M.J.; Siddique, K.H.M.; Foyer, C.H. Nature’s pulse power: Legumes, food security and climate change. J. Exp. Bot. 2017, 68, 1815–1818. [CrossRef] [PubMed] 12. Siddique, K.H.; Johansen, C.; Turner, N.C.; Jeuffroy, M.H.; Hashem, A.; Sakar, D.; Gan, Y.; Alghamdi, S.S. Innovations in agronomy for food legumes. A review. Agron. Sustain. Dev. 2012, 32, 45–64. [CrossRef] 13. Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 1–13. [CrossRef] 14. Celmeli, T.; Sari, H.; Canci, H.; Sari, D.; Adak, A.; Eker, T.; Toker, C. The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy 2018, 8, 166. [CrossRef] 15. Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Chickpea: Nutritional properties and its benefits. Br. J. Nutr. 2012, 108, S11–S26. [CrossRef] [PubMed] 16. Bouchenak, M.; Lamri-Senhadji, M. Nutritional quality of legumes, and their role in cardiometabolic risk prevention: A review. J. Med. Food. 2013, 16, 185–198. [CrossRef] 17. Kamboj, R.; Nanda, V. Proximate composition, nutritional profile and health benefits of legumes—A review. Legum Res. 2018, 41, 325–332. 18. Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [CrossRef] 19. Cowpea (Black-Eyed Pea) vs Green Bean—In-Depth Nutrition Comparison. Available online: https://foodstruct.com/ compareimages/lentil-vs-cowpeas-commonblackeyes-crowder-southern-matureseeds-cooked-boiled-withoutsalt.jpg (accessed on 22 May 2021). 20. Telles, A.C.; Kupski, L.; Furlong, E.B. Phenolic compound in beans as protection against mycotoxins. Food Chem. 2017, 214, 293–299. [CrossRef] [PubMed] 21. Arslan, M. Diversity for vitamin and amino acid content in grass pea (Lathyrus sativus L.). Legume Res. 2017, 40, 803–810. [CrossRef] 22. Amarowicz, R. Legume Seeds as an Important Component of Human Diet. Foods 2020, 9, 1812. [CrossRef] 23. Erbersdobler, H.F.; Barth, C.A.; Jahreis, G. Grain Legumes in the Human Nutrition Nutrient Content and Protein Quality of Pulses. Ernahr. Umsch. 2017, 64, M550–M554. 24. Myers, J.R.; Kmiecik, K. Common bean: Economic importance and relevance to biological science research. In The Common Bean Genome; Springer: Cham, Switzerland, 2017; pp. 1–20. 25. Eicher, C.K. The Evolution of Agricultural Education and Training: Global Insights of Relevance for Africa; No. 1099-2016-89233; Michigan State University: East Lansing, MI, USA, 2006. 26. Rani, K.; Sharma, P.; Kumar, S.; Wati, L.; Kumar, R.; Gurjar, D.S.; Kumar, D. Legumes for sustainable soil and crop management. In Sustainable Management of Soil and Environment; Springer: Singapore, 2019; pp. 193–215. [CrossRef] 27. Maji, S.; Das, A.; Nath, R.; Bandopadhyay, P.; Das, R.; Gupta, S. Cool Season Food Legumes in Rice Fallows: An Indian Perspective. In Agronomic Crops; Hasanuzzaman, M., Ed.; Production Technologies [Internet]; Springer: Singapore, 2019; Volume 1, pp. 561–605. [CrossRef] 28. Day, L. Proteins from land plants—Potential resources for human nutrition and food security. Trends Food Sci. Technol. 2013, 32, 25–42. [CrossRef] 29. USDA. National Nutrient Database for Standard Reference Release 28. 733. 2016. Available online: http://www.ars.usda.gov/ Services/docs.htm?docid=8964 (accessed on 1 October 2016). 30. Ge, F.K. Legumes in Cropping Systems. Angew. Chem. Int. Ed. 1967, 6, 951–952. 31. Mathobo, V.M.; Silungwe, H.; Ramashia, S.E.; Anyasi, T.A. Effects of heat-moisture treatment on the thermal, functional properties and composition of cereal, legume and tuber starches—A review. J. Food Sci. Technol. 2021, 58, 412–426. [CrossRef] 32. Aguilera, Y.; Estrella, I.; Benitez, V.; Esteban, R.M.; Martín-Cabrejas, M.A. Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Res. Int. 2011, 44, 774–780. [CrossRef] 33. Gan, R.Y.; Deng, Z.Q.; Yan, A.X.; Shah, N.P.; Lui, W.Y.; Chan, C.L.; Corke, H. Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT-Food Sci. Technol. García-Lafuente 2016, 73, 168–177. [CrossRef] 34. Chen, P.X.; Tang, Y.; Marcone, M.F.; Pauls, P.K.; Zhang, B.; Liu, R.; Tsao, R. Characterization of free, conjugated and bound phenolics and lipophilic antioxidants in regular-and non-darkening cranberry beans (Phaseolus vulgaris L.). Food Chem. 2015, 185, 298–308. [CrossRef] 35. Magalhães, S.C.; Taveira, M.; Cabrita, A.R.; Fonseca, A.J.; Valentão, P.; Andrade, P.B. European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chem. 2017, 215, 177–184. [CrossRef] [PubMed] 36. Public Health England. The Eatwell Guide; Department of Health in Association with the Welsh Assembly Government, the Scottish Government and the Food Standards Agency in Northern Ireland L.; Public Health England: London, UK, 2016. 37. Humer, E.; Schedle, K. Fermentation of food and feed: A technology for efficient utilization of macro and trace elements in monogastrics. J. Trace Elem. Med. Biol. 2016, 37, 69–77. [CrossRef] [PubMed] Agronomy 2021, 11, 2238 21 of 24 38. Sirtori, C.R.; Triolo, M.; Bosisio, R.; Bondioli, A.; Calabresi, L.; De Vergori, V.; Gomaraschi, M.; Mombelli, G.; Pazzuc- coni, F.; Zacherl, C.; et al. Hypo-cholesterolaemic effects oflupin protein and pea protein/fibre combinations in moder- atelycholesterolaemic effects oflupin protein and pea protein/fibre combinations in moderately hypercholesterolaemic individuals. Br. J. Nutr. 2012, 107, 1176–1183. [CrossRef] 39. Budhathoki, S.; Sawada, N.; Iwasaki, M.; Yamaji, T.; Goto, A.; Kotemori, A.; Ishihara, J.; Takachi, R.; Charvat, H.; Mizoue, T.; et al. Association of animal and plant protein intake with all-cause and cause-specific mortality in a Japanese cohort. JAMA Intern. Med. 2019, 179, 1509–1518. [CrossRef] 40. Bean Growers Association. Bean Nutrition Overview. The Bean Institute. 2019. Available online: http://beaninstitute.com/bean- nutrition-overview/ (accessed on 22 May 2021). 41. Cowpea Facts, Health Benefits and Nutritional Value. 1899. Available online: https://www.healthline.com/nutrition/black- eyed-peas-nutrition (accessed on 22 May 2021). 42. Cowpeas_10 Incredible Health Benefits of Cowpeas (Beans)—Finelib. Available online: https://www.finelib.com/about/nigeria- food-produce/about-cowpea-and-nutritional-benefits/204 (accessed on 22 May 2021). 43. Cornmeal Vitamins—How Many Vitamins in Cornmeal. Available online: http://www.freenutritionfacts.com/cornmeal/ vitamins/ (accessed on 22 May 2021). 44. Purslane Nutrition Facts and Health Benefits. Available online: http://www.nutrition-and-you.com/purslane.html (accessed on 22 May 2021). 45. Pigeon Pea vs. Peanut—In-Depth Nutrition Comparison. Available online: https://foodstruct.com/compareimages/peanut-vs- pigeonpeasredgram-matureseeds-raw.jpg (accessed on 22 May 2021). 46. Green Tomatoes Facts, Health Benefits and Nutritional Value. Available online: https://www.healthbenefitstimes.com/green- tomatoes/ (accessed on 22 May 2021). 47. Thomas, J.M.G.; Boote, K.J.; Allen, L.H., Jr.; Gallo-Meagher, M.; Davis, J.M. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci. 2003, 43, 1548–1557. [CrossRef] 48. Devirian, T.A.; Volpe, S.L. The physiological effects of dietary boron. Crit. Rev. Food Sci. Nutr. 2003, 43, 219–231. [CrossRef] 49. Qados, A.M.S.A. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J. Saudi Soc. Agri. Sci. 2011, 10, 7–15. [CrossRef] 50. Chen, P.X.; Bozzo, G.G.; Freixas-Coutin, J.A.; Marcone, M.F.; Pauls, P.K.; Tang, Y.; Zhang, B.; Liu, R.; Tsao, R. Free and conjugated phenolic compounds and their antioxidant activities in regular and nondarkening cranberry bean (Phaseolus vulgaris L.) seed coats. J. Funct. Foods 2015, 18, 1047–1056. [CrossRef] 51. Toker, C.; Yadav, S.S. Legumes cultivars for stress environments. In Climate Change and Management of Cool Season Grain Legume Crops; Yadav, S.S., McNeil, D.L., Redden, R., Patil, S.A., Eds.; Springer: Dordrecht, The Netherland, 2010; pp. 351–376. [CrossRef] 52. Singh, K.B. Chickpea breeding. In The Chickpea; Saxena, E., Ed.; CAB International: Wallingford, CT, USA, 1987; pp. 127–162. 53. Yadav, S.S.; Redden, R.; McNeil, D.L.; Patil, S.A. Climate Change and Management of Cool Season Grain Legume Crops; Springer Science & Business Media: New York, NY, USA, 2010; pp. 1–460. 54. Bhandari, K.; Sharma, K.D.; Hanumantha Rao, B.; Siddique, K.H.M.; Gaur, P.; Agrawal, S.K.; Nair, R.M.; Nayyar, H. Temperature sensitivity of food legumes: A physiological insight. Acta Physiol. Plant 2017, 39, 68. [CrossRef] 55. Sita, K.; Sehgal, A.; HanumanthaRao, B.; Nair, R.M.; Vara Prasad, P.V.; Kumar, S.; Gaur, P.M.; Farooq, M.; Siddique, K.H.; Varshney, R.K.; et al. Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front. Plant Sci. 2017, 8, 1658. [CrossRef] [PubMed] 56. Farooq, M.; Nadeem, F.; Gogoi, N.; Ullah, A.; Alghamdi, S.S.; Nayyar, H.; Siddique, K.H. Heat stress in grain legumes during reproductive and grain-filling phases. Crop Pasture Sci. 2017, 68, 985–1005. [CrossRef] 57. Redden, R.J.; Hatfield, J.L.; Vara Prasad, P.V.; Ebert, A.W.; Yadav, S.S.; O’Leary, G.J. Temperature, climate change, and global food security. Temp. Plant Dev. 2014, 8, 181–202. 58. Sehgal, A.; Sita, K.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.H.M.; Nayyar, H. Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front. Plant Sci. 2017, 8, 1776. [CrossRef] 59. Sita, K.; Sehgal, A.; Bhandari, K.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.H.; Nayyar, H. Impact of heat stress during seed filling on seed quality and seed yield in lentil (Lens culinaris Medikus) genotypes. J. Sci. Food Agric. 2018, 98, 5134–5141. [CrossRef] 60. Abeysingha, G.L. The Effect of Auxins on Seed Yield Parameters in Wheat, Pea and Canola Grown under Controlled Environment and Western Canadian Field Conditions. Master ’s Thesis, University of Alberta, Edmonton, AB, Canada, 2015. [CrossRef] 61. Djanaguiraman, M.; Vara Prasad, P.V.; Boyle, D.L.; Schapaugh, W.T. Soybean pollen anatomy, viability and pod set under high temperature stress. J. Agron. Sci. 2013, 199, 171–177. [CrossRef] 62. Gaur, P.M.; Samineni, S.; Krishnamurthy, L.; Varshney, R.K.; Kumar, S.G.; Ghanem, M.E.; Beebe, S.E.; Rao, I.M.; Chaturvedi, S.K.; Basu, P.S.; et al. High temperature tolerance in grain legumes. Legume Perspect. 2014, 7, 23–24. 63. Bindumadhava, H.; Nair, R.M.; Nayyar, H.; Riley, J.J.; Easdown, W. Mungbean production under a changing climate-insights from growth physiology. Mysore. J. Agric. Sci. 2017, 51, 21–26. 64. Bishop, J.; Potts, S.G.; Jones, H.E. Susceptibility of faba bean (Vicia faba L.) to heat stress during floral development and anthesis. J. Agron. Crop Sci. 2016, 202, 508–517. [CrossRef] [PubMed] Agronomy 2021, 11, 2238 22 of 24 65. Shirsath and Bhosale Agro India Ltd. Modern Agrotechniques for Cultivation of Black Gram/Urdbean (Vigna mungo L.); Shirsath and Bhosale Agro India Ltd.: Ahmednagar, India, 2017. 66. Vaz Patto, M.C.; Amarowicz, R.; Aryee, A.N.A.; Boye, J.I.; Chung, H.J.; Martín-Cabrejas, M.A.; Domoney, C. Achievements and challenges in improving the; nutritional quality of food legumes. Crit. Rev. Plant Sci. 2015, 34, 105–143. [CrossRef] 67. Kaushal, N.; Awasthi, R.; Gupta, K.; Gaur, P.; Siddique, K.H.M.; Nayyar, H. Heat stress induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct. Plant Biol. 2013, 40, 1334–1349. [CrossRef] [PubMed] 68. Sharma, L.; Priya, M.; Bindumadhava, H.; Nair, R.M.; Nayyar, H. Influence of high temperature stress on growth, phenology and yield performance of mungbean [Vigna radiata (L.) Wilczek] under managed growth conditions. Sci. Hortic. 2016, 213, 379–391. [CrossRef] 69. Sadeghipour, O. The influence of water stress on biomass and harvest index in three mung 460 bean (Vigna radiata L. (Wilczek)) cultivars. Asian J. Plant Sci. 2009, 8, 245–249. [CrossRef] 70. Thomas, J.M.G.; Prasad, P.V.V.; Boote, K.J.; Allen, L.H., Jr. Seed composition, seedling emergence and early seedling vigor of red kidney bean seed produced at elevated temperature and carbon dioxide. J. Agron. Crop Sci. 2009, 195, 148–156. [CrossRef] 71. Bhandari, K.; Siddique, K.H.; Turner, N.C.; Kaur, J.; Singh, S.; Agrawal, S.K.; Nayyar, H. Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function, and severely reduces seed yield in lentil. J. Crop Improv. 2016, 30, 118–151. [CrossRef] 72. Awasthi, R.; Kaushal, N.; Vadez, V.; Turner, N.C.; Berger, J.; Siddique, K.H.; Nayyar, H. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct. Plant Biol. 2014, 41, 1148–1167. [CrossRef] [PubMed] 73. Araújo, S.S.; Beebe, S.; Crespi, M.; Delbreil, B.; González, E.M.; Gruber, V.; Vaz Patto, M.C. Abiotic stress responses in legumes: Strategies used to cope with environmental challenges. Crit. Rev. Plant Sci. 2015, 34, 237–280. [CrossRef] 74. Sehgal, A.; Sita, K.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; HanumanthaRao, B.; Nair, R.M.; Prasad, P.V.; Nayyar, H. Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Front. Plant Sci. 2018, 9, 1705. [CrossRef] 75. Croser, J.S.; Clarke, H.J.; Siddique, K.H.M.; Khan, T.N. Low temperature stress: Implications for chickpea (Cicer arietinum L.) improvement. Crit. Rev. Plant Sci. 2003, 22, 185–219. [CrossRef] 76. Siddiqui, M.H.; Al-Khaishany, M.Y.; Al-Qutami, M.A.; Al-Whaibi, M.H.; Grover, A.; Ali, H.M.; Al-Wahibi, M.S. Morphological and physiological characterization of different genotypes of faba bean under heat stress. Saudi J. Biol. Sci. 2015, 22, 656–663. [CrossRef] 77. Heidarvand, L.; Amiri, R.M.; Naghavi, M.R.; Farayedi, Y.; Sadeghzadeh, B.; Alizadeh, K. Physiological and morphological characteristics of chickpea accessions under low temperature stress. Russ. J. Plant Physiol. 2011, 58, 157–163. [CrossRef] 78. Shunmugam, A.S.K.; Kannan, U.; Jiang, Y.; Daba, K.A.; Gorim, L.Y. Physiology Based Approaches for Breeding of Next-Generation Food Legumes. Plants 2018, 7, 72. [CrossRef] 79. Kumar, S.; Nayyar, H.; Bhanwara, R.K.; Upadhyaya, H.D. Chilling Stress Effects on Reproductive Biology of Chickpea. J. Sat. Agric. Res. 2010, 8, 1–14. Available online: http://oar.icrisat.org/id/eprint/5374 (accessed on 22 May 2021). 80. Maqbool, A.; Shafiq, S.; Lake, L. Radiant frost tolerance in pulse crops—A review. Euphytica 2010, 172, 1–12. [CrossRef] 81. Peix, A.; Ramırez-Bahena, M.H.; Velazquez, E.; Bedmar, E.J. Bacterial associations with legumes. Crit. Rev. Plant Sci. 2015, 34, 17–42. [CrossRef] 82. Farooq, M.; Gogoi, N.; Barthakur, S.; Baroowa, B.; Bharadwaj, N.; Alghamdi, S.S. Drought Stress in Grain Legumes during Reproduction and Grain Filling. J. Agron. Crop Sci. 2017, 203, 81–102. [CrossRef] 83. Yagoob, H.; Yagoob, M. The effects of water deficit stress on protein yield of mung bean genotypes. Peak. J. Agri. Sci. 2014, 2, 30–35. 84. Ghanbari, A.A.; Shakiba, M.R.; Toorchi, M.; Choukan, R. Nitrogen changes in the leaves and accumulation of some minerals in the seeds of red, white and chitti beans (Phaseolus vulgaris) under water deficit conditions. Aus. J. Crop Sci. 2013, 7, 706–712. 85. Ashrafi, V.; Pourbozorg, H.; Kor, N.M.; Ajirloo, A.R.; Shamsizadeh, M.; Shaaban, M. Study on seed protein and protein profile pattern of chickpea (Cicer arietinum L.) by SDS-PAGE under drought stress and fertilization. Int. J. Life Sci. 2015, 9, 87–90. [CrossRef] 86. Ardakani, L.G.; Farajee, H.; Kelidari, A. The effect of water stress on grain yield and protein of spotted bean (Phaseolus vulgaris L.), cultivar Talash. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 940–949. 87. Baroowa, B.; Gogoi, N. Biochemical changes in black gram and green gram genotypes after imposition of drought stress. J. Food Legume 2014, 27, 350–353. 88. Maleki, A.; Naderi, A.; Naseri, R.; Fathi, A.; Bahamin, S.; Maleki, R. Physiological performance of soybean cultivars under drought stress. Bull. Environ. Pharmacol. Life Sci. 2013, 2, 38–44. 89. Kyei-boahen, S.; Savala, C.E.N.; Chikoye, D.; Abaidoo, R.; Kyei-boahen, S. Growth and yield responses of cowpea to inoculation and phosphorus fertilization in different environments. Front. Plant Sci. 2017, 8, 646. [CrossRef] 90. Wei, Y.; Jin, J.; Jiang, S.; Ning, S.; Liu, L. Quantitative response of soybean development and yield to drought stress during different growth stages in the Huaibei Plain, China. Agronomy 2018, 8, 97. [CrossRef] Agronomy 2021, 11, 2238 23 of 24 91. Varshney, R.K.; Thudi, M.; Nayak, S.N.; Gaur, P.M.; Kashiwagi, J.; Krishnamurthy, L.; Jaganathan, D.; Koppolu, J.; Bohra, A.; Tripathi, S. Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2014, 127, 445–462. [CrossRef] 92. Kazai, P.; Noulas, C.; Khah, E.; Vlachostergios, D. Yield and seed quality parameters of common bean cultivars grown under water and heat stress field conditions. AIMS Agric. Food 2019, 4, 285–302. [CrossRef] 93. Khan, R.; Srivastava, R.; Abdin, M.Z.; Manzoor, N.M. Effect of soil contamination with heavy metals on soybean seed oil quality. Eur. Food Res. Technol. 2013, 236, 707–714. [CrossRef] 94. Allahmoradi, P.; Mansourifar, C.; Saiedi, M.; Jalali Honarmand, S. Effect of different water deficiency levels on some antioxidants at di erent growth stages of lentil (Lens culinaris L.). Adv. Environ. Biol. 2013, 7, 535–543. 95. Bellaloui, N.; Mengistu, A.; Kassem, M.A. Effects of genetics and environment on fatty acid stability in soybean seed. Food Nutr. Sci. 2013, 4, 165–175. [CrossRef] 96. Rozrokh, M.; Sabaghpour, S.H.; Armin, M.; Asgharipour, M. The effects of drought stress on some biochemical traits in twenty genotypes of chickpea. Eur. J. Exp. Biol. 2012, 2, 1980–1987. 97. Ahmad, A.; Selim, M.M.; Alderfasi, A.A.; Afzal, M. Effect of drought stress on mungbean (Vigna radiata L.) under arid climatic conditions of Saudi Arabia. Ecosyst. Sustain. Dev. 2015, 192, 185–193. 98. Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H.M. Salt stress in maize: Effects, resistance mechanisms and management. A review. Agron. Sustain. Dev. 2015, 35, 461–481. [CrossRef] 99. El Sayed, H.E.S.A. Influence of NaCl and Na SO treatments on growth development of broad bean (Vicia faba L.). Plant J. Life Sci. 2 4 2011, 5, 513–523. 100. Farooq, M.; Gogoi, N.; Hussain, M.; Barthakur, S.; Paul, S.; Bharadwaj, N.; Migdadi, H.M.; Alghamdi, S.S.; Siddique, K.H. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem. 2017, 118, 199–217. [CrossRef] 101. Talei, D.; Kadir, M.A.; Yusop, M.K.; Abdullah, M.P.; Valdiani, A. Salinity effects on macro and micronutrients uptake in medicinal plant King of Bitters (Andrographis paniculata Nees.). Plant OMICS 2012, 5, 271–278. 102. Torabian, S.; Farhangi-Abriz, S.; Rathjen, J. Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mungbean under salt stress. Plant Physiol. Biochem. 2018, 129, 141–149. [CrossRef] 103. Nadeem, M.; Li, J.; Yahya, M.; Wang, M.; Ali, A.; Cheng, A.; Wang, X.; Ma, C. Grain legumes and fear of salt stress: Focus on mechanisms and management strategies. Int. J. Mol. Sci. 2019, 20, 799. [CrossRef] [PubMed] 104. Khan, H.A.; Siddique, K.H.M.; Colmer, T.D. Vegetative and reproductive growth of salt stressed chickpea are carbon-limited: Sucrose infusion at the reproductive stage improves salt tolerance. J. Exp. Bot. 2017, 68, 2001–2011. [CrossRef] 105. Zhou, R.; Hyldgaard, B.; Yu, X.; Rosenqvist, E.; Ugarte, R.M.; Yu, S.; Wu, Z.; Ottosen, C.O.; Zhao, T. Phenotyping of faba beans (Vicia faba L.) under cold and heat stresses using chlorophyll fluorescence. Euphytica 2018, 214, 1–13. [CrossRef] 106. Amira, M.S.; Qados, A. Effect of arginine on growth, nutrient composition, yield and nutritional value of mung bean plants grown under salinity stress. Nat. Sci. 2010, 8, 30–42. 107. Sehrawat, N.; Yadav, M.; Sharma, A.K.; Kumar, V.; Bhat, K.V. Salt stress and mungbean [Vigna radiata (L.) Wilczek]: Effects, physiological perspective and management practices for alleviating salinity. Arch. Agron. Soil Sci. 2019, 65, 1287–1301. [CrossRef] 108. Ghassemi-Golezani, K.; Nikpour-Rashidabad, N.; Zehtab-Salmasi, S. Effect of salinity on yield and yield components of pinto bean cultivars. Int. J. Plant Anim. Environ. Sci. 2012, 2, 47–51. 109. Ahmad, M.; Zahir, Z.A.; Asghar, H.N.; Asghar, M. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1- aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 2011, 57, 578–589. [CrossRef] 110. Khan, M.S.A.; Karim, M.A.; Haque, M.M.; Islam, M.M.; Karim, A.J.M.S.; Mian, M.A.K. Influence of salt and water stress on growth and yield of soybean genotypes. Trop. Agric. Sci. 2016, 39, 167–180. 111. Narula, S.; Anand, R.C.; Dudeja, S.S. Beneficial traits of endophytic bacteria from field pea nodules and plant growth promotion of field pea. J. Food. Legume 2013, 26, 73–79. 112. Hossain, M.A.; Hasanuzzaman, M.; Fujita, M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol. Mol. Biol. Plants 2010, 16, 259–272. [CrossRef] [PubMed] 113. Pokhrel, D.; Bhandari, B.S.; Viraraghavan, T. Arsenic contamination of groundwater in the Terai region of Nepal: An overview of health concerns and treatment options. Environ. Inter. 2009, 35, 157–161. [CrossRef] 114. Shi, G.; Liu, C.; Cai, Q.; Liu, Q.; Hou, C. Cadmium Ac- cumulation and Tolerance of Two Safflower Cultivars in Relation to Photosynthesis and Antioxidantive Enzymes. Bull. Environ. Contam. Toxicol. 2010, 85, 256–263. [CrossRef] [PubMed] 115. Asati, A.; Pichhode, M.; Nikhil, K. Effect of heavy metals on plants: An overview. Int. J. Appl. Innov. Eng. Manag. 2016, 5, 56–66. 116. Bae, J.; Benoit, D.L.; Watson, A.K. Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes. Environ. Pollut. 2016, 213, 112–118. [CrossRef] 117. Bahmani, R.; Bihamta, M.R.; Habibi, D.; Forozesh, P.; Ahmadvand, S. Effect of cadmium chloride on growth parameters of different bean genotypes (Phaseolus vulgaris L.). ARPN J. Agri. Biol. Sci. 2012, 7, 35–41. 118. Dewan, M.M.; Dhingra, H.R. Cadmium partitioning and seed quality in two varities of pea and their hybrid as influenced by rhizopheric cadmium. Indian J. Plant Physiol. 2004, 9, 15–20. 119. Malik, J.A.; Goel, S.; Sandhir, R.; Nayyar, H. Uptake and distribution of arsenic in chick pea:Effects on seed yield and seed composition. Commun. Soil Sci. Plant Anal. 2011, 42, 1728–1738. [CrossRef] Agronomy 2021, 11, 2238 24 of 24 120. Wei, J.; Cen, K. Contamination and health risk assessment of heavy metals in cereals, legumes, and their products: A case study based on the dietary structure of the residents of Beijing, China. J. Clean. Prod. 2020, 260, 121001. [CrossRef] 121. Valentine, A.J.; Benedito, V.A.; Kang, Y. Legume nitrogen fixation and soil abiotic stress: From physiology to genomics and beyond. In Nitrogen Metabolism in Plants in the Post-Genomic Era; Annual Plant Reviews Book Series; Wiley Online Library: Hoboken, NJ, USA, 2018; Volume 42, pp. 207–248. 122. Kantar, F.; Shivakumar, B.G.; Arrese-Igor, C.; Hafeez, F.Y.; González, E.M.; Imran, A.; Larrainzar, E. Efficient biological nitrogen fixation under warming climates. In Climate Change and Management of Cool Season Grain Legume Crops; Springer: Dordrecht, The Netherland, 2010; pp. 283–306. 123. Abdel-Wahab, A.; Abdel-Muhsin, A.M.A.; Ali, E.; Suleiman, S.; Ahmed, S.; Walliker, D.; Babiker, H.A. Dynamics of gametocytes among Plasmodium falciparum clones in natural infections in an area of highly seasonal transmission. J. Infect. Dis. 2002, 12, 1838–1842. [CrossRef] [PubMed] 124. Abd-Alla, M.H.; Nafady, N.A.; Bashandy, S.R.; Hassan, A.A. Mitigation of effect of salt stress on the nodulation, nitrogen fixation and growth of chickpea (Cicer arietinum L.) by triple microbial inoculation. Rhizosphere 2019, 10, 100148. [CrossRef] 125. Abd-Alla, M.H.; Issa, A.A.; Ohyama, T. Impact of harsh environmental conditions on nodule formation and dinitrogen fixation of legumes. Adv. Biol. Ecol. Nitrogen Fixat. 2014, 9, 1. 126. Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 2016, 6, 1143. [CrossRef] 127. Wani, P.; Khan, M. Bioremediaiton of lead by a plant growth promoting Rhizobium species RL9. Bacteriol. J. 2012, 2, 66–78. [CrossRef] 128. Meena, R.S.; Yadav, R.S.; Meena, H.; Kumar, S.; Meena, Y.K.; Singh, A. Towards the current need to enhance legume productivity and soil sustainability worldwide: A book review. J. Clean. Prod. 2015, 104, 513–515. [CrossRef] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agronomy Multidisciplinary Digital Publishing Institute

Abiotic Stresses: Alteration of Composition and Grain Quality in Food Legumes

Loading next page...
