Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Framework to Achieve Multifunctionality in Biomimetic Adaptive Building Skins

A Framework to Achieve Multifunctionality in Biomimetic Adaptive Building Skins buildings Article A Framework to Achieve Multifunctionality in Biomimetic Adaptive Building Skins 1 , 1 2 1 , 3 Aysu Kuru * , Philip Oldfield , Stephen Bonser and Francesco Fiorito Faculty of Built Environment, University of New South Wales, Sydney, NSW 2052, Australia; p.oldfield@unsw.edu.au (P.O.); f.fiorito@unsw.edu.au (F.F.) School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; s.bonser@unsw.edu.au Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, 70126 Bari, Italy * Correspondence: a.kuru@unsw.edu.au or aysuek@gmail.com Received: 5 May 2020; Accepted: 23 June 2020; Published: 27 June 2020 Abstract: Building skins should host multiple functions for increased performance. Addressing this, their design can benefit by learning from nature to achieve multifunctionality, where multifunctional strategies have evolved over years. However, existing frameworks to develop biomimetic adaptive building skins (Bio-ABS) have limited capabilities transferring multifunctionality from nature into designs. This study shows that through investigating the principles of hierarchy and heterogeneity, multifunctionality in nature can be transferred into biomimetic strategies. We aim at mapping the existing knowledge in biological adaptations from the perspective of multifunctionality and developing a framework achieving multifunctionality in Bio-ABS. The framework is demonstrated through the case study of Echinocactus grusonii implemented as a Bio-ABS on a digital base-case building. The methods include the Bio-ABS case study demonstrating the framework and simulating the performance of the case study and base-case building to comparatively analyze the results. The outcomes are a framework to develop multifunctional Bio-ABS and simulation results on the performance improvement Bio-ABS o er. The performance comparison between the Bio-ABS and base-case building show that there is a decrease in the discomfort hours by a maximum of 23.18%. In conclusion, translating heterogeneity and hierarchy principles in nature into engineered designs is a key aspect to achieve multifunctionality in Bio-ABS o ering improved strategies in performance over conventional buildings. Keywords: biomimetics; building skin; multifunctionality; architectural design; building envelope; adaptability; design framework; building performance simulation 1. Introduction Building design has advanced through technological developments, making the design and realization of innovative structures possible using new materials and construction techniques [1]. These breakthroughs in architecture helped building parts to host diverse functions, such as external walls shifting from being mostly load-bearing structures to having alternative roles [2]. The building skin now primarily acts as a thermal, acoustic, and visual barrier between the exterior and interior [3]. This change has seen the building skin heavily influence the building performance [4]. In response, new technologies including biomimetic adaptive building skins (Bio-ABS) are emerging that can adapt to changing environmental conditions, foster increased comfort, and reduce operational carbon emissions [5,6]. Buildings 2020, 10, 114; doi:10.3390/buildings10070114 www.mdpi.com/journal/buildings Buildings 2020, 10, 114 2 of 28 Using biological functions to design technical systems is called biomimetics [7,8]. Biomimetics is used in developing Bio-ABS, due to the opportunities in transferring biological adaptations into the design of climate-adaptable buildings [9–11]. There is extensive research in transferring biological adaptations into Bio-ABS with multiple frameworks and case studies [12–18]. Some of these frameworks are supported with resources such as databases or linguistic approaches [16,18–23]. Despite such developments, there is still a need for defining strategies to translate multifunctional strategies from nature into Bio-ABS, because environmental regulation in buildings often requires having multiple functions [5,24,25]. Most published works explore developing biomimetic strategies focusing on environmental adaptability, but are limited in addressing multifunctionality [10,26]. Multifunctional mechanisms in nature is achieved through the “natural design principles” including heterogeneity and hierarchy [27–29]. Organisms have developed multi-layered structures (hierarchy) with di erent morphologies of basic components (heterogeneity) to achieve multifunctionality [29–32]. This paper aims at structuring and mapping the existing knowledge in biological adaptations from the perspective of multifunctionality and developing a design framework to achieve multifunctionality in Bio-ABS. To do so, we provide (1) an understanding of how to achieve multifunctionality in building skin design through hierarchy and heterogeneity, (2) a systematic classification of multifunctional properties in biological systems, (3) a framework for developing multifunctional Bio-ABS, and (4) a case study of Echinocactus grusonii demonstrating the framework. 