 
/lp/multidisciplinary-digital-publishing-institute/abiotic-stresses-alteration-of-composition-and-grain-quality-in-food-ogCoRzCSnZ

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Multidisciplinary Digital Publishing Institute
Copyright
© 1996-2021 MDPI (Basel, Switzerland) unless otherwise stated Disclaimer The statements, opinions and data contained in the journals are solely those of the individual authors and contributors and not of the publisher and the editor(s). MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Terms and Conditions Privacy Policy
ISSN
2073-4395
DOI
10.3390/agronomy11112238
Publisher site
See Article on Publisher Site

Abstract

agronomy Review Abiotic Stresses: Alteration of Composition and Grain Quality in Food Legumes 1 1 1 2 2 Sumi Sarkar , Marium Khatun , Farzana Mustafa Era , A. K. M. Mominul Islam , Md. Parvez Anwar , 3 , 4 , 1 , Subhan Danish * , Rahul Datta * and A. K. M. Aminul Islam * Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; sumisarkarnupur14@gmail.com (S.S.); mariumkhatun6225@gmail.com (M.K.); farzana@bsmrau.edu.bd (F.M.E.) Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; akmmominulislam@bau.edu.bd (A.K.M.M.I.); parvezanwar@bau.edu.bd (M.P.A.) Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan Department of Geology and Pedology, Mendel University, Zemedelska 1, 61300 Brno, Czech Republic * Correspondence: sd96850@gmail.com (S.D.); rahulmedcure@gmail.com (R.D.); aminulgpb@bsmrau.edu.bd (A.K.M.A.I.); Tel.: +880-1715-401519 (A.K.M.A.I.) Abstract: Abiotic stresses varyingly affect the grain composition and quality of food legumes. This paper is aimed at discussing the impact of abiotic stresses on the grain composition and quality of food legumes. As protein is the main grain constituent of food legumes for which it is being consumed by humans as a cheap protein source, abiotic stresses such as heat, cold, drought, salinity and heavy metals alter this grain protein content in different dimensions for different food legumes. Moreover, other valuable constituents such as starch, soluble sugar, oil, fatty acid and fiber content are affected Citation: Sarkar, S.; Khatun, M.; Era, differently by the abiotic stresses. The diverse impact of these abiotic stresses ultimately declines F.M.; Islam, A.K.M.M.; Anwar, M.P.; the grain quality and yield of food legumes. As food legumes play a vital role in the nutritional Danish, S.; Datta, R.; Islam, A.K.M.A. diet of millions of people in the world and are occasionally denoted as the meat of poor people, Abiotic Stresses: Alteration of it is important to recognize that the sustainable production of food legumes, even under various Composition and Grain Quality in environmental stresses, has the potential to ensure protein security for people globally. Therefore, Food Legumes. Agronomy 2021, 11, it has become a necessity to improve the productivity and quality of food legumes under abiotic 2238. https://doi.org/10.3390/ stresses through proper crop management and improved breeding strategies, thus enhancing food agronomy11112238 and economic security to the farmers, particularly in the developing countries of the world. Academic Editor: Ryoichi Araki Keywords: abiotic stress; heat stress; drought; salinity; heavy metals; legume; food quality Received: 2 October 2021 Accepted: 1 November 2021 Published: 4 November 2021 1. Introduction Publisher’s Note: MDPI stays neutral The increasing population along with global climate change are generating a great with regard to jurisdictional claims in influence on the agroecosystem and creating various abiotic stresses that are major threats published maps and institutional affil- for global food security. Therefore, one of the major challenges of this era is to maintain a iations. sustainable yield under these stresses and meet the global food demand with nutritional food. Food legumes are one of the major crops that may be included in the cropping system for attaining the nutritional and protein requirements of this growing population, as the protein gap is likely to increase with the increasing population [1]. Copyright: © 2021 by the authors. Food legumes from the second most important plant family Fabaceae, are agriculturally Licensee MDPI, Basel, Switzerland. important nourishing crops provided as a low-cost and rich source of protein to human This article is an open access article beings. In terms of world production, food legumes rank third after cereals and oilseeds, distributed under the terms and having a strong impact on the agro-ecosystem and human nutrition [1]. Nearly 27% of conditions of the Creative Commons global crop production is occupied with food legumes [2]. Food legumes are consumed Attribution (CC BY) license (https:// mostly for edible proteins and oil; those are considered as the major grain quality compo- creativecommons.org/licenses/by/ nents of food legumes. Food legumes are grown in variable climates and abiotic stresses 4.0/). Agronomy 2021, 11, 2238. https://doi.org/10.3390/agronomy11112238 https://www.mdpi.com/journal/agronomy Agronomy 2021, 11, x FOR PEER REVIEW  2  of  23  Agronomy 2021, 11, 2238 2 of 24 stresses such as temperature, drought, salinity and heavy metals can affect the grain com‐ position and quality of food legumes [3]. Grain starch, protein, oil, fatty acids, amino ac‐ such as temperature, drought, salinity and heavy metals can affect the grain composition ids, sugars, dietary fibers, minerals and vitamin contents are considered as the major com‐ and quality of food legumes [3]. Grain starch, protein, oil, fatty acids, amino acids, sugars, ponents of grain composition that help to determine the quality of food legumes [4]. Abi‐ dietary fibers, minerals and vitamin contents are considered as the major components of otic stresses disturb and distinctly change these grain components and the quality of food  grain composition that help to determine the quality of food legumes [4]. Abiotic stresses legumes. Heat stress has a damaging effect on the seed yield and the quality of food leg‐ disturb and distinctly change these grain components and the quality of food legumes. umes as the process of entire seed setting such as the development of a male and female  Heat stress has a damaging effect on the seed yield and the quality of food legumes as the gametophyte, fertilization and the development of seed is sensitive to heat stress [5]. Cold  process of entire seed setting such as the development of a male and female gametophyte, stress is one of the limiting factors for the early sowing of food legumes, as it disrupts the  fertilization and the development of seed is sensitive to heat stress [5]. Cold stress is one membrane stability and whole‐grain contents of food legumes [1]. Food legumes are com‐ of the limiting factors for the early sowing of food legumes, as it disrupts the membrane monly grown in rainfed production systems. As a result, food legumes are more suscep‐ stability and whole-grain contents of food legumes [1]. Food legumes are commonly grown tible to drought and the intensity and frequency of drought have been predicted to in‐ in rainfed production systems. As a result, food legumes are more susceptible to drought crease  according  to  global  climate  models.  Drought  affects  crop  growth  and  becomes  and the intensity and frequency of drought have been predicted to increase according to more devastating during reproduction and grain filling, thus decreasing grain yield [6].  global climate models. Drought affects crop growth and becomes more devastating during The productivity of grain legumes is frequently affected by terminal drought.  reproduction and grain filling, thus decreasing grain yield [6]. The productivity of grain Food legumes are highly sensitive to salinity stress, particularly at the seedling and  legumes is frequently affected by terminal drought. developmental stages [7]. Salinity stress declines water potential due to abundance in Na   Food legumes are highly sensitive to salinity stress, particularly at the seedling and and Cl ions in plant tissues resulting in stomatal closure, photosynthesis decline and in‐ developmental stages [7]. Salinity stress declines water potential due to abundance in Na hibition of growth those ultimately affect the grain composition, yield and quality of food  and Cl ions in plant tissues resulting in stomatal closure, photosynthesis decline and legumes [8]. Heavy metal is one of the major constraints in food legume production and  inhibition of growth those ultimately affect the grain composition, yield and quality of food the maintenance of grain quality. Heavy metals considerably diminish the grain protein  legumes [8]. Heavy metal is one of the major constraints in food legume production and content due to a lowered N uptake and supply to the emerging grains [9]. Ultra‐structural  the maintenance of grain quality. Heavy metals considerably diminish the grain protein and anatomical changes in plant cells take place due to the uptake and accumulation of  content due to a lowered N uptake and supply to the emerging grains [9]. Ultra-structural and heavy anatomical  metals atc hanges higher co inncentrations plant cells take  as pla place nt phys due iolog to theicuptake al activand ities accumulation such as nutrition of   heavy distrib metals ution, nitro at higher gen fix concentrat ation, enzymatic ions as plant  activiphysiological ty, photosynthesis, activities  funcsuch tion of as p nutrition ollen and  distribution, the nutritional nitr qua ogen lity fixation,  of seedsenzymatic  are adversactivity ely affect , photosynthesis, ed by heavy meta function l stressof [10 pollen ]. Reseand arch  the nutritional quality of seeds are adversely affected by heavy metal stress [10]. Research is is needed on the impact of abiotic stresses on food legume grain composition and quality  needed for  deve onlothe ping impact   progra ofms abiotic   to  improve stresses on thefood   grain legume   qualitgrain y  as  well composition   as  resist and ance quality   to  abiot foric  developing programs to improve the grain quality as well as resistance to abiotic stresses stresses  to  ensure  the  adequate  global  supply  of  food  legumes  as  the  most  significant  to ensure the adequate global supply of food legumes as the most significant source of source of vegetable proteins.  vegetable proteins. 2. Food Legumes  2. Food Legumes Mainly three types of legumes are used, namely forage legumes, food legumes and  Mainly three types of legumes are used, namely forage legumes, food legumes and cover crops, whereas food legumes are mostly used as a rich source of protein [1]. Most  cover crops, whereas food legumes are mostly used as a rich source of protein [1]. Most of the legume crops are consumed as food in the mature and dry seed form [11]. Food  of the legume crops are consumed as food in the mature and dry seed form [11]. Food legumes inhabit a minimum part of the cultivable land of the world, which is mostly con‐ legumes inhabit a minimum part of the cultivable land of the world, which is mostly quered by major cereal crops (e.g., rice, wheat, maize) [12]. The protein demands of the  conquered by major cereal crops (e.g., rice, wheat, maize) [12]. The protein demands of the growing population can be fulfilled by the insertion of food legumes into cropping sys‐ growing population can be fulfilled by the insertion of food legumes into cropping systems. tems. Food legumes play an important and diverse role as a nutritious staple of poor peo‐ Food legumes play an important and diverse role as a nutritious staple of poor people ple around the world as an inexpensive source of protein, complex carbohydrates, vita‐ around the world as an inexpensive source of protein, complex carbohydrates, vitamins mins and fiber [13]. Soybeans, peas, peanuts, lentils, different types of beans and chick‐ and fiber [13]. Soybeans, peas, peanuts, lentils, different types of beans and chickpeas are peas are commonly used food legumes (Table 1).  commonly used food legumes (Table 1). Table 1. Different kind of food legumes and their uses in human nutrition.  Table 1. Different kind of food legumes and their uses in human nutrition. Sources of Images  Sl.  Common  Sl. Common Scientific Sources of Images Picture  Scientific Name  Major Use  [Accessed on 22 May  Picture Major Use No  Name  No Name Name [Accessed on 22 May 2021] 2021]  Mainly used for soybean oil. https://zh-prod-1cc738ca-7d3 https://zh‐prod‐ Mainly used for soybean oil. Additionally  Additionally used as food b-4a72-b792-20bd8d8fa069 1cc738ca‐7d3b‐4a72‐ used as food products such as soymilk,  products such as soymilk, soy .storage.googleapis.com/s3fs- b792‐20bd8d8fa069.stor‐ 1.  Soybean  Glycine max  soy sauce, some beverages and whipped  1. Soybean Glycine max sauce, some beverages and public/styles/max_650$\ age.googleapis.com/s3fs‐ whipped toppings, toppings,  soy‐fortified soy-fortified  pastas, breakfast times$650/public/2020-   08/ pub‐ pastas, breakfast cereals and soybeans.jpg?itok=DuPfsOBn cereals and bars [14].  lic/styles/max_650×650/p bars [14]. (accessed on 22 May 2021)   Agronomy 2021, 11, 2238 3 of 24 Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  Agronomy    2021, 11, x FOR PEER REVIEW  3  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  Agronomy    2021, 11, x FOR PEER REVIEW  3  of  23   Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  Table 1. Cont. ublic/2020‐08/soy‐ ublic/2020‐08/soy‐ ublic/2020‐08/soy‐ ublic/2020‐08/soy‐ beans.jpg?itok ublic/2020‐08/soy =DuP‐‐ ublic/2020‐08/soy‐ ublic/2020‐08/soy‐ beans.jpg?itok=DuP‐ Sl. Common Scientific Sources of Images beans.jpg?itok=DuP‐ beans.jpg?itok=DuP‐ beans.jpg?itok ublic/2020 fsOBn‐08/soy   =DuP‐‐ Picture Major Use ublic/2020‐08/soy‐ beans.jpg?itok=DuP‐ beans.jpg?itok=DuP‐ fsOBn  No Name Name [Accessed on 22 May 2021] fsOBn  fsOBn  beans.jpg?itok fsOBn =DuP‐ https://ag‐ beans.jpg?itok=DuP‐ fsOBn  fsOBn  https://ag‐ https://ag‐ https://ag fsOBn  ‐ tfoods.co https://ag .za/wp‐‐con‐ fsOBn  https://ag https://ag‐‐ Used as a dry pulse and also as a https://agtfoods.co.za/wp- green  tfoods.co.za/wp‐con‐ tfoods.co.za/wp‐con‐ tfoods.co.za/wp‐con‐ 2.  Chickpea  Cicer arietinum  Used as a dry pulse and also as a green  tfoods.co https://ag tent/up .za/w‐p‐‐con‐ https://ag‐ Used as a dry pulse and also as a green  tfoods.co.za/wp‐con‐ Cicer Used Used as aasdry  a dry pulse  pulse and and also alas so as a green content/uploads/2018/06/   tfoods.co.za/wp‐con‐ 2.  Chickpea  Cicer arietinum  Used as a dry vegetable  pulse and  [14, al 15s]o.  as a green  tent/up‐ 2.  Chickpea  Cicer arietinum  Used as a dry pulse and also as a green  tent/up‐ 2. 2.  Chic Chickpea kpea  Cicer arietinum  Used as a dry pulse and also as a green  tent/up‐ 2.  Chickpea  Cicer arietinum  vegetable [14,15].  tfoods.co loads/2018/06/ tent/up .za/w‐pDesi ‐con‐‐ tfoods.co.za/wp‐con‐ 2.  Chickpea  Cicer arietinum  arietinum  a green vegetable vegetable [14 [,1 154,].15].  Desi-Chickpea_600x600_1.jpg tent/up‐ 2.  Chickpea  Cicer arietinum  vegetable [14,15].  tent/up‐ Used as a dry vegetable  pulse and  [14, al 15s]o.  as a green  loads/2018/06/Desi‐ Used as a dry pulse and also as a green  vegetable [14,15].  loads/2018/06/Desi‐ vegetable [14,15].  loads/2018/06/Desi‐ 2.    Chickpea  Cicer arietinum  Chickpea_600x600_1.jpg tent/up‐   loads/2018/06/Desi‐ 2.  Chickpea  Cicer arietinum  (accessed on 22tent/up May 2021) ‐ loads/2018/06/Desi‐ loads/2018/06/Desi‐   vegetable [14,15].  Chickpea_600x600_1.jpg  vegetable [14,15].    Chickpea_600x600_1.jpg    Chickpea_600x600_1.jpg    loads/2018/06/Desi‐ Chickpea_600x600_1.jpg https://www.allergicliv‐  loads/2018/06/Desi‐    Chickpea_600x600_1.jpg  Chickpea_600x600_1.jpg  Used both fresh and dried. Peas are rich  https://www.allergicliv‐ https://www.allergicliv‐   Chickpea_600x600_1.jpg https://www.allergicliv‐  Used both fresh and dried. Peas are rich  ihttps://www.al ng.com/wp‐content/u lergiclivp‐‐ Used both fresh and dried. Peas https://www Chickpea_600x600_1.jpg .allergicliving.   Used both fresh and dried. Peas are rich  https://www.allergicliv‐ Used both fresh and dried. Peas are rich  https://www.allergicliv‐ 3.  Pea  Pisum sativum  inUsed  protein,  both chol  fresesterol h and drie ‐freed. and  Peas have  are  good rich  ing.com/wp‐content/up‐ Used both fresh and dried. Peas are rich  ing.com/wp‐content/up‐ Used both fresh and dried. Peas are rich  ing.com/wp‐content/up‐ 3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good  https://www.al loads/2019/09/lerg Green icli‐v‐ Pisum are rich in protein, com/wp-in content/uploads/20 g.com/wp‐content/up‐ https://www.allergicliv‐ 3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good ing.com/wp‐content/up‐ 3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good  ing.com/wp‐content/up‐ Used amounts both fres hof and  die tdrie ary d. fiber  Pe as [14].  are  rich  loads/2019/09/Green‐ 3.3.  Pea Pea  Pisum sativum  in protein, cholesterol‐free and have good  Used both fresh and dried. Peas are rich  3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good  loads/2019/09/Green‐ 3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good  loads/2019/09/Green‐ sativum cholesterol-free and have good 19/09/Gri een- ng.cpeas.jpg om/wp peas.jpg ‐co (accessed ntent/u   p‐   amounts of dietary fiber [14].  loads/2019/09/Green‐ ing.com/wp‐content/up‐ amounts of dietary fiber [14].  loads/2019/09/Green‐ amounts of dietary fiber [14].  loads/2019/09/Green‐ 3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good  amounts of dietary fiber [14].  peas.jpg  3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good  amounts of dietary fiber [14].  peas.jpg    amounts amounts of dietary  of die fiber tary [14 fiber ].  [14].  on 22 Maypeas.jpg 2021)     loads/2019/09/Green‐ Groundnuts contains high level of mono‐ peas.jpg  loads/2019/09/Green‐ peas.jpg    peas.jpg    amounts of dietary fiber [14].  Groundnuts contains high level of mono‐ amounts of dietary fiber [14].  Groundnuts contains high level of mono‐ Groundnuts contains high level of mono‐ peas.jpg    Gunsaturated roundnuts contains  and polyunsaturated  high level of mono  fatty ‐ Groundnuts contains high level peas.jpg  Groundnuts contains high level of mono‐ Groundnuts contains high level of mono‐ unsaturated and polyunsaturated fatty  https://www.nutstop.co unsaturated and polyunsaturated fatty  unsaturated and polyunsaturated fatty  4.  Groundnut  Arachis hypogaea  G acids roundnuts  that may  contains  keep the  high  heart  lev ehealthy l of mono  by‐  https://www.nutstop.co unsaturated of monounsaturated  and polyunsaturated and  fatty  Groundnuts contains high level of mono‐ unsaturated and polyunsaturated fatty  https://www.nutstop.co unsaturated and polyunsaturated fatty  https://www.nutstop.co m/how‐peanuts‐grow/  4.  Groundnut  Arachis hypogaea  acids that may keep the heart healthy https://www  by  https://www.nutstop.co .nutstop.com/ 4.  Groundnut  Arachis hypogaea  acids that may keep the heart healthy by  https://www.nutstop.co 4.  Groundnut  Arachis hypogaea  acids that may keep the heart healthy by  https://www.nutstop.co Arachis polyunsaturated munsaturated aintaining lower  and fatty polyunsaturated  blood acids chol thatesterol fatty  lev ‐ 4.  Groundnut  Arachis hypogaea  acids that may keep the heart healthy by  m/how‐peanuts‐grow/  unsaturated and polyunsaturated fatty  4.  Groundnut  Arachis hypogaea  acids that may keep the heart healthy by  m/how‐peanuts‐grow/  4.  Groundnut  Arachis hypogaea  acids that may keep the heart healthy by  m/how‐peanuts‐grow/  4. Groundnut how-peanuts- https://www.nutstop.co grow/ (accessed maintaining lower blood cholesterol lev‐ m/how‐peanuts‐grow/    https://www.nutstop.co maintaining lower blood cholesterol lev‐ m/how‐peanuts‐grow/  hypogaea may maintaining keep the heart lowerhealthy  blood chol by esterol lev‐ m/how‐peanuts‐grow/  4.    Groundnut  Arachis hypogaea  acids that may keep the heart healthy by    maintaining lower els blood  [16].  cholesterol lev‐ 4.    Groundnut  Arachis hypogaea  acids that may keep the heart healthy by  maintaining lower blood cholesterol lev‐ maintaining lower blood cholesterol levon ‐ 22 May 2021)   m/how‐peanuts‐grow/    els [16].  m/how‐peanuts‐grow/  maintaining lower blood els [16].  maintaining lower els blood  [16].  cholesterol lev‐ els [16].  https://jiraphas‐ maintaining lower blood cholesterol lev‐ els [16].    els [16].  Red lentils contain plenty of protein and  https://jiraphas‐ cholesterol levels [16]. https://jiraphas‐ els [16].  https://jiraphas‐ erviceltd.com/wp‐con‐ Red lentils contain plenty of protein and  https://jiraphas‐ els [16].  Red lentils contain plenty of protein and  https://jiraphas‐ Red lentils contain plenty of protein and  https://jiraphas‐ fiber; thus, it is called the meat of poor  Red lentils contain plenty of protein and  erviceltd.com/wp‐con‐ Red lentils contain plenty of protein and  erviceltd.com/wp‐con‐ Red lentils contain plenty of protein and  erviceltd.com/wp‐con‐ Red lentils contain plenty of https://jiraphas‐ 5.  Red lentil  Lens culinaris  fiber; thus, it is called the meat of poor  ervicelttent/up d.com/wp ‐ ‐con‐ https://jiraphas‐ erviceltd.com/wp‐con‐ fiber; thus, it is called the meat of poor  erviceltd.com/wp‐con‐ Red fiber; lenti  thus, ls con  it istain  calle  plenty d the  of meat  pro of tei poor n and   5.  Red lentil  Lens culinaris  fiber; people.  thus,  It  isit  ais h calle ealthier d the cho  meat ice  for of poor  the   tent/up‐ Red lentils contain plenty of protein and  fiber; thus, it is called the meat of poor  5.  Red lentil  Lens culinaris  prfiber; otein thus, and fiber; it is calle thus, d it the is meat of https://jiraphaserviceltd.com/  poor  tent/up‐ 5.  Red lentil  Lens culinaris  ervicelttent/up d.com/wp ‐ ‐con‐ 5.  Red lentil  Lens culinaris  people. It is a healthier choice for the  loads/2020/10/ tent/up‐7RLT1‐ erviceltd.com/wp‐con‐ 5.  Red lentil  Lens culinaris  tent/up‐ 5.  Red lentil  Lens culinaris  people. It is a healthier choice for the  tent/up‐ fiber; people.  thus,  It is it  ais h calle ealthier d the cho  meat ice  for of poor  the   people. heart instead  It is a  of he processed althier cho meat ice for [14].  the   loads/2020/10/7RLT1‐ fiber; thus, it is called the meat of poor  called people. the meat  It is of a hpoor ealthier people.  choice for wp- the content   /uploads/2020/10/ people. It is a healthier choice for the  loads/2020/10/7RLT1‐ 5.  Red lentil  Lens culinaris  loads/2020/10/ tent/up‐7RLT1‐ heart instead of processed meat [14].  loads/2020/10/ 1.jpg  7RLT1‐ 5. 5.  Red Red lenti lentil l  Len Lenss culinaris culinaris  tent/up‐ heart instead of processed meat [14].  loads/2020/10/ loads/2020/10/7RLT1 7RLT1‐‐ heart instead of processed meat [14].  people. heart instead  It is a  of he althier processed  cho meat ice for [14].  the   1.jpg    It ispeople. a healthier  It is achoice  healthier for the choice for7RL  theT1-   1.jpg (accessed on 22 heart heart  instead instead  of of  processed processed  meat meat  [14]. [14].   1.jpg    1.jpg    loads/2020/10/ https://www.grain 1.jpg  7RLT1‐‐   loads/2020/10/7RLT1‐ 1.jpg    1.jpg    heart instead of processed meat [14].  heart instead of processed meat May https://www.grain 2021) ‐ heart instead of processed meat [14].  https://www.grain‐ https://www.grain‐ 1.jpg    It is a rich source of protein and a good  star.com https://www.grain .au/wp‐con‐‐ 1.jpg    https://www.grain‐ https://www.grain‐ [14]. It is a rich source of protein and a good  star.com.au/wp‐con‐ It is a rich source of protein and a good  star.com.au/wp‐con‐ It is a rich source of protein and a good  star.com https://www.grain .au/wp‐con‐‐ 6.  Green lentil  Lens culinaris  supplement It is a rich sou  forrce meat.  of protein  It reduces  and  the a good  risk   star.com tent/up .au/w‐p‐con‐ https://www.grain‐ It is a rich source of protein and a good  star.com.au/wp‐con‐ It is a rich source of protein and a good  star.com.au/wp‐con‐ 6.  Green lentil  Lens culinaris  supplement for meat. It reduces the risk  tent/up‐ It is a rich source of protein and https://www.grainstar.com. 6.  Green lentil  Lens culinaris  supplement for meat. It reduces the risk  tent/up‐ 6.  Green lentil  Lens culinaris  supplement for meat. It reduces the risk  tent/up‐ 6.  Green lentil  Lens culinaris  supplement It is a richof sou  heart  forrce meat.   di ofs protein e ase It reduces s [17]  and .    the a good  risk   loads/2018/05/r star.com tent/up .au/w‐pichlea ‐con‐‐ It is a rich source of protein and a good  star.com.au/wp‐con‐ 6.6.   Green Green  lenti lentill   Len Lenss  culinaris culinaris   supplement supplement  for for  meat. meat.  ItIt  reduces reduces  the the  risk risk   tent/up tent/up‐‐ of heart diseases [17].  loads/2018/05/richlea‐ a good supplement for meat. It au/wp-content/uploads/2018 of heart diseases [17].  loads/2018/05/richlea‐ of heart diseases [17].  loads/2018/05/richlea‐ 6.  Green lentil  Lens culinaris  supplement of heart  for meat.  dise ase It reduces s [17].   the risk  loads/2018/05/r lentils tent/up .jpg‐i chlea‐ 6. Green lentil Lens culinaris 6.    Green lentil  Lens culinaris  supplement for meat. It reduces the risk  tent/up‐ of heart diseases [17].  loads/2018/05/richlea‐ of heart diseases [17].  loads/2018/05/richlea‐   reduces the risk of heart /05/richlea-lentils.jpg lentils(accessed .jpg  lentils.jpg  lentils.jpg     of heart diseases [17].  loads/2018/05/r lentils.jpgi chlea‐ https://fthmb.tqn.com/2J of heart diseases [17].  loads/2018/05/richlea‐ lentils.jpg  diseases [17]. on 22 Maylentils 2021).jpg  https://fthmb.tqn.com/2J https://fthmb.tqn.com/2J https://fthmb.t lentils.jpg qn.com/2J   https://fthmb.t dDB8mU qn.com/2J _‐ lentils.jpg  https://fthmb.tqn.com/2J https://fthmb.tqn.com/2J dDB8mU_‐ https://fthmb.tqn.com/ dDB8mU_‐ dDB8mU_‐ Brown lentils are a good source of nutri‐ https://fthmb.t S9vxjJ6bik4O763sg=/960 dDB8mU qn.com/2J _‐ https://fthmb.tqn.com/2J dDB8mU_‐ dDB8mU_‐ Brown lentils are a good source of nutri‐ S9vxjJ6bik4O763sg=/960 Brown lentils are a good source 2JdDB8mU_-S9vxjJ6bik4O763 Brown lentils are a good source of nutri‐ S9vxjJ6bik4O763sg=/960 Brown lentils are a good source of nutri‐ S9vxjJ6bik4O763sg=/960 7.  Brown lentil  Lens culinaris  ents Brown  and lentil  its lo s w are calori  a good e content  source and  of nutri  high‐  S9vxjJ6bik4O763sg=/960 x0/filters:no_u dDB8mU_‐ p‐ dDB8mU_‐ Brown lentils are a good source of nutri‐ S9vxjJ6bik4O763sg=/960 Brown lentils are a good source of nutri‐ S9vxjJ6bik4O763sg=/960 7.  Brown lentil  Lens culinaris  ofents nutrients  and its and  low its calori lowe calorie  content and high sg=/960x0/filters:   x0/filters:no_up‐ 7.  Brown lentil  Lens culinaris  ents and its low calorie content and high  x0/filters:no_up‐ 7. 7.  Brown Brown lentil lentil  Lens Lens culinaris culinaris  ents and its low calorie content and high  x0/filters:no_up‐ 7.  Brown lentil  Lens culinaris  ents Brown fiber  and lentil   helps its lo s w are  healthy  calori  a good e dig  content  sou estion rce and   of [16].  nutri  high   ‐  S9vxjJ6bik4O763sg=/960 scale()/1704605 x0/filters:no_u95 p‐‐ Brown lentils are a good source of nutri‐ S9vxjJ6bik4O763sg=/960 7.  Brown lentil  Lens culinaris  ents and its low calorie content and high  x0/filters:no_up‐ 7.  Brown lentil  Lens culinaris  content ents and and  its high low calori fiber helps e content and no_upscale high  x()/170460595- 0/filters:no_up‐ fiber helps healthy digestion [16].  scale()/170460595‐ fiber helps healthy digestion [16].  scale()/170460595‐ fiber helps healthy digestion [16].  scale()/170460595‐ 7.  Brown lentil  Lens culinaris  ents and its low calorie content and high  56a30edc5f9b5 x0/filters:no_u 8b7d0d03 p‐   fiber helps healthy digestion [16].  scale()/170460595‐ 7.  Brown lentil  Lens culinaris  ents and its low calorie content and high  x0/filters:no_up‐ healthy fiber helps digestion  healthy [16 dig ]. estion 56a30edc5f9b58b7d0d03627.jpg [16].  scale()/170460595‐   fiber helps healthy digestion [16].  scale()/170460595‐ 56a30edc5f9b58b7d0d03 56a30edc5f9b58b7d0d03   56a30edc5f9b58b7d0d03   fiber helps healthy digestion [16].  scale()/170460595‐ 56a30edc5f9b5 627.jpg8 b7d0d03 fiber helps healthy digestion [16]. (accessed   scale()/1704605 on 22 May 2021) 95‐ 56a30edc5f9b58b7d0d03 56a30edc5f9b58b7d0d03   627.jpg  627.jpg  56a30edc5f9b5 627.jpg8 b7d0d03 https://ag 627.jpg ‐ 56a30edc5f9b58b7d0d03 627.jpg  627.jpg  https://ag‐ Black lentils are the most https://agtfoods.co.za/wp- https://ag‐ https://ag 627.jpg ‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ https://ag‐ 627.jpg  https://ag‐ https://ag‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ flavorful lentils and are quite content/uploads/2018/06/ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ 8.  Black lentil  Lens culinaris  and are quite different from other lentils,  https://ag tent/up‐‐ 8. Black lentil Lens culinaris Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ https://ag‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ 8.  Black lentil  Lens culinaris  difand ferent  arefr quite om othe  different r lentils, from used other Black-  lentilLentils_3.jpg s,  tent/up (accessed ‐ on 8.  Black lentil  Lens culinaris  and are quite different from other lentils,  tent/up‐ 8.  Black lentil  Lens culinaris  and are quite different from other lentils,  tent/up‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ 8.  Black lentil  Lens culinaris  and are us ed quite  in  sala different ds and from  sou potsher  [17]. lentil   s, loads/2018/06/ tent/up Black ‐ ‐Len‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ 8.  Black lentil  Lens culinaris  and are quite different from other lentils,  tent/up‐ 8.  Black lentil  Lens culinaris  and in salads  are quite and different soups [17 from ].  other lentils, 22 May 2021) tent/up‐   used in salads and soups [17].  loads/2018/06/Black‐Len‐ used in salads and soups [17].  loads/2018/06/Black‐Len‐ 8.  Black lentil  Lens culinaris  and are us ed quite  in  sala different ds and from  sou pots her [17]. lentil   s, loads/2018/06/ tent/up Black ‐ ‐Len‐   used in salads and soups [17].  loads/2018/06/ tils_3.jpg Black   ‐Len‐ 8.  Black lentil  Lens culinaris  and are quite different from other lentils,  tent/up‐ used in salads and soups [17].  loads/2018/06/Black‐Len‐   used in salads and soups [17].  loads/2018/06/Black‐Len‐   tils_3.jpg    tils_3.jpg    Contains essential amino acids tils_3.jpg  Contains used essential  in salads amino  and sou  acids ps  [and 17].  anti‐ loads/2018/06/ tils_3.jpg Black   ‐Len‐ used in salads and soups [17].  loads/2018/06/Black‐Len‐ tils_3 tils_3.jpg .jpg   Contains essential amino acids and anti‐ and Contains antioxidants  essential that amino help acids to  and anti‐ Contains essential amino acids and anti‐ tils_3.jpg  oxidants Contains that  essential  help  to amino  neut ralize acids  and free  anti radi‐‐ https://www.espaceagro. tils_3.jpg  Contains essential amino acids and anti‐ Contains essential amino acids and anti‐ oxidants that help to neutralize free radi‐ https://www.espaceagro. neutralize free radicals, thus https://www.espaceagro.com/ oxidants that help to neutralize free radi‐ https://www.espaceagro. oxidants Contains that  essential  help  to amino  neut ralize acids  and free  anti radi‐‐ https://www.espaceagro. 9.  Mung bean  Vigna radiata  cals oxidants , thus  that work he ing lp  against to neut ralize chronic  free inf radi lam‐‐https://www.espaceagro. com/_AF‐ Contains essential amino acids and anti‐ oxidants that help to neutralize free radi‐ https://www.espaceagro. oxidants that help to neutralize free radi‐ https://www.espaceagro. 9.  Mung bean  Vigna radiata  cals, thus working against chronic inflam‐ com/_AF‐ 9. Mung bean Vigna radiata working against chronic _AFFAIRE/188567.jpg (accessed 9.  Mung bean  Vigna radiata  cals, thus working against chronic inflam‐ com/_AF‐ 9.  Mung bean  Vigna radiata  cals oxidants , thus  that work he ing lp  against to neut ralize chronic  free inf radi lam‐‐https://www.espaceagro. com/_AF‐ 9.  Mung bean  Vigna radiata  cals mati , thus on, heart  work di ing se against ase, cancers  chro nic and inf  other lam ‐ FAIRE/188567.j com/_AF‐ pg  oxidants that help to neutralize free radi‐ https://www.espaceagro. 9.  Mung bean  Vigna radiata  cals, thus working against chronic inflam‐ com/_AF‐ 9.  Mung bean  Vigna radiata  cals, thus working against chronic inflam‐ com/_AF‐ inflammation, mation, heart di heart sease disease, , cancers and other on 22FAIRE/188567.j May 2021) pg  mation, heart disease, cancers and other  FAIRE/188567.jpg  mation, heart disease, cancers and other  FAIRE/188567.jpg  9.  Mung bean  Vigna radiata  cals mati , thus on, heart  work disea  di ing ses against ase es [14,18] , cancers  chr .  o nic and inf other lam ‐ FAIRE/188567.j com/_AF‐ pg  9.  Mung bean  Vigna radiata  cals, thus working against chronic inflam‐ com/_AF‐ mation, heart disease, cancers and other  FAIRE/188567.jpg  cancers mation,and  heart other  disediseases ase, cancers and other  FAIRE/188567.jpg  diseases [14,18].  diseases [14,18].    diseases [14,18].    mation, heart disea  disesase es [14,18] , cancers .   and other  FAIRE/188567.jpg    https://ag‐ mation, heart disease, cancers and other  FAIRE/188567.jpg  [14disea ,18]. ses [14,18].     diseases [14,18].  https://ag‐ https://ag‐ diseases [14,18].  https://ag‐   Improves digestion and its adequate iron  tfoods.co https://ag .za/wp‐‐con‐ diseases [14,18].    https://ag‐ https://ag‐ Improves digestion and its adequate iron  tfoods.co.za/wp‐con‐ Improves digestion and its Improves digestion and its adequate iron  tfoods.co.za/wp‐con‐ Improves digestion and its adequate iron  tfoods.co.za/wp‐con‐ Black eyed  content Improves  helps  diges tot iprevent on and  itane s adequate mia. Ithttps://agtfoods.co.za/wp-  is  iron rich   tfoods.co https://ag tent/up .za/w‐p‐‐con‐ https://ag‐ Im Improves proves  di diges gesttiioonn  and and  ititss  adequate adequate  iron iron   tfoods.co tfoods.co.za/w .za/wpp‐‐con con‐‐ 10.  Black eyed  Vigna unguiculata  adequate content helps iron content to prevent helps  ane tomia. It is rich  tent/up‐ Black eyed  content helps to prevent anemia. It is rich  tent/up‐ Black eyed  content helps to prevent anemia. It content/uploads/2018/06/ is rich  tent/up‐ 10.  Black bean  eyed      Vigna unguiculata  in content Im potassium proves helps  diges  tha  tot itprevent o helps n and to  itane  sm adequate amintain ia. It  islower   iron rich    tfoods.co loads/2018/06/ tent/up .za/w‐p Black ‐con‐‐ Improves digestion and its adequate iron  tfoods.co.za/wp‐con‐ 10.  Black eyed  Vigna unguiculata  content helps to prevent anemia. It is rich  tent/up‐ 10.  Black Black eyed eyed  Vigna V unguiculata igna   pr content event helps anemia.  to prevent It is rich ane in mia. It is rich  tent/up‐ 10.  bean   Vigna unguiculata  in potassium that helps to maintain lower  loads/2018/06/Black‐ 10. 10.  bean   Vigna unguiculata  in potassium that helps to maintain lower Black-  Eyed- loads/2018/06/ Beans_600 Black‐ 10.  bean   Vigna unguiculata  in potassium that helps to maintain lower  loads/2018/06/Black‐ Black bean  eyed      in content  potassium  helps blood  tha  to pre  prevent t helps ssure to  ane [14,19]  mamintain ia..  It  islower  rich   loads/2018/06/ Eyedtent/up ‐Beans_60 ‐Black 0  ‐ Black eyed  content helps to prevent anemia. It is rich  tent/up‐ bean bean   unguiculata in potassium potassium that that helps helps to to maintain lower  loads/2018/06/Black‐ bean   in potassium that helps to maintain lower  loads/2018/06/Black‐ 10.    Vigna unguiculata  blood pressure [14,19].  Eyed‐Beans_600  10.  Vigna unguiculata  x600_1.jpg (accessed on 22 May blood pressure [14,19].  Eyed‐Beans_600  blood pressure [14,19].  Eyed‐Beans_600  bean   in potassium that helps to maintain lower  loads/2018/06/ x600_1.jpgBlack   ‐   blood pressure [14,19].  Eyed‐Beans_600  bean   maintain in potassium lower tha blood t helps pr essur to ma eintain lower  loads/2018/06/Black‐   blood pressure [14,19].  Eyed‐Beans_600    blood pressure [14,19].  Eyed‐Beans_600    x600_1.jpg  2021)   x600_1.jpg    x600_1.jpg  blood pressure [14,19].  Eyed‐Beans_600  x600_1.jpg  [14,19]. blood pressure [14,19].  Eyed‐Beans_600  x600_1.jpg  x600_1.jpg  It is a source of dietary fiber that helps to  https://www.only‐ x600_1.jpg  It is a source of dietary fiber that helps to  https://www.only‐ x600_1.jpg  It is a source of dietary fiber that helps to  https://www.only‐ It is a source of dietary fiber that helps to  https://www.only‐ 11.  Fayot bean  Phaseolus vulgaris  Itprevent  is a sou rchole ce ofs dietary terol absorption  fiber that and  helps in ‐to  foods.net/diffe https://www.orent nly‐‐ ItIt  isis  aa  sou sourrce ce  of of  dietary dietary  fifibbeerr  tha thatt  helps helps  to to   https://www.o https://www.onnly ly‐‐ 11.  Fayot bean  Phaseolus vulgaris  prevent cholesterol absorption and in‐ foods.net/different‐ 11.  Fayot bean  Phaseolus vulgaris  prevent cholesterol absorption and in‐ foods.net/different‐ 11.  Fayot bean  Phaseolus vulgaris  prevent cholesterol absorption and in‐ foods.net/different‐ 11.  Fayot bean  Phaseolus vulgaris  Itprevent  is a crease sou rchole ce the  ofs  dietary fat terol el im absorption  fi ination ber tha [14]. t  and helps   in ‐to  types foods.net/diffe https://www.o ‐of‐beans.html rent nly‐‐  It is a source of dietary fiber that helps to  https://www.only‐ 11.  Fayot bean  Phaseolus vulgaris  prevent cholesterol absorption and in‐ foods.net/different‐ 11.  Fayot bean  Phaseolus vulgaris  prevent cholesterol absorption and in‐ foods.net/different‐ crease the fat elimination [14].  types‐of‐beans.html  crease the fat elimination [14].  types‐of‐beans.html  crease the fat elimination [14].  types‐of‐beans.html  11.  Fayot bean  Phaseolus vulgaris  prevent crease  chole  thes tfat erol el im absorption ination [14].  and  in‐ types foods.net/diffe ‐of‐beans.html rent‐  11.    Fayot bean  Phaseolus vulgaris  prevent cholesterol absorption and in‐ foods.net/different‐ crease the fat elimination [14].  types‐of‐beans.html  crease the fat elimination [14].  types‐of‐beans.html    crease the fat elimination [14].  types‐of‐beans.html  crease the fat elimination [14].  types‐of‐beans.html    Agronomy 2021, 11, x FOR PEER REVIEW  3  of  23  ublic/2020‐08/soy‐ beans.jpg?itok=DuP‐ fsOBn  https://ag‐ tfoods.co.za/wp‐con‐ Used as a dry pulse and also as a green  2.  Chickpea  Cicer arietinum  tent/up‐ vegetable [14,15].  loads/2018/06/Desi‐ Chickpea_600x600_1.jpg  https://www.allergicliv‐ Used both fresh and dried. Peas are rich  ing.com/wp‐content/up‐ 3.  Pea  Pisum sativum  in protein, cholesterol‐free and have good  loads/2019/09/Green‐ amounts of dietary fiber [14].  peas.jpg  Groundnuts contains high level of mono‐ unsaturated and polyunsaturated fatty  https://www.nutstop.co 4.  Groundnut  Arachis hypogaea  acids that may keep the heart healthy by  m/how‐peanuts‐grow/  maintaining lower blood cholesterol lev‐ els [16].  https://jiraphas‐ Red lentils contain plenty of protein and  erviceltd.com/wp‐con‐ fiber; thus, it is called the meat of poor  5.  Red lentil  Lens culinaris  tent/up‐ people. It is a healthier choice for the  loads/2020/10/7RLT1‐ heart instead of processed meat [14].  1.jpg https://www.grain‐ It is a rich source of protein and a good  star.com.au/wp‐con‐ 6.  Green lentil  Lens culinaris  supplement for meat. It reduces the risk  tent/up‐ of heart diseases [17].  loads/2018/05/richlea‐ lentils.jpg  https://fthmb.tqn.com/2J dDB8mU_‐ Brown lentils are a good source of nutri‐ S9vxjJ6bik4O763sg=/960 7.  Brown lentil  Lens culinaris  ents and its low calorie content and high  x0/filters:no_up‐ fiber helps healthy digestion [16].  scale()/170460595‐ 56a30edc5f9b58b7d0d03 627.jpg https://ag‐ Black lentils are the most flavorful lentils  tfoods.co.za/wp‐con‐ 8.  Black lentil  Lens culinaris  and are quite different from other lentils,  tent/up‐ used in salads and soups [17].  loads/2018/06/Black‐Len‐ tils_3.jpg  Contains essential amino acids and anti‐ oxidants that help to neutralize free radi‐ https://www.espaceagro. 9.  Mung bean  Vigna radiata  cals, thus working against chronic inflam‐ com/_AF‐ mation, heart disease, cancers and other  FAIRE/188567.jpg  Agronomy 2021, 11, 2238 4 of 24 diseases [14,18].  https://ag‐ Improves digestion and its adequate iron  tfoods.co.za/wp‐con‐ Table 1. Cont. Black eyed  content helps to prevent anemia. It is rich  tent/up‐ 10.  Vigna unguiculata  bean   in potassium that helps to maintain lower  loads/2018/06/Black‐ Sl. Common Scientific Sources of Images blood pressure [14,19].  Eyed‐Beans_600  Picture Major Use No Name Name [Accessed on 22 May 2021] x600_1.jpg  Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23   Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23  It is a source of dietary fiber that Agronomy     2021, 11, x FOR PEER REVIEW  4  of  23  It is a source of dietary fiber that helps to  https://www.only‐ https://www.onlyfoods.net/ Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23   Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23  Phaseolus helps to prevent cholesterol Agronomy 11. 11.   2021, 11, x FOR PEER REFayot Fayot VIEW bean   bean  Phaseolus vulgaris  prevent cholesterol absorption and dif fer in‐ent-types- foods.net/diffe of-beans.html rent 4  of‐  23  Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23    vulgaris absorption and increase the fat (accessed on 22 May 2021) crease the fat elimination [14].  types‐of‐beans.html  elimination [14]. https://www.thedailyme https://www.thedailyme https://www.thedailyme https://www.th al.com/sites/ edailyme de‐ https://www.thedailyme al.com/sites/de‐ This bean has anticancer potential. It also  al.com/sites/de‐ https://www https://www.th .thedailymeal. edailyme This bean has anticancer potential. It also  This bean has anticancer potential. It also  fault/files/ al.com/sites/ slideshows/16 de‐ https://www.thedailyme https://www.thedailyme https://www.thedailyme al.com/sites/de‐ fault/files/slideshows/16 12.  Navy bean  Phaseolus vulgaris  This helps This bean  bean to lower  has has ant  diabete anticancer icancesr  risk pote and ntial. greater  Itcom/sites/default/files/  also   fault/files/slideshows/16 al.com/sites/de‐ This bean has anticancer potential. It also  12.  Navy bean  Phaseolus vulgaris  helps to lower diabetes risk and greater  12.  Navy bean  Phaseolus vulgaris  helps to lower diabetes risk and greater  fau70994/2173040/21 lt/files/slideshows/16 ‐ This bean has anticancer potential. It al.com/sites/ also  al.com/sites/ de‐ de‐ fault/files/ al.com/sites/ slideshows/16 de‐ Phaseolus potential. It also helps to lower slideshows/1670994/2173040/ 70994/2173040/21‐ 12.  Navy bean  Phaseolus vulgarThis is   bean helps  has to ant lower icagut nc ediabete  rhealth  potential. s [14].  risk It   also and  greater  70994/2173040/21‐ This bean has anticancer potential. It also  fault/files/slideshows/16 12.  Navy bean  Phaseolus vulgaris  This helps bean  to lower  has ant  diabete icancesr  risk pote and ntial. greater  It also   12.   Navy bean gut health [14].  gut health [14].  fault/files/navy_beans slid70994/2173040/21 eshows/16‐Thinkstock ‐ ‐ 12.  Navy bean  Phaseolus vulgaris  helps to lower diabetes risk and greater  fault/files/slideshows/16   vulgaris diabetes risk and greater gut 21- fau navy_beans- 70994/2173040/21 lt/files/slideshows/16 ‐ 12.    Navy bean  Phaseolus vulgaris  helps to lower diabetes risk and greater  gut health [14].  navy_beans navy_beans‐‐Thinkstock Thinkstock‐‐ 12.  Navy bean  Phaseolus vulgaris  helps to lower diabetes risk and greater  70994/2173040/21‐ 12.  Navy bean  Phaseolus vulgaris  helps to lower gut diabete  healths [14].  risk  and greater    70994/2173040/21‐ Photos‐494876324.jpg  navy_beans 70994/2173040/21 ‐Thinkstock ‐ ‐ gut health [14].    health [14]. ThinkstockPhotos-494876324. gut health [14].  navy_beans 70994/2173040/21 ‐Thinkstock ‐ ‐   Photos‐494876324.jpg  gut health [14].  Photos‐494876324.jpg  navy_beans‐Thinkstock‐ navy_beans‐Thinkstock‐ gut health [14].  navy_beans Photos‐494876 ‐Thinkstock 324.jpg ‐ jpg (accessed on 22 May 2021) navy_beans Photos‐494876 ‐Thinkstock 324.jpg ‐ Photos‐494876 Photos 324.jpg ‐494876   324.jpg  Photos‐494876324.jpg  Photos‐494876324.jpg  Protects the body from free radical dam‐ http://productkg.com/sit Protects the body from free radical dam‐ http://productkg.com/sit Protects the body from free radical dam‐ http://productkg.com/sit 13.  Red bean  Vigna umbellata  age that helps in controlling blood sugar  es/default/files/to‐ Protects Protects the the body body fr from om fr free ee radical http://pr  dam‐ http://produ oductkg.com/sites/ ctkg.com/sit Protects the body from free radical dam‐ http://productkg.com/sit Protects the body from free radical dam‐ http://productkg.com/sit 13.  Red bean  Vigna umbellata  age that helps in controlling blood sugar  es/default/files/to‐ 13.  Red bean  Vigna umbellata  age that helps in controlling blood sugar  es/default/files/to‐ Protects the body from free radical dam‐ http://productkg.com/sit Vigna radical damagelevel that s helps  [16]. in default/files/tomatnaya- matnaya‐fasoltalas_0.jpg  13.  Red bean  Vigna umbellata  Protects age that  the helps  bo in dy controlling  from free radical  blood  su dam ga‐r  http://produ es/default/fi ctkgles/to .com‐/sit 13. 13.    Red Red bean  bean     Vign Vign a umbellat a umbellat a  aage    that Protects age helps  that   in helps the controlling  bo in dy controlling  from  blood  free su radical  b galood r    su dam es/default/fi gar‐  http://produ es/default/fi les/to‐ ctklges/to .com‐/sit 13. Red bean levels [16].  matnaya‐fasoltalas_0.jpg  levels [16].  matnaya‐fasoltalas_0.jpg  13.  Red bean  Vigna umbellata  age that helps in controlling blood sugar  es/default/files/to‐ umbellata controlling blood sugar levels fasoltalas_0.jpg (accessed on 22 13.  Red bean  Vigna umbellata  age that helps in level  controlling s [16].   blood sugar  matnaya es/default/fi ‐fasoltalas_0.jpg les/to‐   levels [16].  matnaya‐fasoltalas_0.jpg  13.  Red bean  Vigna umbellata  age that helps in level  controlling s [16].   blood sugar  matnaya es/default/fi ‐fasoltalas_0.jpg les/to‐   levels [16].  matnaya‐fasoltalas_0.jpg  [16]. May 2021)   levels [16].  matnaya‐fasoltalas_0.jpg  levels [16].  matnaya‐fasoltalas_0.jpg  https://www.foodsafe‐   Red kidney beans are full of folate (vita‐ https://www.foodsafe‐ https://www.foodsafe‐ Red kidney beans are full of folatehttps://www.fo  (vita‐ odsafe‐ Red kidney  Red kidney beans are full of folate (vita‐ tynews.com/files/2020/07 https://www.foodsafe‐ https://www.foodsafe‐   Red kidney  Red kidney beans are full of folate (vita‐ tynews.com/files/2020/07 14.  Red kidney  Phaseolus vulgaris  Red min kid  B9)n ey and be fib ans er, are  which  full  of helps  fola to te  (v pro ita‐‐ tynews.com/files/2020/07 https://www.foodsafe‐ https: Red kidney  Red kidney beans are full of folatynews.com/files/2020/07 te (vita‐ 14.  Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ 14.  Redbean  kidn  ey  Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ tynews.com/files/2020/07 https://www.fo /dreamstime_red odsafe ‐kid‐‐ Red Redkidney  kidneybeans  beansar are e full  fullof of folate (vita‐ https://www.foodsafe‐ 14.  Red kidney Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ tynews.com/files/2020/07 bean  /dreamstime_red‐kid‐ 14.  bean  Phaseolus vulgaris  minmote  B9)  and cardio  fibvas er, cwhich ular health  helps  [1 to8]. pro  ‐ /dreamstime_red‐kid‐   Red kidney  Red kidney beans are full of folat//www e (vita‐ .foodsafetynews.com/ tynews.com/files/2020/07 bean  Red kidney beans are full of folate/dreamstime_red  (vita‐ ‐kid‐ 14.  Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ mote cardiovascular health [18].    Red bean kidney   Phaseolus folatemote (vitamin  cardio B9) vas and cular fiber  health ,  [18].  /dreamstime_red ney‐bean‐lectins.jpg ‐kid ‐ 14.    Red kidney  Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ tynews.com/files/2020/07 Red kidney  mote cardiovascular health [18].  tynews.com/files/2020/07 bean  /dreamstime_red‐kid‐ ney‐bean‐lectins.jpg  14. mote cardiovascular health [18]. files/2020/07/dr   ney‐bean eamstime_ ‐lectins.jpg  14.    bean  Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ /dreamstime_red‐kid‐ ney‐bean‐lectins.jpg  14.  Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ mote cardiovascular health [18].    bean vulgaris which helps to promote https://ixivixi.com/wp ney‐bean‐lectins.jpg ‐ bean  mote cardiovascular health [18].  /dreamstime_red‐kid‐ bean  /dreamstime_red ney‐bean‐lectins.jpg ‐kid ‐ red-kidney-bean-lectins.jpg https://ixivixi.com/wp‐ mote cardiovascular health [1https://ixivixi.com/wp 8].  https://ixivixi.com/wp ney‐bean‐‐lectins.jpg ‐ cardiovascular mote cardiohealth vascul[ar 18 health ].  [18].  White kidney  It helps in blocking the carbs from being  https://ixivixi.com/wp ney‐bean content/u ‐lectins.jpg p‐  ‐ (accessed https://ixivixi.com/wp ney on‐22 bean May ‐lectins.jpg 2021)  ‐ White White kid kid neyn ey  It helpIts  help in blocking s in blocking  the carbs the fro carbs m being  fro m being content/u   pcontent/u ‐ p‐ White kidney  It helps in blocking the carbs from being  content/up‐ https://ixivixi.com/wp‐ 15.  White bean  kid (Can ney‐   Phaseolus vulgaris  absorbed It helps in and  blocking  metabolized  the carbs in  fro them human  being   https://ixivixi.com/wp loads/2015/07/ content/up White ‐ ‐‐ https://ixivixi.com/wp‐ 15.  White bean (Can  kid‐neyPha   seolus vulgaris  absorbed It help  ands  metabolized in blocking  in the the carbs  human  fro mloads/2015/07/  being  White content/u ‐ p‐ 15.  bean (Can‐ Phaseolus vulgaris  absorbed and metabolized in the human  loads/2015/07/White‐ 15.  bean (Can‐ Phaseolus vulgaris  absorbed and metabolized in the human https://ixivixi.com/wp-   loads/2015/07/White‐ White kidney  It helps in blocking the carbs from being  content/up‐ 15.  bean nellini)  (Can ‐ Phaseolus vulgaris  Itabsorbed helps in blocking and metabolized body the [18]. carbs    in the human  Kidney loads/2015/07/ ‐Bean‐Extrac Whitet‐‐ White kidney  It helps in blocking the carbs from being  content/up‐ White nellini) kid  ney  It helps in body  blocking  [18].   the carbs fromKidney  being ‐Bean‐Extrac content/u t‐ p‐ 15.  bean (Can‐ Phaseolus vulgaris  absorbed and metabolized in the human  loads/2015/07/White‐ White nellini) kidney   body [18].  content/uploads/2015/07/ Kidney‐Bean‐Extract‐   nellini)  body [18].  Kidney‐Bean‐Extract‐ 15.  bean (Can‐ Phaseolus vulgaris  absorbed and metabolized in the human  loads/2015/07/White‐ Phaseolus from being absorbed and   nellini)  body [18].  for Kidney ‐Weight ‐Bean‐Los‐Extrac s‐1.jpg t‐  15.    bean (Can‐ Phaseolus vulgaris  absorbed and metabolized in the human  loads/2015/07/White‐ for‐Weight‐Loss‐1.jpg  15. 15.  bean nellini) bean  (Can ‐ Phaseolus vulgaris  absorbed and metabolized body [18].   in the human White- Kid Kidney loads/2015/07/ ney-Bean- ‐Bean Extract- ‐Extrac Whitet‐‐ for‐Weight‐Loss‐1.jpg  for‐Weight‐Loss‐1.jpg    nellini)  body [18].  Kidney‐Bean‐Extract‐   vulgaris metabolized in the human body for‐Weight‐Loss‐1.jpg  nellini)  body [18].  hKidney ttps://cdn ‐Bean .sho‐pify Extrac .com t‐ /   https://cdn.shopify.com/ (Cannellini) for-Weight-Loss-1.jpg (accessed nellini)  body [18].  for Kidney ‐Weight ‐Bean‐Los‐Extrac s‐1.jpg t‐  https://cdn.shopify.com/   https://cdn.shopify.com/ for‐Weight‐Loss‐1.jpg  [18]. Contains a good amount of vitamin B1  s/files/1/1834/0943/prod‐ Contains a good amount of vitamin B1  h s/file for ttps://cdn ‐Weight s/1/1834/0 .sh‐Los o943/prod pify s‐1.jpg .com /‐ on 22 May 2021) for‐Weight‐Loss‐1.jpg  https://cdn.shopify.com/ Contains a good amount of vitamin B1  s/files/1/1834/0943/prod‐ Contains a good amount of vitamin B1  s/files/1/1834/0943/prod‐ https://cdn.shopify.com/ that helps to convert food into energy.  ucts/bean‐ Contains that helps a  to good  conv amount ert food of into  vit aenergy. min B1   s/files/1/1834/0 ucts/bean 943/prod ‐ ‐ https://cdn.shopify.com/ Contains a good amount of vitamin B1  h s/file ttps://cdn s/1/1834/0 .sho943/prod pify.com/‐ Contains that helps a good to conv amount ert food of into energy. https://cdn.shopify   ucts/bean .com/s/ ‐ that helps to convert food into energy.  ucts/bean‐ Contains a good amount of vitamin B1  s/files/1/1834/0943/prod‐ 16.  Pinto bean  Phaseolus vulgaris  Additionally, it contains many antioxi‐ pinto_569fa089‐dddd‐ 16.  Pinto bean  Phaseolus vulgaris  Addi that helps tionally  to ,conv  it contains ert food many  into  energy. antioxi‐  pinto_569fa089 ucts/bean‐‐dddd‐ Contains a good amount of vitamin B1  s/files/1/1834/0943/prod‐ vitamin Contains that helps B1 that  a  to good helps  conv amount ert to convert food of into  vit aenergy. mi files/1/1834/0943/pr n B1   s/files/1/1834/0 ucts/bean oducts/ 943/prod ‐ ‐ 16. 16.   Pinto Pinto  bean bean   Pha Phaseo seolus lus  vulga vulgarris is   Addi Additionally tionally,,  it it  contains contains  many many  antioxi antioxi‐‐ pinto_569fa089 pinto_569fa089‐‐ddd dddd d‐‐ that helps to convert food into energy.  ucts/bean‐ dants such as polyphenols and flavonoids  41b4‐856d‐ dants such as polyphenols and flavonoids  41b4‐856d‐ 16.  Pinto bean  Phaseolus vulgaris  Addi that helps tionally  to ,conv  it contains ert food many  into  energy. antioxi‐  pinto_569fa089 ucts/bean‐‐dddd‐ Phaseolus food into energy. Additionally, bean-pinto_569fa089-dddd-41 16.  Pinto bean  Phaseolus vulgaris  Addi that helps tionally  to ,conv  it contains ert food many  into  energy. antioxi‐  pinto_569fa089 ucts/bean‐‐dddd‐ dants such as polyphenols and flavonoids  41b4‐856d‐ dants such [16,17]. as polyphenols    and fla3db099771330_800x.png vonoids  41b4‐856d‐ 16. 16.  Pinto Pinto bean bean  Phaseolus vulgaris  Additionally, it contains many antioxi‐ pinto_569fa089‐dddd‐ [16,17].  3db099771330_800x.png 16.  Pinto bean  Phaseolus vulgaris  dants Addi su tionally ch as polyphenols , it contains many  and fla antioxi vonoids ‐   pinto_569fa089 41b4‐856d‐ddd ‐ d‐ vulgaris it contains many antioxidants b4-856d-3db099771330_800x. 16.  Pinto bean  Phaseolus vulgaris  dants Addi su tionally ch as polyphenols , it contains  many and fla antioxi vonoids ‐   pinto_569fa089 41b4‐856d‐‐dddd‐ [16,17].  ?v=1505218437 3db099771330_800x.png   [16,17].  3db099771330_800x.png dants such as polyphenols and flavonoids  41b4‐856d‐ dants such su asch polyphenols  as polyphenols [16,17]. and   and fla png?v=1505218437 vonoids 3db099771330_800x.png ?v=1505218437 41b4 (accessed ‐856d‐  on dants such as polyphenols [16,17].   and flavonoids 3db099771330_800x.png 41b4‐856d‐ https://www.mexi‐   ?v=1505218437  ?v=1505218437    [16,17].  3db099771330_800x.png flavonoids [16,17]. 22 May 2021) [16,17].  3db099771330_800x.png https://www.mexi ?v=1505218437  ‐ [16,17].  canplease3db099771330_800x.png .com/wp‐con‐ ?v=1505218437  https://www.mexi https://www.mexi‐‐ ?v=1505218437  It is good for the heart as it contains vari‐ canplease.com/wp‐con‐ https://www.mexi ?v=1505218437  ‐ Cranberry  tent/up‐ https://www?v=1505218437 .mexicanplease.  https://www.mexi‐ It is good for the heart as it contains vari‐ canplease.com/wp‐con‐ canplease.com/wp‐con‐ 17.  Phaseolus vulgaris  ous powerful It is good  minerals for the and heart  enzas yme its that  https://www.mexi‐ Cranberry  It is good for the heart as it contains vari‐ tent/up‐ bean  It is good for the heart as it contains loads/2017/03/  vari‐ canplease https://www.mexi cranberry .com ‐ /wp‐con ‐ ‐ com/wp-content/uploads/20 canplease https://www.mexi .com/wp‐con ‐ ‐ Cranberry  tent/up‐ 17.  Cranberr Cranberry y  Phaseo Phaseolus lus vulgaris  help It ous contains  is to  powerful good  lower various for  ba dthe  minerals  chol heart powerful esterol   as and   [it18].  contains enz   ymes vari  that‐  tent/up‐ canplease.com/wp‐con‐ It is good for the heart as it contains vari‐ 17. 17.  Phaseolus vulgaris  ous powerful minerals and enzyme 17/03/cranberry- beans s that ‐spread   ‐onto‐ beans- cut‐ spread- 17.  Cranberr bean  y  Phaseolus vulgaris  ous powerful minerals and enzymes that loads/2017/03/ canplease tent/up .comcranberry /wp ‐ ‐con‐‐ It is good for the heart as it contains vari‐ Cranberry  canplease tent/up .com/‐wp‐con‐ bean bean  vulgaris minerals and enzymes that help loads/2017/03/cranberry‐ 17.  bean  Phaseolus vulgaris  Itous  is help  good powerful  to for lower  the  minerals  heart  bad chol  as and  itesterol   contains enzyme  [18]. s vari  that   ‐  loads/2017/03/cranberry‐ Cranberry  tent/up‐   It is good for the heart as it contains vari‐ 17.  Phaseolus vulgaris  ous powerful minerals and enzyme onto- ting s that ‐with cutt   ing- ‐solid with- s.jpg solids.jpg help to lower bad cholesterol [18].  Cranberr bean  y  help to lower bad cholesterol [18].  loads/2017/03/ beans‐spread tent/up‐cranberry ont ‐ o‐cut‐‐ 17.  Phaseolus vulgaris  ous powerful minerals and enzymes that    Cranberry  tent/up‐ bean  to lower bad cholesterol [18]. loads/2017/03/cranberry‐ beans‐spread‐onto‐cut‐ help to lower bad cholesterol [18].  beans‐spread‐onto‐cut‐ 17.  bean  Phaseolus vulgaris  ous powerful minerals and enzymes that  loads/2017/03/cranberry‐ 17.    Phaseolus vulgaris  ous powerful minerals and enzyme(accessed s that  on 22 May 2021) help to lower bad cholesterol [18]. https://www.sut   ‐ beans ting‐‐spread with‐solid ‐onts.jpg o‐cu t‐   bean  help to lower bad cholesterol [18].  loads/2017/03/cranberry‐ bean  loads/2017/03/cranberry‐   beans‐spread‐onto‐cut‐ ting‐with‐solids.jpg  ting‐with‐solids.jpg  help to lower bad cholesterol [18].  beans‐spread‐onto‐cut‐ It helps to balance sugar level and re‐ tonsbaytrading.com/wp‐   help to lower bad cholesterol [18].  ting‐with‐solids.jpg    beans https://www.sut ‐spread‐onto‐cu‐ t‐ https: beans ting‐‐spread with‐solid ‐onts.jpg o‐cu t‐ https://www.sut‐ 18.  Adzuki bean  Vigna angularis  duces the risk of diabetes. Improves the  content/u ting https://www.sut p‐‐with‐solids.jpg‐   It helps to balance sugar level It helps to balance sugar level and re‐ tonsbaytrading. ting https://www.sut ‐with‐solid com/wp s.jpg‐   ‐ //www.suttonsbaytrading. ting‐with‐solids.jpg  https://www.sut‐ It streng helps th to of bala  bones nce [20]  sug. ar level and loads/2013/06/  re‐ tonsbaytrading. adzuki‐ com/wp‐ It helps to balance sugar level and re‐ tonsbaytrading.com/wp‐ Vigna and reduces the risk of diabetes. https://www.sut‐ 18. 18.  Adzu Adzuki ki bean bean  Vigna angularis  du It ces help the s to risk  bala ofnce  diab suetes. gar  lev Imeproves l and com/wp-  re the‐   tonsbaytrading. content/uploads/20 content/ucpom/wp ‐ ‐ https://www.sut‐ https://www.sut‐ It helps to balance sugar level and re‐ beans.jpg tonsbaytrading.   com/wp‐ 18.  Adzuki bean  Vigna angularis  duces the risk of diabetes. Improves the  content/up‐ 18.  Adzuki bean  Vign angularis a angularis  Impr duoves ces the the risk str ength of diab ofetes. bones  Improves the  content/up‐ It helps to balance sugar level and re‐ tonsbaytrading.com/wp‐ 13/06/adzuki-beans.jpg 18.  Adzuki bean  Vigna angularis  duces thestreng  risk of th diab  of bones etes.  Im [20] proves .   the  loads/2013/06/ content/uadzuki p‐ ‐ It helps to balance sugar level and re‐ tonsbaytrading.com/wp‐ 18.  Adzuki bean  Vigna angularisIt  helpdu s Itto ces help  prev the sent to risk   birth bala of nce def  diab e su ctetes. sg as ar it  lev Im  is eproves inl ‐andhttp://storage.goog  re the‐   tonsbaytrading. content/u ‐ cpom/wp ‐ ‐ streng [20].th of bones [20].  loads/2013/06/adzuki‐ strength of bones [20].  loads/2013/06/adzuki‐ 18.  Adzuki bean  Vigna angularis  duces the risk of diabetes. Improves the  content/up‐ (accessed on 22 May 2021) strength of bones [20].  loads/2013/06/ beans.jpg adzuki   ‐ 18.  Adzuki bean  Vigna angularis  duces the risk of diabetes. Improves the  content/up‐ credibly nutritious and an excellent  leapis.com/powop‐as‐ 18.  Adzuki bean  Vigna angularis  duces thestreng  risk of th diab  of bones etes.  Im [20] proves .   the  loads/2013/06/ content/uadzuki p‐ ‐   beans.jpg beans.jpg   strength of bones [20].  loads/2013/06/adzuki‐ Faba bean    beans.jpg  19.  Vicia faba  sourIt ce help  of solu s to bstreng le prev  fibeent r,th protein,  of birth  bones   def manga  [20] ects‐.  assets/k  it is in ew_profil ‐ loads/2013/06/ http://storage.goog es/KPP‐ adzuki‐‐ It helps to pr streng eventth birth  of bones defects  [20].  loads/2013/06/ beans.jpg adzuki   ‐ It helps to prevent birth defects as it is in‐ http://storage.goog‐   (Broad bean)  It helps to prevent birth defects as it is in‐ http://storage.goog‐ beans.jpg  http:   nese, copper folate and many other mi‐ CONT_085134_fullsize.j It help credibly s to prev  nutritiou ent birth s and  def an ect exc s ase llent it is  in‐ leapis http://storage.goog .com/po beans.jpg w op‐as‐‐   as it is incredibly nutritious and beans.jpg  It helps to prevent birth defects as it is in‐ http://storage.goog‐ credibly nutritious and an excellent  leapis.com/powop‐as‐ Faba bean  credibly nutritious and an excellent  leapis.com/powop‐as‐ It helps to prevent birth defects as it is in‐ http://storage.goog‐ //storage.googleapis.com/ cronutrients [16].  pg  Faba bean  19.  Faba bean  Vicia faba  sou credibly rce of solu  nutritiou ble fibse and r, protein,  an exc manga ellent  ‐ sets/k leapisew_profil .com/poweop s/KPP ‐as‐‐ Faba bean an It help excellent s to prev sour ent ce birth of soluble  defects as it is in‐ http://storage.goog‐ It help credibly s to prev  nutritiou ent birth s and  def an ect exc s ase llent it is  in‐ leapis http://storage.goog .com/powop‐as‐‐ 19.  Vicia faba  source of soluble fiber, protein, manga‐ sets/kew_profiles/KPP‐ 19.  (Broad Faba bean  bean)    Vicia faba  source of soluble fiber, protein, manga‐ sets/kew_profiles/KPP‐ 19. Vicia faba credibly nutritious and an excellent powop-   assets/kew_pr leapis.com/poofiles/ wop‐as‐ Faba bean  19.  (Broad (Broad (Broad  bean) bean) bean)   Vicia faba  sou nese, fiber rce , copper pr of otein,  solu fob manganese, late le fib and er,  protein, many other  manga  mi‐‐https://ju CONT_085134_fullsize sets/k‐ew_profiles/KPP‐.j credibly nutritious and an excellent  leapis.com/powop‐as‐ Faba bean  19.  Vicia faba  sou credibly rce of solu  nutritiou ble fibse and r, protein,  an exc manga ellent  ‐ sets/k leapisew_profil .com/poweop s/KPP ‐as‐‐ Helps to prevent chronic disease, diseases    nese, nese,  copper copper  fo folate late  and and  many many  other other KPPCONT_085134_fullsize.jpg   mi mi‐‐ CONT_085134_fullsize CONT_085134_fullsize..jj (Broad Faba bean  bean)    19.  Vicia faba  source of soluble fiber, protein, manga‐ sets/kew_profiles/KPP‐ (Broad Faba bean  bean)    copper folate and many other diesblog.files.word‐   cronutrients [16].  pg  19.    Vicia faba  sou nese, rce copper  of solu fo bllate e fib and er, protein,  many other  manga  mi‐‐ CONT_085134_fullsize sets/kew_profiles/KPP‐.j (Broad bean)  19. 20.    Lima bean  Phaseolus Vicia  luna fa tus ba   associated sou nese, r wit ce copper  of h dig  solu e st fobion late le  fib an and der, st  protein, im many ulates other   manga  mi‐‐ CONT_085134_fullsize sets/kew_profiles/KPP‐.j (accessed on 22 May 2021) cronutrients [16].  pg    (Broad bean)  cronutrients [16].  pg  nese, copper folate and many other mi‐ CONT_085134_fullsize.j   (Broad bean)  micronutrients [16]. press.com/2010/10/img_ nese, copper cronu  folate trients  and  many [16].  other mi‐ CONT_085134_fullsize pg  .j blood circulation [14].  https://ju‐ nese, copper cronu  folate trients  and  many [16].   other mi‐ CONT_085134_fullsize pg  .j cronutrients [16].  5993.jpg  pg  Helps to prevent chronic disease, diseases  https://ju https://ju‐‐ cronutrients [16].  pg  Helps to prevent chronic disease, diseases  diesblog.files.word‐ Helps to prevent cronu chronic trients  [1 dis 6].ease,    diseases  https://ju pg  ‐ Helps to prevent chronic https: https://ju‐ 20.  Lima bean  Phaseolus lunatus  associated with digestion and stimulates  diesblog.files.word‐ Helps to prevent chronic disease, hdittps://cdn seases  .shdiesb opifyl.com og.fi/les.word‐ https://ju‐ Helps to prevent chronic disease, diseases  20.  Lima bean  Phaseolus lunatusGr  assassoc  pea iseed ateds  wit are h us dig ed as est aion  common  and st  imulates  press.com/2010/10/img_ 20.  Lima bean  Phaseolus lunatus  associated with digestion and stimulates  diesbhttps://ju log.files.word ‐ ‐ Phaseolus Helps disease,  to diseases prevent chronic associated  disease, di //judiesblog.files.wor seases  dpress. diesbhttps://ju log.files.word ‐ ‐ s/files/1/2333/6 press.com/2010/10/img_ 781/prod‐ 20.  Lima bean  Phaseolus lunatus  Helps assoc ito ated  prevent blood  with  circu  dig chronic est lation io dis n an [14]. edase,  st im  diusease latess   press.com/2010/10/img_ 20. Lima bean diesblog.files.word‐ 20.  Lima bean  Phaseolus lunatus  Helps assoc ito ated  prevent  with dig  chronic estion dis  anedase,  stim diusease latess   21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and  blood circulation [14].  lunatus with digestion blood and  circu stimulates lation [14].  com/2010/10/img_5993.jpg press.com/2010/10/img_ diesblog.fi 5993.jpg les.word   ‐ 20.    Lima bean  Phaseolus lunatus  associated with digestion and stimulates  press.com/2010/10/img_ diesblog.files.word‐ ucts/grass_pea_photo_53 5993.jpg  20.  Lima bean  Phaseolus lunatus  associatedblood  with  circu digest lat ion ion an [14]. d st imulates  5993.jpg    press.com/2010/10/img_ 20.  Lima bean  Phaseolus lunatus  associated Africa  wit h[21 dig ].  estion and stimulates  blood circulation [14].  blood circulation [14]. (accessed on 22 May 2021) press.com/2010/10/img_ 5993.jpg  blood circulation [14].    https://cdn.shopify.com/ 0x@2x.jpg?v=1578338252 press.com/2010/10/img_   5993.jpg  blood circulation [14].  5993.jpg  https://cdn.shopify.com/   Grass pea blood  seed circu s are lus atied on  as [14].  a c ommon  https://cdn.shopify.com/ 5993.jpg  Grass pea seeds are used as a common    Grass pea seeds are used as a common  h s/file ttps://cdn s/1/2333/6 5993.jpg .sho781/prod pify   .com/‐ https://cdn.shopify.com/ s/files/1/2333/6781/prod‐ 21.  Grass pea  Lathyrus sativus  staple Grass f ood pea  in seed  many s are cou  used ntries  as a of c oAs mmon ia and   s/files/1/2333/6781/prod‐ https://cdn.shopify.com/ Grass pea seeds are used as a common  21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and  21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and ucts/grass_pea hs/file ttps://cdn s/1/2333/6 .sho_pify 781/prod photo_53 .com/‐ Grass pea seeds are used as a common  https://cdn.shopify.com/ s/files/1/2333/6781/prod‐ ucts/grass_pea_photo_53 21.  Grass pea  Lathyrus sativus  staple food in many Africa cou  [21n]tries .   of Asia and ucts/grass_pea_photo_53 Grass pea seeds are used as a common  s/files/1/2333/6781/prod‐ Grass pea seeds are used as a common  21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and    Africa [21].  Africa [21].  ucts/grass_pea 0x@2x.jpg?v=1578338252 _photo_53  21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and s/files/1/2333/6781/prod‐ s/files/1/2333/6781/prod‐ ucts/grass_pea_photo_53   0x@2x.jpg?v=1578338252    Africa [21].  0x@2x.jpg?v=1578338252  21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and ucts/grass_pea_photo_53 21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and  Africa [21].    0x@2x.jpg?v=1578338252  Africa [21].  ucts/grass_pea_photo_53 ucts/grass_pea 0x@2x.jpg?v=1578338252 _photo_53    Africa [21].  0x@2x.jpg?v=1578338252  Africa [21].  0x@2x.jpg?v=1578338252  0x@2x.jpg?v=1578338252    Agronomy 2021, 11, x FOR PEER REVIEW  4  of  23  https://www.thedailyme al.com/sites/de‐ This bean has anticancer potential. It also  fault/files/slideshows/16 12.  Navy bean  Phaseolus vulgaris  helps to lower diabetes risk and greater  70994/2173040/21‐ gut health [14].  navy_beans‐Thinkstock‐ Photos‐494876324.jpg  Protects the body from free radical dam‐ http://productkg.com/sit 13.  Red bean  Vigna umbellata  age that helps in controlling blood sugar  es/default/files/to‐ levels [16].  matnaya‐fasoltalas_0.jpg  https://www.foodsafe‐ Red kidney beans are full of folate (vita‐ Red kidney  tynews.com/files/2020/07 14.  Phaseolus vulgaris  min B9) and fiber, which helps to pro‐ bean  /dreamstime_red‐kid‐ mote cardiovascular health [18].  ney‐bean‐lectins.jpg  https://ixivixi.com/wp‐ White kidney  It helps in blocking the carbs from being  content/up‐ 15.  bean (Can‐ Phaseolus vulgaris  absorbed and metabolized in the human  loads/2015/07/White‐ nellini)  body [18].  Kidney‐Bean‐Extract‐ for‐Weight‐Loss‐1.jpg  https://cdn.shopify.com/ Contains a good amount of vitamin B1  s/files/1/1834/0943/prod‐ that helps to convert food into energy.  ucts/bean‐ 16.  Pinto bean  Phaseolus vulgaris  Additionally, it contains many antioxi‐ pinto_569fa089‐dddd‐ dants such as polyphenols and flavonoids  41b4‐856d‐ [16,17].  3db099771330_800x.png ?v=1505218437  https://www.mexi‐ canplease.com/wp‐con‐ It is good for the heart as it contains vari‐ Cranberry  tent/up‐ 17.  Phaseolus vulgaris  ous powerful minerals and enzymes that  bean  loads/2017/03/cranberry‐ help to lower bad cholesterol [18].  beans‐spread‐onto‐cut‐ ting‐with‐solids.jpg  https://www.sut‐ It helps to balance sugar level and re‐ tonsbaytrading.com/wp‐ 18.  Adzuki bean  Vigna angularis  duces the risk of diabetes. Improves the  content/up‐ strength of bones [20].  loads/2013/06/adzuki‐   beans.jpg  It helps to prevent birth defects as it is in‐ http://storage.goog‐ credibly nutritious and an excellent  leapis.com/powop‐as‐ Faba bean  Agronomy 2021, 11, 2238 5 of 24 19.  Vicia faba  source of soluble fiber, protein, manga‐ sets/kew_profiles/KPP‐ (Broad bean)  nese, copper folate and many other mi‐ CONT_085134_fullsize.j cronutrients [16].  pg  https://ju‐ Table 1. Cont. Helps to prevent chronic disease, diseases  diesblog.files.word‐ 20.  Lima bean  Phaseolus lunatus  associated with digestion and stimulates  Sl. Common Scientific Sources of Images press.com/2010/10/img_ Picture Major Use blood circulation [14].  No Name Name [Accessed on 22 May 2021] 5993.jpg  https://cdn.shopify.com/s/ https://cdn.shopify.com/ Grass pea seeds are used as a Grass pea seeds are used as a common  files/1/2333/6781/products/ s/files/1/2333/6781/prod‐ Lathyrus common staple food in many Agronomy 2021, 11, x FOR PEER REVIEW  5  of  23  21.  Grass pea  Lathyrus sativus  staple food in many countries of Asia and  21. Grass pea grass_pea_photo_530x@2x.jpg? Agronomy    2021, 11, x FOR PEER REVIEW  5  of  23  Agronomy 2021, 11, x FOR PEER REVIEW  5  of  23  sativus countries of Asia and Africa ucts/grass_pea_photo_53 Africa [21].  v=1578338252 (accessed on 22 Agronomy 2021, 11, x FOR PEER REVIEW  5  of  23  [21]. Agronomy Agronomy  2021 2021,,  11 11,,  xx  FOR FOR  P PEER EER     RE REV VIIE EW W   0x@2x.jpg?v=1578338252 55   of of   23 23    May 2021) Agronomy 2021, 11, x FOR PEER REVIEW  5  of  23  It contains antioxidants that https://www.firstfor‐ Agronomy 2021, 11, x FOR PEER REVIEW  5  of  23  https: It contains antioxidants that promote  https://www.firstfor‐ https://www.firstfor‐   promote proper digestion and It contains antioxidants that promote  women.com/wp‐con‐ It contains antioxidants that promote  //www.firstforwomen.com/ https://www.firstfor‐ proper digestion and keep intestines  women.com/wp‐con‐ keep intestines healthy. women. https://www.firstfor com/wp‐con‐‐ https://www.firstfor‐ It contains antioxidants that promote  proper digestion and keep intestines  tent/up‐ proper digestion and keep intestines wp-conte   nt/uploads/sites/2/ It It  contains contains  antioxidants antioxidants  that that  p prromote omote   women.com/wp‐con‐ 22. 