2. Existing Biomimetic Design Frameworks to Develop Bio-ABS Several biomimetic design frameworks to develop Bio-ABS have been developed supported with case studies [16,18–23]. Most of these frameworks have focused on biological adaptations, being the main purpose of Bio-ABS [9,12,13,33]. However, it is important to fulfill multiple functional requirements in buildings for improved performance. There is limited exploration of this in the literature. However, nature o ers ways to achieve multifunctionality, named the “natural design principles”, yet to be significantly investigated in biomimetic design [30]. In this section, we review and discuss the existing biomimetic design frameworks to develop Bio-ABS regarding to what extent multifunctionality is addressed. Most biomimetic design frameworks are applicable for use in architecture and some specialized to design Bio-ABS. All frameworks comprise of phases either starting with a technical problem followed by a biological solution (TD) or starting with a biological solution followed by a technical problem (BU), and all ending with developing a biomimetic strategy (Table 1). Some include databases to search for biological adaptations. The ones with no databases provide other means of investigation including linguistic approaches to define commonalities between nature and design, systematic analogical translation to find biological systems [18,22,23,34–37]. Biomimetic principles for the development of adaptive architectural envelopes, is based on understanding plants adaptations at macro- and micro-scales to be abstracted into adaptive architectural envelopes [13]. The framework focuses on dynamic mechanisms responding to external stimuli through movement and static strategies with surface properties. A case study developed using the framework is an adaptive architectural envelope inspired by plants genus Mesembryanthemum where seeds swell with rain [9]. The design is triggered by rainwater as an opening system [13]. The opportunity in this framework is addressing diversity in biological scales relating to hierarchy. This framework only considers plant adaptations; therefore, it is exclusive of other living systems in di erent kingdoms. Moreover, the mechanisms investigated are only triggered by external environmental influences limiting the diversity in biological domain. Most importantly, this framework has not specified how to combine multiple functions, either a combination of static and dynamic or otherwise. Buildings 2020, 10, 114 3 of 28 Table 1. List of existing biomimetic design frameworks (TD: Top-down, BU: Bottom-up). Reference Biomimetic Design Framework TD BU Database [20] BioTRIZ X X [36] Design Spiral-Helix Model X Computational Architectural Design Based on Biological [37] X Principles [38] Bioinspired Environmental Architectural Design X X [39] BioGEN X X [34] BioMAPS X [40] Ecomimetic X [41] New Product Development Process X [42] The Law of System Completeness X X [43] Idea-Inspire X X [44] Design by Analogy to Nature Engine (DANE) X X [45] Biomimicry Theoretical Model X Biomimetic Principles for the Development of Adaptive [13] X Architectural Envelopes Transferring Plant Movements to Elastic Systems in [46] X Architecture [17] Biomimicry 3.8 X X X [35] Typological Analysis X X [22] Analogical Translation X X [23] Nature Studies Analysis X X [47] Ecosystem for Biomimetic Design X X [18] Engineering-to-Biology Thesaurus X X Transferring plant movements to elastic systems is used to develop kinetic elastic architectural systems inspired by plant movements [46]. A case study developed using this framework is Flectofin—, a shading prototype inspired by the petal movements of the bird of paradise flower [48]. The device is a hingeless louver system unfolding through a force. The success of this framework is investigating and transferring dynamic adaptations in nature into architecture. This framework only focused on plant movements and mechanical eciency, it is limited in terms of multifunctionality. It could be, if it investigates environmental triggers informing movements in nature, to develop Bio-ABS. However, currently, the biological domain and biomimetic output can be triggered by the same stimulus, but they may not host the same function. For example, petals of the bird of paradise flower move for pollination, but Flectofin— moves to provide shading. Moreover, this framework does not address how to integrate multiple functions together. For example, would it be possible to combine two types of plant(s) movements hosting di erent purposes and how? “BioTRIZ” is a problem-solving method undertaken via a database of biological data [20,21]. The database’s purpose is to make biological information available in a language specific to engineering. However, the process is out of biological context, meaning the strategies do not exist in nature, but as theoretical ideas. For example, the surface segmentation trend is observed in nature as naturally transparent ridged surfaces refracting light and becoming colored due to nanostructures. Such as the Menelaus butterfly (Morpho menelaus) has transparent wings which look blue with sunlight. This property could be transferred into functional surface structures. The success of this framework is introducing heterogeneity through generalizing concepts. The limitation is the absence of the biological solution and multifunctionality is not addressed. It could be, if this framework integrates how to achieve multifunctionality in addition to identifying heterogeneity in nature. “Biomimicry 3.8” o ers a framework accompanied with an online database of biological strategies, called AskNature [17]. AskNature contains over 1600 biological strategies and provides a taxonomy to organize biological adaptations [19]. The steps applied in the process are called the“Design Spiral”. The success of this framework is the database accessible to everyone, as a key aspect in investigating biological strategies. The diculty in adopting this framework is the lack of clarification in some stages; Buildings 2020, 10, 114 4 of 28 abstract, emulate, and evaluate. The abstraction stage is described as brainstorming ideas from nature; emulation as seeking expert advice and evaluation as integrating life’s principles. These measures are often complex and may be challenging for every design. The limitation of this framework is the lack of integrating multifunctionality. It could be, if the AskNature database provides multifunctional properties of organisms be used to design multifunctional strategies. This may require adding a step in the ‘Design Spiral’ on achieving multifunctionality. ‘BioGen’ is another biomimetic design framework [10,41]. It creates an exploration model mapping functional aspects, relevant processes and influencing factors. The biological entities called pinnacles are presented as examples for a specific function or process. An example of a case study developed by using BioGen is the Shading/Energy Generating Skin, inspired by plants tracking sun radiation, designed to tilt according to the angle of the sun [49]. While the creator of BioGen has proposed a discussion on multi-regulation of the four environmental factors (heat, light, water, and air) this is a theoretical approach and lacks further development. Multi-regulation is addressed by mapping biological functions of the same living system regulating multiple environmental factors dependently, i.e., ventilation is associated with heat regulation. This presents a success in addressing multifunctionality, but its applicability is limited and must be fulfilled with examples. It may also benefit addressing multifunctionality through combining functions of di erent living systems (inter)dependently. DANE is another framework exploring analogical reasoning in biomimetics [44]. DANE follows the steps of defining the problem, searching for the biological solution, and applying the principle [50]. An example to this approach is the Shark Attack Project, designed to protect swimmers from sharks. It is inspired by pistol shrimp’s snapping mechanism that creates a sound. The design was a shark repellant emitting sounds. The success in this framework is the identification of biological functions that gives clues on the heterogeneous properties of organisms. The limitation is addressing multifunctionality, either analogically or as design outcomes. 3. Achieving Multifunctionality through Natural Design Principles During the course of evolution, living systems adapted their character to meet changing environmental conditions by multifunctional strategies [30]. The result is a compromise satisfying partially conflicting requirements; known as trade-o s [51,52]. A trade-o is having multiple functions through diminishing one property in return for gains in others [53]. The functional requirements of conventional buildings are complex and often contradictory and during the life cycle of a building, they must be adapted to changes [54,55]. Some examples of these functional requirements include decreasing solar gains, while providing views and improving illuminance levels [26,56,57]. These strategies are still mostly handled as isolated components that are monofunctional. One way to address this challenge is using biomimetics, as in nature, multifunctional trade-o strategies have been developed through evolution [58]. Multifunctionality is well understood in biology; however, its translation into architecture remains limited [24]. In this section, we present and discuss opportunities to achieve multifunctionality in biomimetics through the “natural design principles” (Figure 1). We include hierarchy (multi-scale) and heterogeneity (multidimension) and adaptability in this study. Beyond this, there remain opportunities to explore multifunctionality through other processes including anisotropy, redundancy, and more [59]. 3.1. Adaptability in Nature and Bio-ABS Adaptability is the ability of an organism to respond to changing internal or external conditions [60]. Most organisms have evolved various morphological, physiological, and behavioral adaptations to survive in their habitats. For example, plants exchange water vapor to decrease their internal temperatures during hot periods through their stomata. This is a means of di using useful gases for photosynthesis and to discharge excess materials to dissipate heat [61]. Depending on the natural habitat, stomata show various adaptations [62] (Figure 2). In some plants such as cacti and succulents, Buildings 2020, 10, 114  4 of 31  life’s principles. These measures are often complex and may be challenging for every design. The  limitation of this framework is the lack of integrating multifunctionality. It could be, if the AskNature  database  provides  multifunctional  properties  of  organisms  be  used  to  design  multifunctional  strategies. This may require adding a step in the ‘Design Spiral’ on achieving multifunctionality.  ‘BioGen’  is  another  biomimetic  design  framework  [10,41].  