22.  Lu Lupin pin bean bean   Lupinus Lupinus albus albus  healthy. Additionally  Additi , aids onally, in weight  aids in weight loss,  https://www.firstfor tent/up‐ ‐ tent/up‐ women. women.ccoom/wp m/wp‐‐con con‐‐ proper digestion and keep intestines  22.  Lupin bean   Lupinus albus  healthy. It contains  Additi  antioxidants onally, aids that  in weight  promote 2019/01/what-  los s, loads/sitear s/2/20 e-lupin- 19/01/wh 22.  Lupin bean   Lupinus albus  healthy. Additionally, aids in weight loss,  proper proper  dig digeestio stion n  and and  keep keep  inte intestines stines   tent/up‐ loss, provides essential vitamins provides essential vitamins and minerals  loads/ women. sites/2/20 com/wp 19/01/wh ‐con‐ loads/sites/2/2019/01/wh https://www.firstfor tent/up‐ ‐ tent/up‐ 22.  Lupin bean   Lupinus albus  healthy. Additionally, aids in weight beans-  loss,  benefits.jpg?w=715 provides proper  essen digestio tialn vitamins  and keep and  inte minerals stines    at‐are‐lupin‐beans‐bene‐ provides essential vitamins and minerals  22.  Lupin bean   Lupinus albus  healthy. It contains  Additi  antioxidants onally, aids that  in weight  promote  los s,  22.  Lupin bean   Lupinus albus  healthy. Additionally, aids in weight loss,  and minerals and reduces high loads/sites/2/2019/01/wh   and reduces high blood pressure [18,22].  at‐are‐lutent/up pin‐beans ‐ ‐bene‐ at‐are‐lupin‐beans‐bene‐ loads/ women. sites/2/20 com/wp 19/01/wh ‐con‐ loads/sites/2/2019/01/wh (accessed on 22 May 2021) provides essential vitamins and minerals  22.    Lupin bean   Lupinus albus  healthy. and reduces  Additi  high onally,  blood aids  pressure  in weight  [18,22].  loss ,  fits.jpg?w=715  and reduces high blood pressure [18,22].    provides proper  essen digestio tialn vitamins  and keep and  inte minerals stines    provides blood pr essen essur tial e [ vitamins 18,22].  and minerals  at‐are‐lupin‐beans‐bene‐ loads/fits.jpg?w=715 sites/2/2019/01/wh   at‐arefits.jpg?w=715 ‐lupin‐beans‐bene   ‐ at‐are‐lutent/up pin‐beans ‐ ‐bene‐   and reduces high blood pressure [18,22].  provides essential vitamins and minerals    and reduces high blood pressure [18,22].  22.    Lupin bean   Lupinus albus  healthy. and reduces  Additi  high onally,  blood aids  pressure  in weight  [18,22].  loss ,  fits.jpg?w=715  at‐are‐lupin‐beans‐bene‐ fits.jpg?w=715  loads/fits.jpg?w=715 sites/2/2019/01/wh   Beans are an excellent source of protein,  and reduces high blood pressure [18,22].  Beans are an excellent source of provides essential vitamins and minerals  Beans are an excellent source of protein,  https://gar‐ Beans are an excellent source of protein,  fits.jpg?w=715  at‐are‐lupin‐beans‐bene‐ Common  lower in calories and saturated fat than  https://gar‐ protein, lower in calories and https://garden.or https://gar g/pics/2018 ‐   and reduces high blood pressure [18,22].  Beans are an excellent source of protein,  23.  Common  Phaseolus vulgaris  lower in calories and saturated fat than  den.org/pics/2018‐09‐ Common Phaseolus Common  Beans lower  are in calori  an exes cellent  and saturate  source of d  fat protein,  than   Beans are an excellent source of protein,  fits.jpg?w=715  https://gar‐ 23.  bean  Phaseolus vulgaris  some other protein sources such as meat  den.org/pics/2018‐09‐ 23. saturated fat than some other -09-14/Alicemac/b92064.jpg 23.  Phaseolus vulgaris  den.org/pics/20 https://gar18‐ ‐09‐ https://gar‐ Common  lower in calories and saturated fat than  bean bean  vulgaris som Beans e other  are an protein  excellent  sou sou rcesr ce su of ch  protein, as meat   14/Alicemac/b92064.jpg  Common bean    som lower e other  in calori  protein es and  sou saturate rces such d fat  as  than meat   Common  lower in calories and saturated fat than  23.  Phaseolus vulgaris  den.org/pics/2018‐09‐ protein sources such [16,17]. as meat   (accessed on 22 https://gar May 2021) ‐ 14/Alicemac/b92064.jpg  23.  Phaseolus vulgaris  14/Alicemac/b9 den.org/pics/202064.jpg 18‐09‐   23.  Phaseolus vulgaris  den.org/pics/2018‐09‐ bean  some other protein sources such as meat  Common  lower in calories[16,17].  and saturate   d fat than  bean  some other protein [16,17].  sour ces such as meat  bean  som Beans e other  are an protein  excellent  sou sou rcesr ce su of ch  protein, as meat   [16,17]. 14/Alicemac/b92064.jpg  23.  Phaseolus vulgaris  den.org/pics/2018‐09‐ 14/Alicemac/b92064.jpg  14/Alicemac/b9 https://gar 2064.jpg ‐     [16,17].  bean  some other protein sources such as meat  [16,17].  Common  lower in calories[16,17].  and saturate   d fat than  http://peb‐ 14/Alicemac/b92064.jpg  23.    Phaseolus vulgaris  den.org/pics/2018‐09‐ http://peb‐   [16,17].  http://peb‐ bean  some other protein sources such as meat  The dried pods of runner bean The dried pods of runner bean have diu‐ bleandfern.ca/wp‐con‐ http://pebbleandfern.ca/wp- 14/Alicemac/b92064.jpg  http://peb‐ The dried pods of runner bean have diu‐ bleandfern.ca/wp‐con‐ The dried pods of runner bean have diu‐ bleandfern.ca/ http://peb wp‐ ‐con‐ http://peb‐ have diuretic properties [16,17].that   24.  Runner bean  P. multiflorus  retic properties that help to cure urinary  tent/up‐ content/uploads/2015/03/ The dried pods of runner bean have diu‐ bleandfern.ca/wp‐con‐ 24.  Runner bean  P. multiflorus  retic properties that help to cure urinary  http://peb tent/up‐‐ 24.    Runner bean  P. multiflorus  The retic dried  properties  pods  of that runner  help  to bean  cure have  urin di ary u‐  bleandfern.ca/ tent/upwp ‐ ‐con‐ 24. Runner bean P. multiflorus The help dried to cur pods e urinary  of runner tract bean have diu‐ bleandfern.ca/wp‐con‐ tract infections and reduce weight [18,23].  loads/2015/03/runner‐ runnerbean.jpg (accessed on 22 24.  Runner bean  P. multiflorus  retic properties that help to cure urinary  tent/up‐ tract The  dried infections  pods and  of runner  reduce bean  weigh have t [18,23].  diu‐  bleandfern.ca/ loads/2015/03/rwp unner ‐con‐‐   infections tract infections and r educe and reduce weight weight [18,23].  loads/2015/03/runner‐ 24. 24.   Runner Runner  bean bean   P. P.  multif multiflorus lorus   retic retic  properties properties  that that  help help  to to  cu cure re  uri urin nary ary   http://peb tent/up tent/up‐‐‐ May 2021) bean.jpg  tract infections [18,23 and ].  reduce weight [18,23].  loads/2015/03/runner‐ 24.  Runner bean  P. multiflorus  retic properties that help to cure urinary  bean.jpg tent/up‐  bean.jpg  tract The  dried infections  pods and  of runner  reduce bean  weigh have t [18,23].  diu‐   bleandfern.ca/ loads/2015/03/r wp unner ‐con‐‐ tract infections and reduce weight [18,23].  loads/2015/03/runner‐ It contains complex carbohydrates and a  https://www.healthbene‐ bean.jpg  tract infections and reduce weight [18,23].  loads/2015/03/runner‐ It contains complex carbohydrates and a  https://www.healthbene‐ 24.  Runner bean  P. multiflorus  It retic  contains  properties  comp that lex  carbohydrates help to cure uri and nary a   https://www.healthbene bean.jpg tent/up‐  ‐ It contains complex bean.jpg    good amount of zinc, which is useful to  fitstimes.com/9/gal‐ It contains complex carbohydrates and a  https://www.healthbene‐ bean.jpg  Hyacinth‐ good amount of zinc, which is useful to  fitstimes.com/9/gal‐ good carbohydrates  amount of and  zinc, a good  which is useful to  https://www fitstimes.com/9/gal . ‐ tract It It  contains contains  infections   com com and p plex lex reduce   carbohydrates carbohydrates  weight [18,23].   and and  aa   https://www.healthbene https://www.healthbene loads/2015/03/runner‐ ‐‐ 25.  Hyacinth‐ Lablab purpureus  lose weight and prevent cancer, respec‐ lery/hyacinth‐ Hyacinth‐ good amount of zinc, which is useful to  fitstimes.com/9/gal‐ 25.  bean  Lablab purpureus  amount Itlose  contains  weight of zinc,  com  an which dp lex prevent  carbohydrates is useful  cancer, respec healthbenefitstimes.com/9/  and ‐a  https://www.healthbene lery/hyacinth‐ ‐ 25.  Lablab purpureus  lose weight and prevent cancer, respec‐ lery/hyacinth‐ good good  amount amount  of of  zinc, zinc,  which which  is is  us useful eful  to to   fitstimes.com/9/gal fitstimes.com/9/gal bean.jpg  ‐‐ Hyacinth‐ bean  Lablab tively, as Zn prevents cells mutating and beans/Pods‐of‐Hyacinth‐ bean  Hyacinth‐ Hyacinth‐ 25. 25.  Hyacinthbean Lablab purpureus  to lose lose  weight weight  anand d prevent prevent cancer, respec gallery/hyacinth- ‐ lery/hyacinth beans/Pods- ‐ tively, good  amount as Zn prevents  of zinc,  cel which ls mu istating  useful and  to  beans/Pods fitstimes.com/9/gal ‐of‐Hyacinth ‐ ‐ tively, as Zn prevents cells mutating and beans/Pods‐of‐Hyacinth‐ 25.  Lablab purpureus  Itlose  contains  weight com  andp lex prevent  carbohydrates  cancer, respec  and ‐a  https://www.healthbene lery/hyacinth‐ ‐ 25.    Lablab purpureus  lose weight and prevent cancer, respec‐ lery/hyacinth‐ bean  purpureus Hyacinth‐ assists cell division [16,22].  beans.jpg  bean  bean    cancer, respectively, as Zn of-Hyacinth-beans.jpg   tively, as Zn prevents cells mutating and beans/Pods‐of‐Hyacinth‐ 25.  Lablab purpureus  lose weight assists an cedll prevent  division canc  [16,er, 22]. respec   ‐ lery/hyacinth beans.jpg  ‐ assists cell division [16,22].  beans.jpg  tively, good amount  as Zn prevents  of zinc,  cel which ls mu istating  useful and  to  beans/Pods fitstimes.com/9/gal ‐of‐Hyacinth ‐ ‐ tively, as Zn prevents cells mutating and beans/Pods‐of‐Hyacinth‐ bean  https://www.feedipe‐ Hyacinth‐ prevents cells mutating and (accessed on 22 May 2021)   assists cell division [16,22].  beans.jpg    tively, as Zn prevents cells mutating and beans/Pods‐of‐Hyacinth‐ https://www.feedipe‐ assists cell division [16,22].  https://www.fe beans.jpgedipe   ‐ 25.  Lablab purpureus  lose weight assists an cedll prevent  division canc  [16,er, 22]. respec   ‐ lery/hyacinth beans.jpg  ‐ dia.org/sites/de‐ assists cell division [16,22]. bean  https://www.feedipe‐ assists cell division [16,22].  beans.jpg  It helps to cure diseases such as edema  dia.org/sites/de‐ dia.org/sites/de‐ tively, as Zn prevents cells mutating and beans/Pods https://www.fe ‐of‐Hyacinth edipe‐ ‐ https://www.feedipe‐ 26.  Rice bean  V. umbellata  It helps to cure diseases such as edema  fault/files/im‐ It helps to cure diseases such as edema    https://www dia.org .feedipedia.or /sites/deg/‐ 26.  Rice bean  V. umbellata  and increases digestibility [17,23].  https://www.fe fault/files/im edipe ‐ ‐ 26.  Rice bean  V. umbellata  fault/files/im‐ assists cell division [16,22].  dia.org beans.jpg /sites/d  e‐ dia.org/sites/de‐ It helps It help tos cur to cu e diseases re disease such s suas ch as edema  and increases digestibility [17,23].  ages/vigna_umbel‐ It help and sincreas  to curee sdi dsease igestibi s su lity ch  [17 as ed ,23]. ema       It helps to cure diseases such as edema  sites/default/files/images/ 26.  Rice bean  V. umbellata  fault/files/im‐ ages/vigna_umbel dia.org/sites/de‐ ‐ 26.  Rice bean  V. umbellata  ages/vigna_umbel fault/files/im‐ ‐ 26.  Rice bean  V. umbellata  https://www.fe fault/files/im edipe ‐ ‐ 26.   Rice bean V. umbellata edema and increases   and increases digestibility [17,23].  It helps to cure diseases such as edema  lata_seeds.jpg  and increases digestibility [17,23].  and increases digestibility [17,23]. vigna_umbellata_seeds.jpg   ages/vigna_umbel‐ 26.  Rice bean  V. umbellata  lata_see fault/files/ ds.jpg im‐    digestibility [17,23]. ages/vigna_umbel lata_seeds.jpg  ‐ ages/vigna_umbel dia.org/sites/de‐ ‐   and increases digestibility [17,23].  (accessed on 22 May 2021) It helps to cure diseases such as edema  lata_seeds.jpg  ages/vigna_umbel‐ lata_seeds.jpg  26.  Rice bean  V. umbellata  lata_see fault/files/ ds.jpg im‐  It helps in boosting energy, protecting  https://cdn.shopify.com/ and increases digestibility [17,23].  ItIthelps  helpsin inboosting  boostingener  energy, gy,  protecting  https://cdn.shopify.com/ It helps in boosting energy, protecting  https://cdn lata_see .shds.jpg opify.com   / ages/vigna_umbel‐   cardiovascular health, improving immun‐ s/files/1/2600/9462/prod‐ pr It otecting helps in car boosting diovascular  energy, protecting  https://cdn.shopify.com/ cardiovascular health, improving immun‐ s/files/1/2600/9462/prod‐ cardiovascular health, improving immun‐ s/files/1/2600/9462/prod‐ It helps in boosting energy, protecting  https://cdn.shopify.com/ It helps in boosting energy, protecting  https://cdn lata_see .shds.jpg opify.com   / 27.  Black gram  V. mungo  ity, maintaining skin health, building  ucts/kali‐ health, improving immunity, https://cdn.shopify.com/s/ cardiovascular health, improving immun‐ s/files/1/2600/9462/prod‐ 27.  Black gram  V. mungo  Itity, help  maintainin s in boosting g skin energy,  health, protecting  building   https://cdn ucts.sh /kal opify i‐ .com/ 27.  Black gram  V. mungo  cardiova ity, maintainin scular health, g skin improv  health,ing  bu ilding immu n‐ s/files/1/2600/9 ucts/kal462/prod i‐ ‐ cardiovascular health, improving immun‐ s/files/1/2600/9462/prod‐ strong bones, managing diabetes and  black_large.jpg?v=15164 maintaining skin health, files/1/2600/9462/products/ 27.  Black gram  V. mungo  ity, maintaining skin health, building  ucts/kali‐ cardiova strongscu  bones, lar health,  managin  improv g diabing etes immu  and n‐ s/file black_large.jpg?v=15164 s/1/2600/9462/prod‐ 27. 27.  Black Black gram gram  V V. . mungo mungo  strong ity, maintainin  bones, managin g skin health, g diab betes uilding  and   black_large.jpg?v=15164 ucts/kali‐ 27.  Black gram  V. mungo  Itity, help  maintainin s in boosting g skin energy,  health, protecting  building   https://cdn ucts.sh /kal opify i‐ .com/ strengthening the nervous system [16,18].  78931  building strong bones, kaliblack_large.jpg?v=15164789 strong bones, managing diabetes and  black_large.jpg?v=15164 27.  Black gram  V. mungo  ity, maintaining skin health, building  ucts/kali‐ strengthening the nervous system [16,18].  78931  streng strong thening  bones, the managin  nervous g  diab system etes [16,18].  and   black_large.jpg?v=15164 78931  cardiova strongscu  bones, lar health,  managin  improv g diabing etes immu  and n‐ s/file black_large.jpg?v=15164 s/1/2600/9462/prod‐ managing diabetes and 31 (accessed on 22 May 2021)   strengthening the nervous system [16,18].  78931  strong bones, managing diabetes and  black_large.jpg?v=15164 strengthening the nervous system [16,18].  78931  27.  Black gram  V. mungo  streng ity, maintainin thening theg  nervous skin health,  syst em building  [16,18].    uc78931 ts/kal i‐ It str help engthening s to manage the nervous blood pressure, boost  https://www.specialty‐ It helps to manage blood pressure, boost  https://www.specialty‐   streng It helpthening s to manage  the nervous  blood pressure,  system [16,18].  boost   https://www.specialty 78931  ‐ strong bones, managing diabetes and  black_large.jpg?v=15164 system [16,18]. heart health and prevent anemia, thus  pro‐   It helps to manage blood pressure, boost  https://www.specialty‐ 28.  Pigeon pea   Cajanus cajan  heart health and prevent anemia, thus  pro‐ Itheart  help shealth  to manage  and prevent  blood pressure,  anemia,  thus boos t  https://www.specialty pro‐ ‐ streng It helpthening s to manage  the nervous  blood pressure,  system [16,18].  boost   https://www.specialty 78931  ‐ 28.  Pigeon pea   Cajanus cajan  strengthening the immune system  duce.com/sppics/11653.p 28.  Pigeon pea   Cajanus cajan  It helps to manage blood   heart health and prevent anemia, thus  pro‐ It help streng s tothening  manage the  blood  immune  pressure,  system  boo  st  duce.com/sppics/11653.p https://www.specialty‐   heart streng  health thening  and  the prevent  immune  ane m syia, stem  thus    duce.com/sppics/11653.p https: pro‐ heart health and prevent anemia, thus  pro‐ 28.    Pigeon pea   Cajanus cajan    [18,20,22].  ng  28.  Pigeon pea   Cajanus cajan  pressure, boost heart health and 28.  Pigeon pea   Cajanus cajan  strengthening the immune system  duce.com/sppics/11653.p heart health and prevent anemia, thus  pro‐ [18,20,22].  //www.specialtyproduce.com/ ng  strengthening [18,20,22]  the immune .   system  duce.com/sppics/11653.p ng  It help streng s tothening  manage the  blood  immune  pressure,  system  boo  st  duce.com/sppics/11653.p https://www.specialty‐ 28. 28.  Pig Pigeon eon pea pea   Cajanus Cajanus cajan cajan  prevent anemia, thus   Supplies L‐Dopa that turns into dopa‐ [18,20,22].  ng  sppics/11653.png (accessed on Sustreng ppliesthening  L‐Dopa the  that immune  turns in sy tostem  dopa  ‐ duce.com/sppics/11653.p Supplies L‐Do[18,20,22] pa that turns .   into dopa‐ ng  heart health and [18,20,22]  prevent .  anemia, thus  pro ng ‐   strengthening the immune mine, which helps to improve mood,  https://www.healthbene‐ 28.  Pigeon pea   Cajanus cajan  22 May 2021) Supplies L‐Dopa that turns into dopa‐ mine, which helps [18,20,22]  to improve .   mood,  https://www.healthbene ng  ‐ Su mine, streng pplies  which thening  L‐Do helps pa the  that  to immune   turns improve  in sy to mood, stem  dopa  ‐  https://www.healthbene duce.com/sppics/11653.p‐ Supplies system L‐[Do 18,pa 20 ,that 22]. turns into dopa‐ mental clarity, sense of well‐being, better  fitstimes.com/9/gal‐ mine, which helps to improve mood,  https://www.healthbene‐ 29.  Velvet bean  Mucuna pruriens  mental Supplies  clarity  L‐Do , sense pa that  of  turns well‐b in eing, to dopa  better‐   fitstimes.com/9/gal‐ mental mine, clarity  which,  sense helps [18,20,22]   of to  improve well .  ‐being,  mood,  better   https://www.healthbene fitstimes.com/9/gal ng  ‐ ‐ mine, which helps to improve mood,  https://www.healthbene‐ sleep and brain function. Additionally, it  lery/velvet‐bean/Pods‐ 29.  Velvet bean  Mucuna pruriens  Supplies L-Dopa that turns into 29.  Velvet bean  Mucuna pruriens  mental clarity, sense of well‐being, better  fitstimes.com/9/gal‐ mine, which helps to improve mood,  https://www.healthbene‐ sleep and brain function. Additionally, it  lery/velvet‐bean/Pods‐ mental sleep an clarity d brain , sense  function.  of well  Ad‐bdieing, tionally,  better it   lery/velvet fitstimes.com/9/gal ‐bean/Pods‐ ‐ mental Supplies  clarity  L‐Do , sense pa that  of  turns well‐b in eing, to dopa  better‐   fitstimes.com/9/gal‐ 29.  Velvet bean  Mucuna pruriens  dopamine, which helps to helps to combat Parkinson’s disease and  of‐Velvet‐beans.jpg  29.  Velvet bean  Mucuna pruriens  29.  Velvet bean  Mucuna pruriens  sleep and brain function. Additionally, it  lery/velvet‐bean/Pods‐   https: mental helps to clarity  comb,a sense t Park of inson’s  well‐ bdi eing, sease better  and   fitstimes.com/9/gal of‐Velvet‐beans.jpg‐  sleep helps  an to dcom  brain bat function.  Parkinson’s  Ad di ditionally, sease and it   lery/velvet of‐Velvet‐‐bea bean n/Pods s.jpg ‐ sleep mine,  an d which  brain helps  function.  to improve  Additionally,  mood,  it https://www.healthbene lery/velvet‐bean/Pods‐‐ improve mood, mental clarity, 29.    Velvet bean  Mucuna pruriens  depression [18].  helps to combat Parkinson’s disease //www  and  .healthbenefitstimes. of‐Velvet‐beans.jpg  sleep and brain depressi  function. on [18]  Ad. ditionally, it  lery/velvet‐bean/Pods‐ depression [18].  mental helps helps  to to clarity   com combb,aa sense tt  Park Park of inson’s inson’s  well‐  bdi di eing, sseease ase better   and and    fitstimes.com/9/gal of of‐‐Velvet Velvet‐‐bean beans.jpg s.jpg‐   Mucuna sense of well-being, better sleep 29.    Velvet bean  Mucuna pruriens  29. Velvet bean com/9/gallery/velvet-bean/ depression [18].  helps to combat Parkinson’s disease and  of‐Velvet‐beans.jpg  pruriens This sleep bean and  and brain   isbrain  rich depressi function.   function. in vitamin on [18]  Ad C. di and tionally,  vitamin  it   lery/velvet https://i.p ‐beain n/Pods ‐ ‐ depression [18].  Pods-of-Velvet-beans.jpg This bean is rich in vitamin C and vitamin  https://i.pin‐ This bean is rich in vitamin C and vitamin  https://i.pin‐ depression [18].  Additionally, it helps to combat helps A, which  to com  help ba tin Park  streng inson’s thening  dise the ase  im and‐   of‐img.com/origi Velvet‐beans.jpg ‐   (accessed on 22 May 2021) This bean is rich in vitamin C and vitamin  https://i.pin‐   Psophocarpus  A, which help in strengthening the im‐ img.com/origi‐ This A,  which bean is help  rich in in streng  vitamin thening  C and the  vitamin  im‐   img.com/origi https://i.pin‐‐ This bean is rich in vitamin C and vitamin  https://i.pin‐ Parkinson’s disease and 30.  Winged bean  Psophocarpus  mune system depressi  and supporting on [18].   the body  nals/21/29/fa/2129fa4b59 Psophocarpus  A, which help in strengthening the im‐ img.com/origi‐ 30.  Winged bean  tetragonolobus  This mune  bean  sy stem is rich and  in  vitamin supporting  C and  the vitamin  body   nals/21/29/fa/2129fa4b59 https://i.pin‐ 30.  Winged bean  mune A, which  system  help and  in streng  supporting thening the the body  im‐  nals/21/29/fa/2129fa4b59 img.com/origi‐ A, which depr ession help in[ 18 streng ]. thening the im‐ img.com/origi‐ Psophocarpus  tetragonolobus  against any possible infections and dis‐ 5f818e23046dd8aae4b290 te Psophocarpus tragonolobus   Psophocarpus  30.  Winged bean  mune system and supporting the body  nals/21/29/fa/2129fa4b59 against A, which any help  possib  in streng le infection thening s and  the  di ims‐‐ 5f818e23046dd8aae4b290 img.com/origi‐ against any possible infections and dis‐ 5f818e23046dd8aae4b290 30. 30.   Winged Winged  bean bean   This mune mune  bean   sy sy stem stem is rich  and and  in   vitamin supporting supporting  C and   the the vitamin   body body    nals/21/29/fa/2129fa4b59 nals/21/29/fa/2129fa4b59 https://i.pin‐ tetragonolobus  Psophocarpus  eases [16,22,23].  .png  te tetr tragon agonolob olobu uss   against any possible infections and dis‐ 5f818e23046dd8aae4b290 30.  Winged bean  mune system eases  and [16,22  supporting ,23].   the body  nals/21/29/fa/2129fa4b59 .png    eases [16,22,23].  .png  against against A, which  any any help   possib possib  in streng llee  infection infection thening ss  and and  the   di di imss‐‐‐ 5f818e23046dd8aae4b290 5f818e23046dd8aae4b290 img.com/origi‐ tetragonolobus    Psophocarpus  eases [16,22,23].  .png  against any possible infections and dis‐ 5f818e23046dd8aae4b290 30.  Winged bean  mune system eases  and [16,22  supporting ,23].   the body  nals/21/29/fa/2129fa4b59 .png  eases [16,22,23].  .png  tetragonolobus  eases [16,22,23].  .png  against any possible infections and dis‐ 5f818e23046dd8aae4b290 eases [16,22,23].  .png    Agronomy 2021, 11, x FOR PEER REVIEW  5  of  23  https://www.firstfor‐ It contains antioxidants that promote  women.com/wp‐con‐ proper digestion and keep intestines  tent/up‐ 22.  Lupin bean   Lupinus albus  healthy. Additionally, aids in weight loss,  loads/sites/2/2019/01/wh provides essential vitamins and minerals  at‐are‐lupin‐beans‐bene‐   and reduces high blood pressure [18,22].  fits.jpg?w=715  Beans are an excellent source of protein,  https://gar‐ Common  lower in calories and saturated fat than  23.  Phaseolus vulgaris  den.org/pics/2018‐09‐ bean  some other protein sources such as meat  14/Alicemac/b92064.jpg  [16,17].  http://peb‐ The dried pods of runner bean have diu‐ bleandfern.ca/wp‐con‐ 24.  Runner bean  P. multiflorus  retic properties that help to cure urinary  tent/up‐ tract infections and reduce weight [18,23].  loads/2015/03/runner‐ bean.jpg  It contains complex carbohydrates and a  https://www.healthbene‐ good amount of zinc, which is useful to  fitstimes.com/9/gal‐ Hyacinth‐ 25.  Lablab purpureus  lose weight and prevent cancer, respec‐ lery/hyacinth‐ bean  tively, as Zn prevents cells mutating and beans/Pods‐of‐Hyacinth‐ assists cell division [16,22].  beans.jpg  https://www.feedipe‐ dia.org/sites/de‐ It helps to cure diseases such as edema  26.  Rice bean  V. umbellata  fault/files/im‐ and increases digestibility [17,23].  ages/vigna_umbel‐ lata_seeds.jpg  It helps in boosting energy, protecting  https://cdn.shopify.com/ cardiovascular health, improving immun‐ s/files/1/2600/9462/prod‐ 27.  Black gram  V. mungo  ity, maintaining skin health, building  ucts/kali‐ strong bones, managing diabetes and  black_large.jpg?v=15164 strengthening the nervous system [16,18].  78931  It helps to manage blood pressure, boost  https://www.specialty‐ heart health and prevent anemia, thus  pro‐ 28.  Pigeon pea   Cajanus cajan  strengthening the immune system  duce.com/sppics/11653.p Agronomy 2021, 11, 2238   6 of 24 [18,20,22].  ng  Supplies L‐Dopa that turns into dopa‐ mine, which helps to improve mood,  https://www.healthbene‐ mental clarity, sense of well‐being, better  fitstimes.com/9/gal‐ Table 1. Cont. 29.  Velvet bean  Mucuna pruriens  sleep and brain function. Additionally, it  lery/velvet‐bean/Pods‐ Sl. Common Scientific Sources of Images helps to combat Parkinson’s disease and  of‐Velvet‐beans.jpg  Picture Major Use No Name Name [Accessed on 22 May 2021] depression [18].  This bean is rich in vitamin C This bean is rich in vitamin C and vitamin  https://i.pin‐ and vitamin A, which help in https://i.pinimg.com/ A, which help in strengthening the im‐ img.com/origi‐ Psophocarpus  Psophocarpus strengthening the immune originals/21/29/fa/2129fa4b5 30.  Winged bean  mune system and supporting the body  nals/21/29/fa/2129fa4b59 30. Winged bean tetragonolobus tetragonolobus  system and supporting the body 95f818e23046dd8aae4b290.png Agronomy 2021, 11, x FOR PEER REVIEW  6  of  23  against any possible infections and dis‐ 5f818e23046dd8aae4b290 against any possible infections (accessed on 22 May 2021) Agronomy 2021, 11, x FOR PEER REVIEW  eases [16,22,23].  .png  6  of  23  and diseases [16,22,23]. https://i.et‐ https: It enhances the function of the It enhances the function of the nervous  systatic.com/7772783/r/il //i.etsystatic.com/7772783/r/ https://i.et‐ Canavalia nervous system, prevents bone 31.  Sword bean  Canavalia gladiata  system, prevents bone resorption and in‐ /442d44/1253663464/il_fu 31. Sword bean il/442d44/1253663464/il_ It enhances the function of the nervous  systatic.com/7772783/r/il gladiata resorption and inhibits bone fullxfull.1253663464_bodq.jpg hibits bone turn over [16–18].  llxfull.1253663464_bodq. 31.  Sword bean  Canavalia gladiata  system turn , preven over [ts 16 bone –18]. resorption and in‐ /442d44/1253663464/il_fu (accessed on 22 May 2021) jpg  hibits bone turn over [16–18].  llxfull.1253663464_bodq. jpg  It is a fiber‐rich bean that helps in remov‐   It is a fiber-rich bean that helps ing toxins and waste products in the gut.  https://i.et‐ in removing toxins and waste It is a fiber‐rich bean that helps in remov‐ Helps in preventing constipation and ab‐ systatic.com/15567684/r/i products in the gut. Helps in ing toxins and waste products in the gut.  https://i.et‐ 32.  Jack bean  Canavalia. ensiformis  dominal distention. The Vitamin C pre‐ l/fff‐ preventing constipation and https://i.etsystatic.com/1556 Helps in preventing constipation and ab‐ systatic.com/15567684/r/i Canavalia. abdominal sent in this distention. bean helps The in defending 7684/r/il/f  the  def/2833501891 ffdef/2833501891 /il_794xN 32.  Jack bean  Canavalia. ensiformis  dominal distention. The Vitamin C pre‐ l/fff‐ 32. Jack bean ensiformis Vitamin C present in this bean /il_794xN.2833501891_8key.jpg body against disease‐causing microorgan‐ .2833501891_8key.jpg  sent in this bean helps in defending the  def/2833501891/il_794xN helps in defending the body (accessed on 22 May 2021) isms such as bacteria and viruses [23].  body against disease‐causing microorgan‐ .2833501891_8key.jpg  against disease-causing isms such as bacteria and viruses [23].  microorganisms such as 3. Economic Importance of Food Legumes  bacteria and viruses [23]. Food legumes are mainly essential to developing countries, as they offer a source of  3. Economic Importance of Food Legumes  protein, trace nutrients and calories to people who are not able to afford more pricy nutri‐ 3. Economic Food legu Importance mes are m of ain Food ly essen Legumes tial to developing countries, as they offer a source of  tional sources [24]. These are perfect crops for accomplishing developmental goals such  protein, trace nutrients and calories to people who are not able to afford more pricy nutri‐ Food legumes are mainly essential to developing countries, as they offer a source as improving the health and nutrition of humans, reducing poverty and enhancing the  tional sources [24]. These are perfect crops for accomplishing developmental goals such  of protein, trace nutrients and calories to people who are not able to afford more pricy resilience of the ecosystem [25]. Due to the involvement of food legumes such as pulses in  as improving the health and nutrition of humans, reducing poverty and enhancing the  nutritional sources [24]. These are perfect crops for accomplishing developmental goals nutritional diversity that helps to eliminate hunger and malnutrition, the Food and Agri‐ resilience of the ecosystem [25]. Due to the involvement of food legumes such as pulses in  such as improving the health and nutrition of humans, reducing poverty and enhancing culture Organization (FAO) of the United Nations stated 2016 as the International Year of  nutritional diversity that helps to eliminate hunger and malnutrition, the Food and Agri‐ the resilience of the ecosystem [25]. Due to the involvement of food legumes such as pulses Pulses [11]. Food legumes can potentially manage sustainable agriculture through the en‐ culture Organization (FAO) of the United Nations stated 2016 as the International Year of  in nutritional diversity that helps to eliminate hunger and malnutrition, the Food and hancement of productivity as well as crop diversity and a reduction in the dependency on  Pulses [11]. Food legumes can potentially manage sustainable agriculture through the en‐ Agriculture Organization (FAO) of the United Nations stated 2016 as the International Year external inputs, as food legumes have the capabilities of nitrogen (N) fixation by biological  hancement of productivity as well as crop diversity and a reduction in the dependency on  of Pulses [11]. Food legumes can potentially manage sustainable agriculture through the means, efficient roles in nutrient and water retention, the ability to increase soil organic mat‐ enhancement external inputs, of pr as oductivity  food leguas mes well  have as cr the op capabilities diversity and  of nitrogen a reduction  (N) in fixation the dependency  by biologic onal  ter (SOM) and aid the recovery of soil health by improving soil properties [26]. As one of  means, efficient roles in nutrient and water retention, the ability to increase soil organic mat‐ external inputs, as food legumes have the capabilities of nitrogen (N) fixation by biological the most important food legume producing countries, India has started introducing cool‐ means, ter (SOM) effi cient and aid roles  the in recovery nutrient of and  soil water  health retention  by improving , the ability  soil properties to increase [26]. soil As or ganic one of  season food legumes that fit the rice‐fallow ecology to change the rice‐fallow system into a  matter the most (SOM)  important and aid  food the legume recovery  producing of soil health  countries, by impr  India oving  has started soil properties  introduci [26 ng ]. cool As‐ rice‐food legume system that will help to not only uplift the socio‐economic condition of  one of the most important food legume producing countries, India has started introducing season food legumes that fit the rice‐fallow ecology to change the rice‐fallow system into a  smallholder rice farmers, ensuring their food and nutritional security, but also to break the  cool-season food legumes that fit the rice-fallow ecology to change the rice-fallow system rice‐food legume system that will help to not only uplift the socio‐economic condition of  pests and diseases cycle of rice and improve the soil’s structure and fertility through the  into a rice-food legume system that will help to not only uplift the socio-economic condition smallholder rice farmers, ensuring their food and nutritional security, but also to break the  augmentation of the overall sustainable productivity of the rice‐fallow system [27].  of smallholder rice farmers, ensuring their food and nutritional security, but also to break pests and diseases cycle of rice and improve the soil’s structure and fertility through the  the pests and diseases cycle of rice and improve the soil’s structure and fertility through augmentation of the overall sustainable productivity of the rice‐fallow system [27].  4. Grain Composition of Food Legumes  the augmentation of the overall sustainable productivity of the rice-fallow system [27]. The grain of a food legume is composed of protein, dietary fiber, starch or oil in the  4. Grain Composition of Food Legumes  4. Grain Composition of Food Legumes form of energy, macro and micronutrients, vitamins and several bioactive phytochemicals  The grain of a food legume is composed of protein, dietary fiber, starch or oil in the  such T h as e an gratio inx oidan f a fots o d[1l9] eg.u The me iprot s com ein po c so edntent of p rof ot efoo in,d d ileg etau rymes fibe (T r, sable tarch 2) o rva oiries l in tfrom he fo r20 m– form of energy, macro and micronutrients, vitamins and several bioactive phytochemicals  o40% f ene [28 rgy],. macro and micronutrients, vitamins and several bioactive phytochemicals such as such as antioxidants [19]. The protein content of food legumes (Table 2) varies from 20– antioxidants [19]. The protein content of food legumes (Table 2) varies from 20–40% [28]. 40% [28].  Table 2. Percent protein, carbohydrate and lipid present in different food legumes.  Table 2. Percent protein, carbohydrate and lipid present in different food legumes.  Food Legumes  Protein %  Carbohydrate%  Lipid%  Chickpea  21  62.95  6.04  Food Legumes  Protein %  Carbohydrate%  Lipid%  Groundnut  26  16.13  49.24  Chickpea  21  62.95  6.04  Lentil  25  63.35  1.06  Groundnut  26  16.13  49.24  Black gram  25  60  1.64  Lentil  25  63.35  1.06  Mung bean  24  62.62  1.15  Black gram  25  60  1.64  Soybean  40  6.4  21.3  Mung bean  24  62.62  1.15  Pea  25  51.3  1.2  Soybean  40  6.4  21.3  Pigeon pea  22  62.78  1.49  Pea  25  51.3  1.2  Cowpea  24  35.5  0.91  Pigeon pea  22  62.78  1.49  Faba bean  29  44.7  1.4  Cowpea  24  35.5  0.91  Faba bean  29  44.7  1.4    Agronomy 2021, 11, 2238 7 of 24 Table 2. Percent protein, carbohydrate and lipid present in different food legumes. Food Legumes Protein % Carbohydrate% Lipid% Chickpea 21 62.95 6.04 Groundnut 26 16.13 49.24 Lentil 25 63.35 1.06 Black gram 25 60 1.64 Mung bean 24 62.62 1.15 Soybean 40 6.4 21.3 Pea 25 51.3 1.2 Pigeon pea 22 62.78 1.49 Cowpea 24 35.5 0.91 Faba bean 29 44.7 1.4 White lupin 38 0.0 10.0 Adzuki bean 20 62.90 0.53 Navy bean 22 60.75 1.50 Lima bean 21 63.38 0.69 Source: Jukanti1 et al. [15,19], Kamboj and Nanda [17], Amarowicz [22], USDA [29], Ge [30]. It also contains oligosaccharides, phytoestrogens, phyto hemagglutinins (lectins), saponins and phenolic compounds that play metabolic roles in humans who consume these foods frequently [22]. The primary phenolic compounds found in a legume seed and seed coats are phenolic acids, condensed tannins and flavonoids [19]. The phenolic compounds are varyingly distributed in different legume seeds (Table 3) and colored legumes are found with more phenolic compounds than uncolored legumes [19]. The total phenolic content (TPC) provides a wide variability in various food legumes and the antioxidant activity of these legumes is directly related to their TPC [31]. Table 3. Variable phenolic compounds present in food legumes. Legume Phenolic Compounds Quantity (g/g) Found in References Hydroxybenzoics 5.69 Dihydroxybenzoic acid 3.68 p-hydroxybenzoic acid 1.48 Protocatechuic acid 0.36 Protocatechuic aldehyde 0.13 2,3,4-trihydroxybenzoic acid 16.9–29.2 Gallic acid 90.9–136.8 Lentil Seed [18,32,33] Vanillic acid 0.59–3.22 Hydroxycinnamics 3.76 Trans-p-coumaroyl malic acid 10.02 Trans-p-coumaroyl glycolic acid 2.88 Trans-p-coumaric acid 5.74 Sinapic acid 1099–2217 chlorogenic acid 159–213 Trans-p-coumaric acid 37.3 Green Trans-p-coumaric acid derivative 6.4 Seed [18,32] lentil Trans-ferulic acid 10.1 Hydroxybenzoics, 84.92 Salicyclic acid 44.89 Vanillic acid 17.01 P-hydroxybenzoic acid 12.20 Pinto Seed [18,32,33] P-hydroxyphenyl acetic acid 8.42 bean Protocatechuic acid 2.40 Hydroxycinnamic acids 36.31 Trans-ferulic acid 11.80 Agronomy 2021, 11, 2238 8 of 24 Table 3. Cont. Legume Phenolic Compounds Quantity (g/g) Found in References Hydroxybenzoics, 21.66 Vanillic acid 10.71 P-hydroxyphenyl acetic acid 6.92 Cannellini [32,33] Seed P-hydroxybenzoic acid 4.30 bean Hydroxycinnamic acids 23.52 Trans-ferulic acid 8.95 Protocatechuic acid 67.6 Crude [18,20,32] Protocatechuic aldehyde 7.71 Adzuki extract Trans-p-coumaric acid 31.3 bean [18,32,33] Seed Trans-p-coumaroyl malic acid 4.57 Gallic 27 Protocatechuic 18.9 Seed coat Cowpea P-hydroxybenzoic 5.81 [32] Ferulic 26.25 Seed Coumaric acid 1.25 Protocatechuic 217 Cranberry [32,34] Seed coat P-hydroxybenzoic acid 239 beans P-hydroxybenzoic acid 19.2 to 60.5 Chickpea Syringic acid 45.9 Seed [18,32,35] Gentisic acid 8.1 to 26.0 Protocatechuic acid 12.1 to 163.5 Pea Seed [32,35] P-hydroxybenzoic acid 45.4 to 101.7 Benzoic acids 57 Seed soybean Protocatechuic acids 44 [32,33] Ferulic acid 95 10.33 Bean kidney P-hydroxybenzoic [32] 10 Sprout 5. Nutritional and Health Benefits Food legumes are essential for the human diet as an important source of nutrients and amino acids, and it has been suggested by the Finnish National Nutrition Council and the Eatwell Guide in the UK to increase the consumption of vegetable protein predominantly from food legumes rather than the consumption of animal protein [35]. Replacing animal protein with vegetable protein has beneficial and significant positive effects on human health such as reducing cholesterol, useful in the diet of diabetics, controlling hypertension, maintaining a healthy weight, improving the health of the cardiovascular system and preventing some cancers [36,37]. The physiological effects of various food legumes differ significantly based on the variability of phytochemicals present in them, as the intake of these phytochemicals may provide various health benefits and protection against several diseases [16]. Food legumes have a comparatively high vitamins and minerals content (Table 4), mainly potassium, calcium, magnesium, zinc, iron and thiamin (vitamin B1) [23]. It has been suggested by several researchers to decrease animal protein consumption and replace it with proteins derived from plants because a positive correlation was found between a high intake of animal protein and a rise in cardiovascular disease, whereas a negative correlation was found between a high intake of plant protein and a reduction in cardiovascular diseases and overall mortality [38]. Agronomy 2021, 11, 2238 9 of 24 Table 4. Vitamins and minerals constituent of different food legumes. Soybean Chickpea Pea (Per Pigeon Pea Groundnut Lentil Mung Bean Faba Bean Vitamins and Grass Pea (Per Cowpea (Per Lupin (Per (Per 100 g (Per 100 g 100 g (Per 100 g (Per 100 g (Per 100 (Per 100 g (Per 100 g Minerals 100 g Seed) 100 g Seed) 100 g Seed) Seed) Seed) Seed) Seed) Seed) g Seed) Seed) Seed) tocopherol 6.5 mg 2.24 mg 0.11 mg - - - - - - 0.08 mg 1.1 mg tocopherol 23.0 mg 10.68 mg 5.0 mg - - - - - - - 15.3 mg Vitamin B1 1.0 mg 0.477 mg 0.7 mg 0.37–0.54 mg 0.345 mg 0.643 mg 0.64 mg 0.87 mg 0.621 mg 0.55 mg 0.32 mg Vitamin B2 0.46 mg 0.212 mg 0.27 mg 0.18–0.27 mg 0.094 mg 0.187 mg 0.135 mg 0.21 mg 0.233 mg 0.23 mg 0.59 mg Vitamin B3 - 1.541 mg - 1.23–2.02 mg - 2.96 mg 12.06 mg 2.6 mg 2.251 mg - - Vitamin B5 - 1.588 mg - 1.44–2.24 mg 0.703 mg 1.26 mg 1.76 mg 2.14 mg - - - Vitamin B6 1.1 mg 0.55 mg 0.12 mg 0.49–0.66 mg 0.171 mg 0.283 mg 0.348 mg 0.5 mg 0.382 mg 0.37 mg 0.4 mg -Carotene - 40.00 mg - 24.08–41.01 g - - - - 68 g - - Vitamin K - 9.00 mg - - 1.7 g - - 5.0 g - - - Calcium 0.21 g 160 mg 0.05 g 0.97–1.03 g - 130 mg 92 mg 35 mg 132 mg 0.14 g 0.24 g Potassium 1.8 g 875.0 mg 1 g 8.75–9.2 g 475 mg 1392 mg 705 mg 677 mg 1246 mg 1.2 g 1.1 g Magnesium 0.22 g 138 mg 0.12 g 1.14–1.24 g 91 mg 183 mg 168 mg 47 mg 189 mg 0.15 g 0.13 g Phosphorus - 366.0 mg - 4.68–5.13 g 267 mg - 376 mg 281 mg 367 mg - - Iron 8.0 mg 5.0 mg 5.2 mg 1.33–1.53 mg 4.29 mg 5.23 mg 4.58 mg 6.51 mg 6.74 mg 6.7 mg 5.4 mg Copper 1.2 mg 0.847 mg 0.66 mg 6.98–7.95 g 0.458 mg 1.057 mg 1.144 mg 0.75 mg 0.941 g 1.1 mg 0.6 mg Zinc 4.2 mg 4.1 mg 3.2 mg 4.35 mg 2.21 mg 2.76 mg 3.27 mg 3.27 mg 2.68 mg 4.1 mg 5.1 mg Selenium 19 g - 1.6 g - - - - 0.1 g 8.2 g 2 g 4.7 g Source: Jukanti1 et al. [15], Arslan [19,21], Celmeli et al. [14], Mathobo et al. [31], Budhathoki et al. [39–46]. Agronomy 2021, 11, 2238 10 of 24 6. Abiotic Stresses Although food legumes grow in diverse climates, different abiotic stresses such as temperature stress, drought, salinity and heavy metals may hamper the grain quality of food legumes [47]. Food legumes contain essential minerals and nutrients essential for human beings and a deficiency of these elements may lead to malnutrition or other health issues in the human body [48]. These essential elements of food legumes are affected and altered by variable abiotic stresses [49,50]. 6.1. Temperature Stress Food legumes can be alienated into two groups based on different growing seasons, specifically warm- or tropical-season and cool-season food legumes [51]. Common beans, black grams, cowpeas, pigeon peas, mung beans, peanuts and soybeans are mainly grown in hot and humid weather and are known as warm-season food legumes [52]. On the other hand, lentils, peas, chickpeas, grass peas, broad beans and dry beans are known as cool-season food legumes [53]. Food legumes exhibit variable levels of sensitivity to high and low-temperature stresses, which diminishes their performance at different growing stages [54]. Both high and low temperatures may act as abiotic stresses for food legumes if the temperature rises or falls beyond the required temperature level needed for the proper growth and development of the food legumes. 6.1.1. High Temperature Mainly, cool-season food legumes are more sensitive to a high temperature than warm-season food legumes and if the temperature rises above the threshold temperature (Table 5), it turns into severe heat stress at particular growth stages [55]. Agronomy 2021, 11, 2238 11 of 24 Table 5. Effect of heat stress on food legumes at different stages of growth. Threshold Heat Stress Food Legumes Growth Stage Effects References Temp. (Day/Night) Lentil 15–30 Reproductive stage 38/23 Reduced electron flow during photosynthesis [56–59] 30–35 Vegetative development Decreased pollen production, impaired photosystem II Peanut Anthesis 38/22 [56,57] Pod and grain yield Reduced photosynthetic activity; impeded electron donation by OEC (Oxygen-Evolving Pea 15–25 Vegetative growth 30/25 Center) of PS II; reduced oxygen evolution and photochemical energy storage; shutting [57,59,60] of PSI reaction center 15–30 Growth Impaired RuBisCO and sucrose metabolism in leaves; disrupted PSII; damaged structure Chickpea 35/16 [56,59] 25 Reproductive growth and functioning of related enzymes and proteins; decreased stigma receptivity Pigeon pea 18–30 Flowering 45/40 Damaged PSII [56,59] Cowpea 18–28 Flowering 36/27 Tapetal cells degeneration and anther indehiscence [56,57,59] 26 Reproductive 38/30 Abscission of flower, reduced reproductive development; pollen germination, pollen tube 23 Post-anthesis 35 Soybean growth and yield; shrunken pollen; damaged PSII; reduced chlorophyll content and [56–61] 30.2 Pollen germination 35 photosynthesis; decreased Fv/Fm 36.1 Pollen tube growth 38/30 Common bean 20–24 Flowering 32/27 Carbon assimilation limited and NADPH supply reduced; reduced photosynthetic rate [59,62] Efficiency of photosynthesis impaired; reduced sucrose in leaves due to decreased Flowering Mung bean [57,59,63] 28–35 >40/25 sucrose synthesizing enzymes and RuBisCO activity Pod development Broad bean 25–35 Flowering 42 Reduced photosynthesis [57,59,64] Black gram 25–35 Flowering 35 Reduced photosynthesis [65] Cytokinin level reduced in seed leading to diminished seed cell numbers and growth Lupin 20–30 Flowering 38 [57,59] rates of seed, reduced seed growth and development processes Agronomy 2021, 11, 2238 12 of 24 Seed filling is intently associated with the whole-plant senescence process and early senescence takes place by heat stress during the seed filling process that enhances the remobilization of assimilating from the source to sink, thus reducing the seed filling du- ration [66]. The grain development of food legumes is affected by heat stress because the tapetum layer of the grain is disintegrated by heat stress, which decreases the nutrient supply to the microspores and such an impairment leads to anther dehiscence prematurely, impedes carbohydrate synthesis and distribution to the grain and develops fractured em- bryos and poor pods, which ultimately reduces the grain yield [59]. Heat stress significantly decreased the yield of lentils by 70% when it was exposed to a heat wave of 35 C for six days, as lentils are a cool seasoned food legume [66]. The grain composition and quality of food legumes is affected by heat stress in many ways, as heat stress mainly affects the reproductive phases (Figure 1). Figure 1. Effect of heat stress on the reproductive stage of food legumes [64]. Heat stress hampers grain composing elements such as sugar, starch, protein, fatty acids and protein (Table 6). It also alters various components accumulating, primarily, in grain-like starch and proteins by preventing the enzymatic processes required for starch and protein synthesis [67]. The temperature of air and soil increases under heat stress, which adversely affect the grain protein content and quality of food legumes [68]. In most of the food legumes, the grain oil content was found to be increased under heat stress, whereas the protein content was found to be decreased [69,70]. The oil content in the grain was increased under heat stress by 20 and 37% in peanuts and soybeans, respectively [71]. However, in kidney beans, the oil content was found to be declined by 23% under heat stress [72]. The fatty acid composition in the grain of food legumes changes due to heat stress. Heat stress considerably enhanced the oleic acid content, whereas the linoleic acid content was found to be decreased in different food legumes [1]. The N and P content of the soybean grain declined when the temperature rose above 40/30 C [73]. A decrease in total nonstructural carbohydrates was found with increasing temperatures and the ratio of soluble sugars to starch was also found to be decreased in various food legumes, particularly in soybeans [74]. Sucrose and oligosaccharides such as the raffinose content in grains increases with an increasing temperature and monosaccharides such as glucose and fructose decrease with an eminent temperature [75]. Agronomy 2021, 11, 2238 13 of 24 Table 6. Alteration in grain composition of food legumes under heat stress. Temperature Increase % (+) or Grain Food Legumes Decrease % () References Control Heat Stress Composition over Control (Day/Night) (Day/Night) Oleic acid +104% 15/30 C 40/30 C Linolenic acid 48.6 Soybean [1,66] 18/13 C 33/28 C Oil content +37% 18/13 C 33/28 C Sucrose 56% Total sugars 24.5% Starch 53% 20/14 C 32/26 C Protein 19.6% [1,66] Peanut Oil content +20% 20/14 C 26/20 C Oleic acid +24% 25 35/16 Soluble proteins +20% Chickpea [1,66,68,76] 25 >32/20 C Sucrose content 9% Kidney bean 28/18 C 34/24 C Oil content 22.7% [1,66,71] 6.1.2. Low Temperature Low-temperature stress or cold stress can be expressed as a temperature that causes injury or irreversible damage to a crop as it falls under the optimum temperature required for the proper growth and development of the crop. Cold stress not only hampers the vegetative stages of food legumes but also alters reproductive growth and grain compo- sitions (Table 7). During the seed germination of food legumes, cold stress enhances the susceptibility to soil-borne diseases, leading to the poor establishment of crops and even the death of seedlings [54,77]. Table 7. Impact of low temperature on some highly important food legumes. Food Legumes Cold Stress Effects Early vegetative phase damage, impaired microsporogenesis and megasporogenesis, loss of pollen germination, inhibition of pollen tube Soybean 1 C for 4, 6 and 8 h growth, abnormal pod formation and seed filling [54] and alteration in starch, protein, fat and fiber composition [78] Early vegetative phase damage, reduction in embryogenesis and poor seed Pea 3 C quality [54] Early vegetative phase damage, impaired microsporogenesis and <10 C; 10 C for megasporogenesis, pollen viability loss, loss of pollen germination, stigma Chickpea 15–30 min receptivity loss, abnormal pod formation [79] and seed filling [54] and alteration in starch, protein, fat and fiber composition [78] Broad bean 5 C for 24 h Early vegetative phase damage and poor seed quality [54] Food legumes grown in cool seasons are mainly sensitive to cold stress, mostly during the formation of a pod and seed filling [78,80]. Carbohydrate metabolism is impaired by cold stress that may lead to the energy deficiency of different reproductive organs such as style, tapetum and endosperm that ultimately causes the sterility of the gametophyte [81]. In various food legumes, it has been well recognized that phenology and grain filling were damaged by cold stress [82]. The grain filling duration and rate reduce under cold stress as grain filling depends on the source–sink relationship that declines under cold stress. The storage of amino acids, minerals and proteins in the grain of food legumes is inhibited by cold stress. In chickpeas, the sugar concentration in the grain increased, whereas storage amino acids, protein, starch, fat and crude fiber accumulation decreased under cold stress [83]. Agronomy 2021, 11, 2238 14 of 24 6.2. Drought Drought is one of the major constraints that limits food legume production, mainly in the arid and semi-arid tropics and the occurrence of drought during the grain development stages is more critical as it causes a significant yield loss [84]. In food legumes, drought highly affects the composition and quality of the grain (Table 8). Abiotic stress, particularly drought, highly influences the grain protein, fat and carbohydrate contents of food legumes. Although, a mild water scarcity during flowering may prefer an increased grain protein content in some food legumes. However, in maximum food legumes, drought reduces the N, P, Fe and Zn content of the grain that ultimately decreases the total grain protein content [85]. The fatty acid composition of a soybean grain was altered by drought that finally altered the total oil composition, oil stability and oil level in the soybean, especially during grain filling [86]. Table 8. Influences of drought stress on growth stages and grain constituents of food legumes. Drought Stress at Food Legumes Effects References Growth Stages Pod development and Lentil Yield reduction by 70 and 24%, respectively [87] reproductive phase Reproductive phase, Yield loss by 49–54, 27–40 and 49–54%, respectivelyGrain Chickpea anthesis and late protein, sodium, potassium and calcium content reduced by 41, [88,89] ripening 33, 25 and 7%, respectively Oil content of grain reduced by 3% and protein content Reproductive phase, Soybean increased by 5% [90–92] pod set and Seed filling Loss of grain yield by 46–71, 45–50 and 42%, respectively Sucrose and starch content reduced in grain by 29–47 and Reproductive, flowering Common bean 18–20% [93] and Pod filling stage Yield loss by 58–87, 49 and 40%, respectively Reproductive and Grain protein content increased by 8 and 3%, respectively Mung bean [94] vegetative stage Yield reduction by 26% Carbohydrate, fat and protein content increased by 4, 5 and Faba bean Grain filling 3–9%, respectively [83] Grain yield loss by 68% Spotted bean Reproductive stage Protein content of grain increased by 6% [87] Black gram (Mash Flowering and Loss of grain yield by 31–57 and 26%, respectively [95] bean) reproductive Reproductive and pod Cowpea Yield loss by 34–66 and 29%, respectively [92] filling Reproductive phase and Pigeon pea Grain yield loss by 40–55 and 42–57% [83] flowering Reduction in soluble sugar, crude fiber and starch in grain by Lupins 15 days after anthesis [83] 18, 11 and 43%, respectively The oil and oleic acid content in soybeans decrease simultaneously when the grain filling period faces drought [96–98]. The oil content of peanuts is influenced by drought, as drought decreases the digestible carbohydrates such as the sucrose, glucose and fructose concentration affecting the composition of fatty acids in the grain through decreasing the unloading of sugars from the stem to the developing seeds [99,100]. During pod filling, a free amino acid pool increased on cowpea grains but the incorporation of these amino acids into the protein chain was suppressed due to drought, which ultimately reduces the protein-amino acid fraction in the grain [76]. The soluble sugars and starch content decreased in the mature grain of the soybean and the common bean, respectively, under drought [100]. The oil contents of the lupin grain dropped by 50–55% under drought. Drought has a distinct effect on the mineral composition of grains of food legumes. In soybeans, the calcium (Ca), phosphorus (P), copper (Cu), manganese (Mn), molybdenum (Mo) and zinc (Zn) concentrations improved under drought, whereas, the sodium (Na), potassium (K) and calcium (Ca) content reduced but the proline content increased in Agronomy 2021, 11, 2238 15 of 24 chickpeas under drought [1]. Under drought, -tocopherol increased in soybean grains by 2–3 fold, which is helpful for preventing the auto-oxidation of a lipid as the tocopherols found in vegetable oils are well-known antioxidants [6]. During the preliminary stage of seed expansion, the seed sink ability reduces due to drought, which results in a decreasing number of endosperm cells and amyloplasts [76]. Acid invertase is a vital enzyme for the seed development of food legumes and its activity decreases due to drought, thus inhibiting sucrose import. As a result, the scarcity of energy sources and prominent levels of abscisic acid (ABA) lead to a poor grain set under drought [101]. 6.3. Salinity Salt stress is one of the major concerns in arid and semi-arid regions, which comprise about 40% of the land area of the earth. It is a significant constraint for food legume production. Salinity stress interrupts grain composition and the quality of food legumes (Table 9) by affecting hormonal interactions, causing a nutritional imbalance, osmotic effects and ionic toxicity [102,103]. Salt stress disturbs the uptake, accumulation and transport of competitive nutrients in food legumes. The nutritional imbalance in legume plants takes place due to the profusion of the sodium (Na ) and chloride (Cl ) ion concentration at the rhizosphere region because these ions interfere with essential nutrients such as N, P, K, Ca, Zn, boron (B), Mg, Cu and iron (Fe) [104]. Salt stress causes an ionic imbalance + 2+ 2+ + 2+ mainly of K and Ca , creating harmful effects on plants [8]. Ca , K and Mg play a vital role in plant photosynthetic activity, but their concentration decreases under higher + + salt contents due to a competitive uptake of Na and K ion flux, resulting in a deficiency of K and significant yield losses [105]. Salt stress highly affects the oil content and grain protein content because of disturbance in nitrate (NO ) uptake and N metabolism of food legumes [106]. A reduction in stigma receptivity, pollen viability and photo assimilates supply during grain filling takes place due to salt stress that eventually reduces the grain yield of food legumes [107]. In mung beans, the total amount of amino acids, protein, carbohydrates and polysaccharides in the grain decreased with the increasing salt stress and the reduction in carbohydrate and polysaccharide contents headed to a reduced photosynthesis, a nutritional imbalance, ion toxicity and hyperosmotic stress [108,109], whereas N uptake was reduced due to the decline in the total amino acids in the grain of the mung bean under salt stress [109]. The K and P concentrations also declined in the grain of the mung bean with increasing salt stress; however, the concentrations of Na, Ca, Mg and chlorine (Cl) increased [110]. Table 9. Effects of salinity stress on the grain composition and quality of food legumes. Food Legumes Concentration of Salt Impacts Grain protein reduction by 29, 60 and 79%, respectively NaCl 3, 6 and 9 dS m Soybean NaCl 9 dS m Oil content of grain reduced by 77% 7 dS m in loam soil and Yield loss around 46% 6.3 dS m clay soil 3 and 3.8 dS m Loss of grain yield by 50 and 69%, respectively 50 and 100 mM Sodium increased by 200 and 271%, respectively Chickpea 50 and 100 mM Potassium decreased by 79.09 and 72.72%, respectively 2 and 9 dS m Sodium increased by 79.80% and Potassium increased by 0.58% NaCl 40 mM Increase in sodium, 51.03%; potassium, 40.31%; and chloride, 58.41% Lentil (cv. 6796) 3.1 and 2 dS m Grain yield loss found to be 100 and 14%, respectively Reduction in grain protein content of 11 and 20%, respectively Reduction in total soluble sugars of 29 and 32%, respectively Reduction in total amino acids of 19 and 21%, respectively 4500 and 6000 ppm Mung bean Nitrogen content in grain decreased by 37 and 24%, respectively Grain phosphorus content decreased by 30 and 20%, respectively Reduction in grain potassium content by 13 and 8%, respectively 250 mM NaCl 80–100% yield loss Agronomy 2021, 11, 2238 16 of 24 Table 9. Cont. Food Legumes Concentration of Salt Impacts Mungbean (cv. 50 mM NaCl Yield loss by 41% Pusavishal) 6.6 dS m in loam soil Total yield loss around 50% 5.6 dS m in clay soil Yield loss by 52% Total carbohydrates of grain reduced by 9.97 and 33.40%, respectively Faba bean Decrease in grain potassium content of 3.30 and 11.57%, respectively 50 and 100 mM Increase in sodium content of around 12.5 and 62.5%, respectively Magnesium content reduction in grain by 28.57% in both salt concentration Pinto bean (cv. Talash) 8 and 12 dS m Reduction in grain yield by 26 and 41% Source: Farooq et al. [1], Torabian et al. [102], Zhou et al. [105], Ghassemi-Golezani et al. [108], Khan et al. [110], Narula et al. [111]. 6.4. Heavy Metals The accumulation of heavy metals such as mercury (Hg), lead (Pb), cadmium (Cd), chromium (Cr), Cu, Zn, arsenic (As) and nickel (Ni) in the soil is a serious constraint for the crops grown in that soil [112,113]. When these heavy metals are present above the optimum level in the rhizosphere zone, they limit the yield and quality of food legumes (Table 10) as well as cause human health concerns through accumulating in the grains of food legumes [114]. The predominant use of heavy metals leads to a decrease in the yield of food legumes and dangerously affects human health through entering into the food chain [9]. Heavy metal toxicity causes weak plant growth, chlorosis, a yield reduction supplemented by decreased nutrient uptake, plant metabolism disorders and a reduced molecular nitrogen-fixing ability [115]. The uptake of mineral nutrients is altered by heavy metals, which inhibits the opening of the stomata by cooperating with plant water balance, thus disturbing the enzymes of the Calvin cycle, carbohydrate metabolism, photosynthesis and, ultimately, reducing the productivity of food legumes [116]. Cd is a heavy metal highly toxic to plants, humans, animals and causes oxidative stress in plants. Agronomy 2021, 11, 2238 17 of 24 Table 10. Impacts of different level of heavy metals on grain constituents of food legumes. Heavy Metals Food Legumes Level of Metals in Soil or Growth Media Effects References Groundnut - Xerophytic anatomical features and reduction in grain quality [1,9,10] Changes in lipid composition and alteration in the structural component of Common bean 5 g mL [117,118] thylakoid membrane 50 M CdCl Chloroplast damage, reduction in grain filling rate Cadmium (Cd) Pea [119] 2.5 mM Decrease in starch content of seeds Chickpea 23 mg kg Decrease in grain protein by 22% [1,9,120] Green gram 24 mg kg Grain protein reduction by 8% [1,9] Soybean 0.1, 0.5 and 1.0 mM Reduction in grain oil by 23, 28 and 33%, respectively [1,9,97,117] Pigeon pea 56 and 112 mg L Reduced photosynthesis up to 50% [1] Grass pea 25, 50, 100, 200 and 300 ppm Chromosomal abnormalities [1,120] Lead (Pb) Chickpea 195 and 390 mg kg Grain proteins increase by 3 and 6%, respectively [1,9] Soybean - Inhibited growth [98,117] Common bean 500 ppm Reduced seed germination up to 48% [117] Chromium (Cr) Chickpea 67.5 and 135 mg kg Grain protein increased by 3% and decreased by 2%, respectively [1,9,120] Green gram 68 and 136 mg kg Increase in grain protein by 7 and 11%, respectively [1,9] Black gram [1] Mung bean [117,120] Reduced 50% seed germination potential, contamination in the entire food 20 ppm Mercury (Hg) Pea [1] chain Lentil [1,120] Soybean 0.1, 0.5 and 1.0 mM Grain oil reduction by 38, 58 and 68%, respectively [1,97,117] Changes in the ultra-structure of chloroplasts, Pea (50 and 75 M) [1,117,120] swelling of starch grains in the stroma Copper (Cu) Chickpea Reduced grain protein of 9 and 18%, respectively [1,116] 66.9 and 143.8 mg kg Cowpea 5 ppm Adversely affected the germination process Green gram 334.5 and 669 mg kg Grain protein reduced by 4 and 5%, respectively [1] 50, 100, 200 and 400 ppm Reduction in seed germination and seedling growth Chickpea [1,116] 290.1 and 580.2 mg kg Reduced grain protein by 2 and 16%, respectively Nickel (Ni) Cowpea 5 ppm adversely influenced the germination process [1] Pigeon pea 1.0 mM 32% reduction in net photosynthesis, decrease enzyme activity [1,10] Cowpea 5 ppm Adversely influenced the germination process [1] Zinc (Zn) Chickpea 4890 and 9780 mg kg Increased grain protein by 10 and 19%, respectively [1,116,120] Peas 12.5–73.3 mg of sodium arsenate kg Caused interference in mineral nutrient balance [1,114,116] Arsenic (As) Considerable inhibition in seed reserves accumulation such as starch, proteins, Chickpea 5 mg kg [1,114,121] sugars and minerals, reduced the quality of seeds Agronomy 2021, 11, 2238 18 of 24 An accumulation of Cd has potential health risks, and it mostly happens due to the consumption of soybeans grown in contaminated areas as soybeans have more potential in absorbing heavy metals compared to other food legumes [119]. However, the detrimental effects on soybean oil content were found to be greater for Hg than Cd. The grain oil content of soybeans was reduced when exposed to higher Cd and Hg concentrations and the oil content reduction rate was higher with an individual metal rather than a combined effort of metals, which emphasizes the antagonistic effect of heavy metals on the grain oil content [1,120]. Heavy metal changes major and minor fatty acids in food legumes; oleic and linoleic acid decreased significantly in soybeans under heavy metal stress, whereas palmitic, linolenic and stearic acid were markedly increased [120]. The starch content of pea seeds decreased when grown in 2.5 mM Cd [121]. Pb is another heavy metal, and its toxic effects mainly depend on how it reacts with functional groups such as carboxyl, sulfhydryl and amine, which results in a reduction in or loss of enzymatic activity vital for cell function. The total soluble sugars, soluble proteins and starch content of the common bean decreased with the increase in the Cd and Pb concentration when extended with 1 1 different concentrations of Cd and Pb (1.5, 2.0, 2.5, 3.0 g kg for Cd and 2, 4, 6, 8 g kg for Pb) compared to control plants [118]. Pea grains store Fe and Zn, while lentils accumulate low levels of Pb. The grain protein content of maximum food legumes decreased with the increase in Cd, Cr, Ni, Zn, Pb and Cu, except for chickpeas and mung beans. A Zn application in chickpeas decreased the grain protein content [9]. The minerals’ uptake, accumulation and nutritional composition of legume seeds and shoots may be altered by As. The nutrient balance of Zn, Mn and Mg in peas was altered by As when exposed to 12.5 to 73.3 mg of sodium arsenate/kg dry weight of soil [117]. The accumulation of seed reserves such as starch, proteins, sugars and minerals was significantly inhibited in chickpeas when grown in As (5 mg/kg of dry soil) compared to the controls, indicating that As prominently reduced the grain quality of chickpeas [121]. 7. Impacts of Abiotic Stresses on Nodulation and Nitrogen Fixation Abiotic stresses affect the nodulation and nitrogen fixation of legumes. Most impor- tantly, the drought stress because the formation, growth and functioning of nodules are being affected when there is a shortage of water in soil [122]. Under drought stress, different factors interfere with the nitrogenase enzymatic activity such as reducing the stock of ATP, reducing the respiration efficiency, altering the pH gradient across the bacteroid membrane and regulating nitrogenase by substrate or gene expression. A Considerable decrease in nitrogen fixation during soil dehydration has been found in many grain legumes such as chickpeas, peas, cowpeas, faba beans, etc. The stunted growth of a nodule and a partially developed root cortex-embedded organ was found when a nodule was subjected to dry conditions. Nitrogen fixation as well as nodule respiration degrades equivalently to the degree of water insufficiency under drought stress [123]. Nodule oxygen permeability re- duces under drought stress. As a result, nodules face a limited ability to carry out oxidative phosphorylation, although maintaining relatively high photosynthesis [124]. On the other hand, salinity is one of the most limiting factors for leguminous nitrogen fixation. Nodule formation significantly decreases under soil salinity, simultaneously reduc- ing the symbiotic nitrogen fixation. Salt stress reduces root hair formation, thus inhibiting infection threads and, ultimately, degrading the number of nodules. This happens because of the deleterious effect of salt stress on the colonization of the legume root, which restricts the Rhizobia bacterial growth [125]. Heavy metals are another constraint for nitrogen fixation by bacteria in a legume plant. Such metals firstly affect the soil microorganisms. The composition and activities of microbes are being changed dramatically by a high concentration of heavy metals in the soil [126]. The morphology, growth and many activities of multiple groups of microorganisms are found to be altered by the heavy metals such as Ni, Cu, Cd, As and Zn [127]. These metals have been found to enhance lipid peroxidation [128], thus creating oxidative stress for both rhizobia and host legumes. The induction of nodal genes was Agronomy 2021, 11, 2238 19 of 24 found to be inhibited by a high concentration of heavy metals, which cause a loss of the N-fixing ability of rhizobia in association with some leguminous hosts [9]. 8. Conclusions The diverse climatic changes are significantly affecting the agroecosystem. Besides abiotic stresses, pandemic situations created by viruses such as COVID-19 have also hampered the economic and agricultural systems globally. Under such a situation, food legumes are the cheapest source of protein acquisition. The consumption of good quality legumes can be a replacement for animal protein. That is why there is considerable scope for exploring these safe protein sources in the cropping pattern. However, grain legumes’ production, grain composition and quality are hindered by several abiotic stresses, as stated in this review. A collection of stress tolerance diverse germplasms, the development of tolerant variety/varieties through plant breeding or advanced biotechnologies and the introduction of suitable agronomic management packages could be helpful to overcome the abiotic stress effects on legumes for their yield and nutritional quality improvement. This review not only provides an overview on the research that has been conducted, but also to identify the areas in which research on grain legumes is still needed in order to mitigate the abiotic stress effects on legumes. Author Contributions: Conceptualization, S.S. and A.K.M.A.I.; methodology, S.S. and A.K.M.A.I.; validation, S.S. and A.K.M.A.I.; formal analysis, S.S., F.M.E. and A.K.M.A.I.; investigation, S.S., F.M.E. and A.K.M.A.I.; resources, S.S., F.M.E. and A.K.M.A.I.; data curation, S.S., F.M.E. and A.K.M.A.I.; writing—original draft preparation, S.S., M.K., F.M.E. and A.K.M.A.I.; writing—review and editing, A.K.M.A.I., M.P.A., S.D., R.D. and A.K.M.M.I.; visualization, S.S., A.K.M.M.I. and A.K.M.A.I.; super- vision, A.K.M.A.I.; project administration, A.K.M.A.I.; funding acquisition, A.K.M.A.I., R.D. and S.D. All authors have read and agreed to the published version of the manuscript. Funding: This research received no external funding. Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable. Data Availability Statement: Not applicable. Acknowledgments: The authors would like to acknowledge their gratitude towards university authority for the support from Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh through research program of Department of Genetics and Plant Breeding. Conflicts of Interest: The authors declare no conflict of interest. References 1. Farooq, M.; Hussain, M.; Usman, M.; Farooq, S.; Alghamdi, S.S.; Siddique, K.H.M. Impact of Abiotic Stresses on Grain Composition and Quality in Food Legumes. J. Agric. Food Chem. 2018, 66, 8887–8897. [CrossRef] [PubMed] 2. Ullah, A.; Romdhane, L.; Rehman, A.; Farooq, M. Adequate zinc nutrition improves the tolerance against drought and heat stresses in chickpea. Plant Physiol. Biochem. 2019, 143, 11–18. [CrossRef] 3. Gobal Network against Food Crisis. Global Report on Food Crises. Food Security Information Network. 2020. Available online: https://www.sadc.int/files/8415/8818/9448/GRFC_2020_ONLINE.pdf (accessed on 22 May 2021). 4. Jimenez-Lopez, J.C.; Singh, K.B.; Clemente, A.; Nelson, M.N.; Ochatt, S.; Smith, P.M.C. Editorial: Legumes for Global Food Security. Front. Plant Sci. 2020, 11, 926. [CrossRef] 5. Liu, Y.; Li, J.; Zhu, Y.; Jones, A.; Rose, R.J.; Song, Y. Heat Stress in Legume Seed Setting: Effects, Causes, and Future Prospects. Front. Plant Sci. 2019, 10, 938. [CrossRef] 6. El Sabagh, A.; Hossain, A.; Barutcular, C.; Gormus, O.; Ahmad, Z.; Hussain, S.; Islam, M.S.; Alharby, H.; Bamagoos, A.; Kumar, N.; et al. Effects of drought stress on the quality of major oilseed crops: Implications and possible mitigation strategies—A review. Appl. Ecol. Environ. Res. 2019, 17, 4019–4043. [CrossRef] 7. Sehrawat, N.; Yadav, M.; Bhat, K.; Sairam, R.; Jaiwal, P. Effect of salinity stress on mungbean [Vigna radiata (L.) Wilczek] during consecutive summer and spring seasons. J. Agric. Sci. 2015, 60, 23–32. [CrossRef] 8. Garg, N.; Bhandari, P. Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant. Growth Regul. 2016, 78, 371–387. [CrossRef] Agronomy 2021, 11, 2238 20 of 24 9. Lebrazi, S.; Fikri-Benbrahim, K. Rhizobium-Legume symbioses: Heavy metal effects and principal approaches for bioremediation of contaminated soil. In Legumes Soil Health Sustainable Managent; Springer: Singapore, 2018; pp. 205–233. [CrossRef] 10. Ali, Q.; Malik, A. Genetic evaluation of legume species under heavy metal and biogas. Biol. Clin. Sci. Res. J. 2021, 2021, 1–6. [CrossRef] 11. Considine, M.J.; Siddique, K.H.M.; Foyer, C.H. Nature’s pulse power: Legumes, food security and climate change. J. Exp. Bot. 2017, 68, 1815–1818. [CrossRef] [PubMed] 12. Siddique, K.H.; Johansen, C.; Turner, N.C.; Jeuffroy, M.H.; Hashem, A.; Sakar, D.; Gan, Y.; Alghamdi, S.S. Innovations in agronomy for food legumes. A review. Agron. Sustain. Dev. 2012, 32, 45–64. [CrossRef] 13. Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 1–13. [CrossRef] 14. Celmeli, T.; Sari, H.; Canci, H.; Sari, D.; Adak, A.; Eker, T.; Toker, C. The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy 2018, 8, 166. [CrossRef] 15. Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Chickpea: Nutritional properties and its benefits. Br. J. Nutr. 2012, 108, S11–S26. [CrossRef] [PubMed] 16. Bouchenak, M.; Lamri-Senhadji, M. Nutritional quality of legumes, and their role in cardiometabolic risk prevention: A review. J. Med. Food. 2013, 16, 185–198. [CrossRef] 17. Kamboj, R.; Nanda, V. Proximate composition, nutritional profile and health benefits of legumes—A review. Legum Res. 2018, 41, 325–332. 18. Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [CrossRef] 19. Cowpea (Black-Eyed Pea) vs Green Bean—In-Depth Nutrition Comparison. Available online: https://foodstruct.com/ compareimages/lentil-vs-cowpeas-commonblackeyes-crowder-southern-matureseeds-cooked-boiled-withoutsalt.jpg (accessed on 22 May 2021). 20. Telles, A.C.; Kupski, L.; Furlong, E.B. Phenolic compound in beans as protection against mycotoxins. Food Chem. 2017, 214, 293–299. [CrossRef] [PubMed] 21. Arslan, M. Diversity for vitamin and amino acid content in grass pea (Lathyrus sativus L.). Legume Res. 2017, 40, 803–810. [CrossRef] 22. Amarowicz, R. Legume Seeds as an Important Component of Human Diet. Foods 2020, 9, 1812. [CrossRef] 23. Erbersdobler, H.F.; Barth, C.A.; Jahreis, G. Grain Legumes in the Human Nutrition Nutrient Content and Protein Quality of Pulses. Ernahr. Umsch. 2017, 64, M550–M554. 24. Myers, J.R.; Kmiecik, K. Common bean: Economic importance and relevance to biological science research. In The Common Bean Genome; Springer: Cham, Switzerland, 2017; pp. 1–20. 25. Eicher, C.K. The Evolution of Agricultural Education and Training: Global Insights of Relevance for Africa; No. 1099-2016-89233; Michigan State University: East Lansing, MI, USA, 2006. 26. Rani, K.; Sharma, P.; Kumar, S.; Wati, L.; Kumar, R.; Gurjar, D.S.; Kumar, D. Legumes for sustainable soil and crop management. In Sustainable Management of Soil and Environment; Springer: Singapore, 2019; pp. 193–215. [CrossRef] 27. Maji, S.; Das, A.; Nath, R.; Bandopadhyay, P.; Das, R.; Gupta, S. Cool Season Food Legumes in Rice Fallows: An Indian Perspective. In Agronomic Crops; Hasanuzzaman, M., Ed.; Production Technologies [Internet]; Springer: Singapore, 2019; Volume 1, pp. 561–605. [CrossRef] 28. Day, L. Proteins from land plants—Potential resources for human nutrition and food security. Trends Food Sci. Technol. 2013, 32, 25–42. [CrossRef] 29. USDA. National Nutrient Database for Standard Reference Release 28. 733. 2016. Available online: http://www.ars.usda.gov/ Services/docs.htm?docid=8964 (accessed on 1 October 2016). 30. Ge, F.K. Legumes in Cropping Systems. Angew. Chem. Int. Ed. 1967, 6, 951–952. 31. Mathobo, V.M.; Silungwe, H.; Ramashia, S.E.; Anyasi, T.A. Effects of heat-moisture treatment on the thermal, functional properties and composition of cereal, legume and tuber starches—A review. J. Food Sci. Technol. 2021, 58, 412–426. [CrossRef] 32. Aguilera, Y.; Estrella, I.; Benitez, V.; Esteban, R.M.; Martín-Cabrejas, M.A. Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Res. Int. 2011, 44, 774–780. [CrossRef] 33. Gan, R.Y.; Deng, Z.Q.; Yan, A.X.; Shah, N.P.; Lui, W.Y.; Chan, C.L.; Corke, H. Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT-Food Sci. Technol. García-Lafuente 2016, 73, 168–177. [CrossRef] 34. Chen, P.X.; Tang, Y.; Marcone, M.F.; Pauls, P.K.; Zhang, B.; Liu, R.; Tsao, R. Characterization of free, conjugated and bound phenolics and lipophilic antioxidants in regular-and non-darkening cranberry beans (Phaseolus vulgaris L.). Food Chem. 2015, 185, 298–308. [CrossRef] 35. Magalhães, S.C.; Taveira, M.; Cabrita, A.R.; Fonseca, A.J.; Valentão, P.; Andrade, P.B. European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chem. 2017, 215, 177–184. [CrossRef] [PubMed] 36. Public Health England. The Eatwell Guide; Department of Health in Association with the Welsh Assembly Government, the Scottish Government and the Food Standards Agency in Northern Ireland L.; Public Health England: London, UK, 2016. 37. Humer, E.; Schedle, K. Fermentation of food and feed: A technology for efficient utilization of macro and trace elements in monogastrics. J. Trace Elem. Med. Biol. 2016, 37, 69–77. [CrossRef] [PubMed] Agronomy 2021, 11, 2238 21 of 24 38. Sirtori, C.R.; Triolo, M.; Bosisio, R.; Bondioli, A.; Calabresi, L.; De Vergori, V.; Gomaraschi, M.; Mombelli, G.; Pazzuc- coni, F.; Zacherl, C.; et al. Hypo-cholesterolaemic effects oflupin protein and pea protein/fibre combinations in moder- atelycholesterolaemic effects oflupin protein and pea protein/fibre combinations in moderately hypercholesterolaemic individuals. Br. J. Nutr. 2012, 107, 1176–1183. [CrossRef] 39. Budhathoki, S.; Sawada, N.; Iwasaki, M.; Yamaji, T.; Goto, A.; Kotemori, A.; Ishihara, J.; Takachi, R.; Charvat, H.; Mizoue, T.; et al. Association of animal and plant protein intake with all-cause and cause-specific mortality in a Japanese cohort. JAMA Intern. Med. 2019, 179, 1509–1518. [CrossRef] 40. Bean Growers Association. Bean Nutrition Overview. The Bean Institute. 2019. Available online: http://beaninstitute.com/bean- nutrition-overview/ (accessed on 22 May 2021). 41. Cowpea Facts, Health Benefits and Nutritional Value. 1899. Available online: https://www.healthline.com/nutrition/black- eyed-peas-nutrition (accessed on 22 May 2021). 42. Cowpeas_10 Incredible Health Benefits of Cowpeas (Beans)—Finelib. Available online: https://www.finelib.com/about/nigeria- food-produce/about-cowpea-and-nutritional-benefits/204 (accessed on 22 May 2021). 43. Cornmeal Vitamins—How Many Vitamins in Cornmeal. Available online: http://www.freenutritionfacts.com/cornmeal/ vitamins/ (accessed on 22 May 2021). 44. Purslane Nutrition Facts and Health Benefits. Available online: http://www.nutrition-and-you.com/purslane.html (accessed on 22 May 2021). 45. Pigeon Pea vs. Peanut—In-Depth Nutrition Comparison. Available online: https://foodstruct.com/compareimages/peanut-vs- pigeonpeasredgram-matureseeds-raw.jpg (accessed on 22 May 2021). 46. Green Tomatoes Facts, Health Benefits and Nutritional Value. Available online: https://www.healthbenefitstimes.com/green- tomatoes/ (accessed on 22 May 2021). 47. Thomas, J.M.G.; Boote, K.J.; Allen, L.H., Jr.; Gallo-Meagher, M.; Davis, J.M. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci. 2003, 43, 1548–1557. [CrossRef] 48. Devirian, T.A.; Volpe, S.L. The physiological effects of dietary boron. Crit. Rev. Food Sci. Nutr. 2003, 43, 219–231. [CrossRef] 49. Qados, A.M.S.A. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J. Saudi Soc. Agri. Sci. 2011, 10, 7–15. [CrossRef] 50. Chen, P.X.; Bozzo, G.G.; Freixas-Coutin, J.A.; Marcone, M.F.; Pauls, P.K.; Tang, Y.; Zhang, B.; Liu, R.; Tsao, R. Free and conjugated phenolic compounds and their antioxidant activities in regular and nondarkening cranberry bean (Phaseolus vulgaris L.) seed coats. J. Funct. Foods 2015, 18, 1047–1056. [CrossRef] 51. Toker, C.; Yadav, S.S. Legumes cultivars for stress environments. In Climate Change and Management of Cool Season Grain Legume Crops; Yadav, S.S., McNeil, D.L., Redden, R., Patil, S.A., Eds.; Springer: Dordrecht, The Netherland, 2010; pp. 351–376. [CrossRef] 52. Singh, K.B. Chickpea breeding. In The Chickpea; Saxena, E., Ed.; CAB International: Wallingford, CT, USA, 1987; pp. 127–162. 53. Yadav, S.S.; Redden, R.; McNeil, D.L.; Patil, S.A. Climate Change and Management of Cool Season Grain Legume Crops; Springer Science & Business Media: New York, NY, USA, 2010; pp. 1–460. 54. Bhandari, K.; Sharma, K.D.; Hanumantha Rao, B.; Siddique, K.H.M.; Gaur, P.; Agrawal, S.K.; Nair, R.M.; Nayyar, H. Temperature sensitivity of food legumes: A physiological insight. Acta Physiol. Plant 2017, 39, 68. [CrossRef] 55. Sita, K.; Sehgal, A.; HanumanthaRao, B.; Nair, R.M.; Vara Prasad, P.V.; Kumar, S.; Gaur, P.M.; Farooq, M.; Siddique, K.H.; Varshney, R.K.; et al. Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front. Plant Sci. 2017, 8, 1658. [CrossRef] [PubMed] 56. Farooq, M.; Nadeem, F.; Gogoi, N.; Ullah, A.; Alghamdi, S.S.; Nayyar, H.; Siddique, K.H. Heat stress in grain legumes during reproductive and grain-filling phases. Crop Pasture Sci. 2017, 68, 985–1005. [CrossRef] 57. Redden, R.J.; Hatfield, J.L.; Vara Prasad, P.V.; Ebert, A.W.; Yadav, S.S.; O’Leary, G.J. Temperature, climate change, and global food security. Temp. Plant Dev. 2014, 8, 181–202. 58. Sehgal, A.; Sita, K.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.H.M.; Nayyar, H. Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front. Plant Sci. 2017, 8, 1776. [CrossRef] 59. Sita, K.; Sehgal, A.; Bhandari, K.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.H.; Nayyar, H. Impact of heat stress during seed filling on seed quality and seed yield in lentil (Lens culinaris Medikus) genotypes. J. Sci. Food Agric. 2018, 98, 5134–5141. [CrossRef] 60. Abeysingha, G.L. The Effect of Auxins on Seed Yield Parameters in Wheat, Pea and Canola Grown under Controlled Environment and Western Canadian Field Conditions. Master ’s Thesis, University of Alberta, Edmonton, AB, Canada, 2015. [CrossRef] 61. Djanaguiraman, M.; Vara Prasad, P.V.; Boyle, D.L.; Schapaugh, W.T. Soybean pollen anatomy, viability and pod set under high temperature stress. J. Agron. Sci. 2013, 199, 171–177. [CrossRef] 62. Gaur, P.M.; Samineni, S.; Krishnamurthy, L.; Varshney, R.K.; Kumar, S.G.; Ghanem, M.E.; Beebe, S.E.; Rao, I.M.; Chaturvedi, S.K.; Basu, P.S.; et al. High temperature tolerance in grain legumes. Legume Perspect. 2014, 7, 23–24. 63. Bindumadhava, H.; Nair, R.M.; Nayyar, H.; Riley, J.J.; Easdown, W. Mungbean production under a changing climate-insights from growth physiology. Mysore. J. Agric. Sci. 2017, 51, 21–26. 64. Bishop, J.; Potts, S.G.; Jones, H.E. Susceptibility of faba bean (Vicia faba L.) to heat stress during floral development and anthesis. J. Agron. Crop Sci. 2016, 202, 508–517. [CrossRef] [PubMed] Agronomy 2021, 11, 2238 22 of 24 65. Shirsath and Bhosale Agro India Ltd. Modern Agrotechniques for Cultivation of Black Gram/Urdbean (Vigna mungo L.); Shirsath and Bhosale Agro India Ltd.: Ahmednagar, India, 2017. 66. Vaz Patto, M.C.; Amarowicz, R.; Aryee, A.N.A.; Boye, J.I.; Chung, H.J.; Martín-Cabrejas, M.A.; Domoney, C. Achievements and challenges in improving the; nutritional quality of food legumes. Crit. Rev. Plant Sci. 2015, 34, 105–143. [CrossRef] 67. Kaushal, N.; Awasthi, R.; Gupta, K.; Gaur, P.; Siddique, K.H.M.; Nayyar, H. Heat stress induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct. Plant Biol. 2013, 40, 1334–1349. [CrossRef] [PubMed] 68. Sharma, L.; Priya, M.; Bindumadhava, H.; Nair, R.M.; Nayyar, H. Influence of high temperature stress on growth, phenology and yield performance of mungbean [Vigna radiata (L.) Wilczek] under managed growth conditions. Sci. Hortic. 2016, 213, 379–391. [CrossRef] 69. Sadeghipour, O. The influence of water stress on biomass and harvest index in three mung 460 bean (Vigna radiata L. (Wilczek)) cultivars. Asian J. Plant Sci. 2009, 8, 245–249. [CrossRef] 70. Thomas, J.M.G.; Prasad, P.V.V.; Boote, K.J.; Allen, L.H., Jr. Seed composition, seedling emergence and early seedling vigor of red kidney bean seed produced at elevated temperature and carbon dioxide. J. Agron. Crop Sci. 2009, 195, 148–156. [CrossRef] 71. Bhandari, K.; Siddique, K.H.; Turner, N.C.; Kaur, J.; Singh, S.; Agrawal, S.K.; Nayyar, H. Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function, and severely reduces seed yield in lentil. J. Crop Improv. 2016, 30, 118–151. [CrossRef] 72. Awasthi, R.; Kaushal, N.; Vadez, V.; Turner, N.C.; Berger, J.; Siddique, K.H.; Nayyar, H. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct. Plant Biol. 2014, 41, 1148–1167. [CrossRef] [PubMed] 73. Araújo, S.S.; Beebe, S.; Crespi, M.; Delbreil, B.; González, E.M.; Gruber, V.; Vaz Patto, M.C. Abiotic stress responses in legumes: Strategies used to cope with environmental challenges. Crit. Rev. Plant Sci. 2015, 34, 237–280. [CrossRef] 74. Sehgal, A.; Sita, K.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; HanumanthaRao, B.; Nair, R.M.; Prasad, P.V.; Nayyar, H. Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Front. Plant Sci. 2018, 9, 1705. [CrossRef] 75. Croser, J.S.; Clarke, H.J.; Siddique, K.H.M.; Khan, T.N. Low temperature stress: Implications for chickpea (Cicer arietinum L.) improvement. Crit. Rev. Plant Sci. 2003, 22, 185–219. [CrossRef] 76. Siddiqui, M.H.; Al-Khaishany, M.Y.; Al-Qutami, M.A.; Al-Whaibi, M.H.; Grover, A.; Ali, H.M.; Al-Wahibi, M.S. Morphological and physiological characterization of different genotypes of faba bean under heat stress. Saudi J. Biol. Sci. 2015, 22, 656–663. [CrossRef] 77. Heidarvand, L.; Amiri, R.M.; Naghavi, M.R.; Farayedi, Y.; Sadeghzadeh, B.; Alizadeh, K. Physiological and morphological characteristics of chickpea accessions under low temperature stress. Russ. J. Plant Physiol. 2011, 58, 157–163. [CrossRef] 78. Shunmugam, A.S.K.; Kannan, U.; Jiang, Y.; Daba, K.A.; Gorim, L.Y. Physiology Based Approaches for Breeding of Next-Generation Food Legumes. Plants 2018, 7, 72. [CrossRef] 79. Kumar, S.; Nayyar, H.; Bhanwara, R.K.; Upadhyaya, H.D. Chilling Stress Effects on Reproductive Biology of Chickpea. J. Sat. Agric. Res. 2010, 8, 1–14. Available online: http://oar.icrisat.org/id/eprint/5374 (accessed on 22 May 2021). 80. Maqbool, A.; Shafiq, S.; Lake, L. Radiant frost tolerance in pulse crops—A review. Euphytica 2010, 172, 1–12. [CrossRef] 81. Peix, A.; Ramırez-Bahena, M.H.; Velazquez, E.; Bedmar, E.J. Bacterial associations with legumes. Crit. Rev. Plant Sci. 2015, 34, 17–42. [CrossRef] 82. Farooq, M.; Gogoi, N.; Barthakur, S.; Baroowa, B.; Bharadwaj, N.; Alghamdi, S.S. Drought Stress in Grain Legumes during Reproduction and Grain Filling. J. Agron. Crop Sci. 2017, 203, 81–102. [CrossRef] 83. Yagoob, H.; Yagoob, M. The effects of water deficit stress on protein yield of mung bean genotypes. Peak. J. Agri. Sci. 2014, 2, 30–35. 84. Ghanbari, A.A.; Shakiba, M.R.; Toorchi, M.; Choukan, R. Nitrogen changes in the leaves and accumulation of some minerals in the seeds of red, white and chitti beans (Phaseolus vulgaris) under water deficit conditions. Aus. J. Crop Sci. 2013, 7, 706–712. 85. Ashrafi, V.; Pourbozorg, H.; Kor, N.M.; Ajirloo, A.R.; Shamsizadeh, M.; Shaaban, M. Study on seed protein and protein profile pattern of chickpea (Cicer arietinum L.) by SDS-PAGE under drought stress and fertilization. Int. J. Life Sci. 2015, 9, 87–90. [CrossRef] 86. Ardakani, L.G.; Farajee, H.; Kelidari, A. The effect of water stress on grain yield and protein of spotted bean (Phaseolus vulgaris L.), cultivar Talash. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 940–949. 87. Baroowa, B.; Gogoi, N. Biochemical changes in black gram and green gram genotypes after imposition of drought stress. J. Food Legume 2014, 27, 350–353. 88. Maleki, A.; Naderi, A.; Naseri, R.; Fathi, A.; Bahamin, S.; Maleki, R. Physiological performance of soybean cultivars under drought stress. Bull. Environ. Pharmacol. Life Sci. 2013, 2, 38–44. 89. Kyei-boahen, S.; Savala, C.E.N.; Chikoye, D.; Abaidoo, R.; Kyei-boahen, S. Growth and yield responses of cowpea to inoculation and phosphorus fertilization in different environments. Front. Plant Sci. 2017, 8, 646. [CrossRef] 90. Wei, Y.; Jin, J.; Jiang, S.; Ning, S.; Liu, L. Quantitative response of soybean development and yield to drought stress during different growth stages in the Huaibei Plain, China. Agronomy 2018, 8, 97. [CrossRef] Agronomy 2021, 11, 2238 23 of 24 91. Varshney, R.K.; Thudi, M.; Nayak, S.N.; Gaur, P.M.; Kashiwagi, J.; Krishnamurthy, L.; Jaganathan, D.; Koppolu, J.; Bohra, A.; Tripathi, S. Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2014, 127, 445–462. [CrossRef] 92. Kazai, P.; Noulas, C.; Khah, E.; Vlachostergios, D. Yield and seed quality parameters of common bean cultivars grown under water and heat stress field conditions. AIMS Agric. Food 2019, 4, 285–302. [CrossRef] 93. Khan, R.; Srivastava, R.; Abdin, M.Z.; Manzoor, N.M. Effect of soil contamination with heavy metals on soybean seed oil quality. Eur. Food Res. Technol. 2013, 236, 707–714. [CrossRef] 94. Allahmoradi, P.; Mansourifar, C.; Saiedi, M.; Jalali Honarmand, S. Effect of different water deficiency levels on some antioxidants at di erent growth stages of lentil (Lens culinaris L.). Adv. Environ. Biol. 2013, 7, 535–543. 95. Bellaloui, N.; Mengistu, A.; Kassem, M.A. Effects of genetics and environment on fatty acid stability in soybean seed. Food Nutr. Sci. 2013, 4, 165–175. [CrossRef] 96. Rozrokh, M.; Sabaghpour, S.H.; Armin, M.; Asgharipour, M. The effects of drought stress on some biochemical traits in twenty genotypes of chickpea. Eur. J. Exp. Biol. 2012, 2, 1980–1987. 97. Ahmad, A.; Selim, M.M.; Alderfasi, A.A.; Afzal, M. Effect of drought stress on mungbean (Vigna radiata L.) under arid climatic conditions of Saudi Arabia. Ecosyst. Sustain. Dev. 2015, 192, 185–193. 98. Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H.M. Salt stress in maize: Effects, resistance mechanisms and management. A review. Agron. Sustain. Dev. 2015, 35, 461–481. [CrossRef] 99. El Sayed, H.E.S.A. Influence of NaCl and Na SO treatments on growth development of broad bean (Vicia faba L.). Plant J. Life Sci. 2 4 2011, 5, 513–523. 100. Farooq, M.; Gogoi, N.; Hussain, M.; Barthakur, S.; Paul, S.; Bharadwaj, N.; Migdadi, H.M.; Alghamdi, S.S.; Siddique, K.H. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem. 2017, 118, 199–217. [CrossRef] 101. Talei, D.; Kadir, M.A.; Yusop, M.K.; Abdullah, M.P.; Valdiani, A. Salinity effects on macro and micronutrients uptake in medicinal plant King of Bitters (Andrographis paniculata Nees.). Plant OMICS 2012, 5, 271–278. 102. Torabian, S.; Farhangi-Abriz, S.; Rathjen, J. Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mungbean under salt stress. Plant Physiol. Biochem. 2018, 129, 141–149. [CrossRef] 103. Nadeem, M.; Li, J.; Yahya, M.; Wang, M.; Ali, A.; Cheng, A.; Wang, X.; Ma, C. Grain legumes and fear of salt stress: Focus on mechanisms and management strategies. Int. J. Mol. Sci. 2019, 20, 799. [CrossRef] [PubMed] 104. Khan, H.A.; Siddique, K.H.M.; Colmer, T.D. Vegetative and reproductive growth of salt stressed chickpea are carbon-limited: Sucrose infusion at the reproductive stage improves salt tolerance. J. Exp. Bot. 2017, 68, 2001–2011. [CrossRef] 105. Zhou, R.; Hyldgaard, B.; Yu, X.; Rosenqvist, E.; Ugarte, R.M.; Yu, S.; Wu, Z.; Ottosen, C.O.; Zhao, T. Phenotyping of faba beans (Vicia faba L.) under cold and heat stresses using chlorophyll fluorescence. Euphytica 2018, 214, 1–13. [CrossRef] 106. Amira, M.S.; Qados, A. Effect of arginine on growth, nutrient composition, yield and nutritional value of mung bean plants grown under salinity stress. Nat. Sci. 2010, 8, 30–42. 107. Sehrawat, N.; Yadav, M.; Sharma, A.K.; Kumar, V.; Bhat, K.V. Salt stress and mungbean [Vigna radiata (L.) Wilczek]: Effects, physiological perspective and management practices for alleviating salinity. Arch. Agron. Soil Sci. 2019, 65, 1287–1301. [CrossRef] 108. Ghassemi-Golezani, K.; Nikpour-Rashidabad, N.; Zehtab-Salmasi, S. Effect of salinity on yield and yield components of pinto bean cultivars. Int. J. Plant Anim. Environ. Sci. 2012, 2, 47–51. 109. Ahmad, M.; Zahir, Z.A.; Asghar, H.N.; Asghar, M. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1- aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 2011, 57, 578–589. [CrossRef] 110. Khan, M.S.A.; Karim, M.A.; Haque, M.M.; Islam, M.M.; Karim, A.J.M.S.; Mian, M.A.K. Influence of salt and water stress on growth and yield of soybean genotypes. Trop. Agric. Sci. 2016, 39, 167–180. 111. Narula, S.; Anand, R.C.; Dudeja, S.S. Beneficial traits of endophytic bacteria from field pea nodules and plant growth promotion of field pea. J. Food. Legume 2013, 26, 73–79. 112. Hossain, M.A.; Hasanuzzaman, M.; Fujita, M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol. Mol. Biol. Plants 2010, 16, 259–272. [CrossRef] [PubMed] 113. Pokhrel, D.; Bhandari, B.S.; Viraraghavan, T. Arsenic contamination of groundwater in the Terai region of Nepal: An overview of health concerns and treatment options. Environ. Inter. 2009, 35, 157–161. [CrossRef] 114. Shi, G.; Liu, C.; Cai, Q.; Liu, Q.; Hou, C. Cadmium Ac- cumulation and Tolerance of Two Safflower Cultivars in Relation to Photosynthesis and Antioxidantive Enzymes. Bull. Environ. Contam. Toxicol. 2010, 85, 256–263. [CrossRef] [PubMed] 115. Asati, A.; Pichhode, M.; Nikhil, K. Effect of heavy metals on plants: An overview. Int. J. Appl. Innov. Eng. Manag. 2016, 5, 56–66. 116. Bae, J.; Benoit, D.L.; Watson, A.K. Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes. Environ. Pollut. 2016, 213, 112–118. [CrossRef] 117. Bahmani, R.; Bihamta, M.R.; Habibi, D.; Forozesh, P.; Ahmadvand, S. Effect of cadmium chloride on growth parameters of different bean genotypes (Phaseolus vulgaris L.). ARPN J. Agri. Biol. Sci. 2012, 7, 35–41. 118. Dewan, M.M.; Dhingra, H.R. Cadmium partitioning and seed quality in two varities of pea and their hybrid as influenced by rhizopheric cadmium. Indian J. Plant Physiol. 2004, 9, 15–20. 119. Malik, J.A.; Goel, S.; Sandhir, R.; Nayyar, H. Uptake and distribution of arsenic in chick pea:Effects on seed yield and seed composition. Commun. Soil Sci. Plant Anal. 2011, 42, 1728–1738. [CrossRef] Agronomy 2021, 11, 2238 24 of 24 120. Wei, J.; Cen, K. Contamination and health risk assessment of heavy metals in cereals, legumes, and their products: A case study based on the dietary structure of the residents of Beijing, China. J. Clean. Prod. 2020, 260, 121001. [CrossRef] 121. Valentine, A.J.; Benedito, V.A.; Kang, Y. Legume nitrogen fixation and soil abiotic stress: From physiology to genomics and beyond. In Nitrogen Metabolism in Plants in the Post-Genomic Era; Annual Plant Reviews Book Series; Wiley Online Library: Hoboken, NJ, USA, 2018; Volume 42, pp. 207–248. 122. Kantar, F.; Shivakumar, B.G.; Arrese-Igor, C.; Hafeez, F.Y.; González, E.M.; Imran, A.; Larrainzar, E. Efficient biological nitrogen fixation under warming climates. In Climate Change and Management of Cool Season Grain Legume Crops; Springer: Dordrecht, The Netherland, 2010; pp. 283–306. 123. Abdel-Wahab, A.; Abdel-Muhsin, A.M.A.; Ali, E.; Suleiman, S.; Ahmed, S.; Walliker, D.; Babiker, H.A. Dynamics of gametocytes among Plasmodium falciparum clones in natural infections in an area of highly seasonal transmission. J. Infect. Dis. 2002, 12, 1838–1842. [CrossRef] [PubMed] 124. Abd-Alla, M.H.; Nafady, N.A.; Bashandy, S.R.; Hassan, A.A. Mitigation of effect of salt stress on the nodulation, nitrogen fixation and growth of chickpea (Cicer arietinum L.) by triple microbial inoculation. Rhizosphere 2019, 10, 100148. [CrossRef] 125. Abd-Alla, M.H.; Issa, A.A.; Ohyama, T. Impact of harsh environmental conditions on nodule formation and dinitrogen fixation of legumes. Adv. Biol. Ecol. Nitrogen Fixat. 2014, 9, 1. 126. Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 2016, 6, 1143. [CrossRef] 127. Wani, P.; Khan, M. Bioremediaiton of lead by a plant growth promoting Rhizobium species RL9. Bacteriol. J. 2012, 2, 66–78. [CrossRef] 128. Meena, R.S.; Yadav, R.S.; Meena, H.; Kumar, S.; Meena, Y.K.; Singh, A. Towards the current need to enhance legume productivity and soil sustainability worldwide: A book review. J. Clean. Prod. 2015, 104, 513–515. [CrossRef]

Journal

AgronomyMultidisciplinary Digital Publishing Institute

Published: Nov 4, 2021

Keywords: abiotic stress; heat stress; drought; salinity; heavy metals; legume; food quality

There are no references for this article.