It  creates  an  exploration  model  mapping functional aspects, relevant processes and influencing factors. The biological entities called  pinnacles are presented as examples for a specific function or process. An example of a case study  developed by using BioGen is the Shading/Energy Generating Skin, inspired by plants tracking sun  radiation, designed to tilt according to the angle of the sun [49]. While the creator of BioGen has  proposed a discussion on multi‐regulation of the four environmental factors (heat, light, water, and  air) this is a theoretical approach and lacks further development. Multi‐regulation is addressed by  mapping biological functions of the same living system regulating multiple environmental factors  dependently, i.e., ventilation is associated with heat regulation. This presents a success in addressing  multifunctionality, but its applicability is limited and must be fulfilled with examples. It may also  benefit  addressing  multifunctionality  through  combining  functions  of  different  living  systems  (inter)dependently.  DANE is another framework exploring analogical reasoning in biomimetics [44]. DANE follows  the steps of defining the problem, searching for the biological solution, and applying the principle  [50]. An example to this approach is the Shark Attack Project, designed to protect swimmers from  sharks. It is inspired by pistol shrimp’s snapping mechanism that creates a sound. The design was a  shark  repellant  emitting  sounds.  The  success  in  this  framework  is  the  identification  of  biological  functions that gives clues on the heterogeneous properties of organisms. The limitation is addressing  multifunctionality, either analogically or as design outcomes.  3. Achieving Multifunctionality through Natural Design Principles  During  the  course  of  evolution,  living  systems  adapted  their  character  to  meet  changing  environmental conditions by multifunctional strategies [30]. The result is a compromise satisfying  partially  conflicting  requirements;  known  as  trade‐offs  [51,52].  A  trade‐off  is  having  multiple  functions  through  diminishing  one  property  in  return  for  gains  in  others  [53].  The  functional  requirements of conventional buildings are complex and often contradictory and during the life cycle  of  a  building,  they  must  be  adapted  to  changes  [54,55].  Some  examples  of  these  functional  requirements  include  decreasing  solar  gains,  while  providing  views  and  improving  illuminance  levels  [26,56,57].  These  strategies  are  still  mostly  handled  as  isolated  components  that  are  monofunctional.  One  way  to  address  this  challenge  is  using  biomimetics,  as  in  nature,  Buildings 2020, 10, 114 5 of 28 multifunctional trade‐off strategies have been developed through evolution [58]. Multifunctionality  Buildings is well 2020  understood , 10, 114   in biology; however, its translation into architecture remains limited [24]. In 5 of thi  31 s  Buildings 2020, 10, 114  5 of 31  stomata are positioned on the epidermal (outmost) layer of the stem as they have minimal leaves to section, we present and discuss opportunities to achieve multifunctionality in biomimetics through  3.1. Adaptability in Nature and Bio‐ABS  maintain a low surface to volume ratio. While in most plants, stomata are located on the leaves to ease the  “natural  design  principles”  (Figure  1).  We  include  hierarchy  (multi‐scale)  and  heterogeneity  3.1. Adaptability in Nature and Bio‐ABS  the process of photosynthesis. The number of stomatal openings varies in di erent species according (multidimension) and adaptability in this study. Beyond this, there remain opportunities to explore  Adaptability is the ability of an organism to respond to changing internal or external conditions  Adaptability is the ability of an organism to respond to changing internal or external conditions  to the climatic influences as stoma loses water. For instance, desert plants lack in stomata while tropical multifunctionality through other processes including anisotropy, redundancy, and more [59].  [60]. Most organisms have evolved various morphological, physiological, and behavioral adaptations  [60]. Most organisms have evolved various morphological, physiological, and behavioral adaptations  plants have higher numbers of stomata [62–64]. to  survive  in  their  habitats.  For  example,  plants  exchange  water  vapor  to  decrease  their  internal  to  survive  in  their  habitats.  For  example,  plants  exchange  water  vapor  to  decrease  their  internal  temperatures during hot periods through their stomata. This is a means of diffusing useful gases for  temperatures during hot periods through their stomata. This is a means of diffusing useful gases for  photosynthesis and to discharge excess materials to dissipate heat [61]. Depending on the natural  Natural design principles photosynthesis and to discharge excess materials to dissipate heat [61]. Depending on the natural  habitat, stomata show various adaptations [62] (Figure 2). In some plants such as cacti and succulents,  habitat, stomata show various adaptations [62] (Figure 2). In some plants such as cacti and succulents,  stomata are positioned on the epidermal (outmost) layer of the stem as they have minimal leaves to  stomata are positioned on the epidermal (outmost) layer of the stem as they have minimal leaves to  maintain a low surface to volume ratio. While in most plants, stomata are located on the leaves to  maintain a low surface to volume ratio. While in most plants, stomata are located on the leaves to  Adaptability Hierarchy Heterogeneity Anistropy Redundancy ... ease  the  process  of  photosynthesis.  The  number  of  stomatal  openings  varies  in  different  species  ease  the  process  of  photosynthesis.  The  number  of  stomatal  openings  varies  in  different  species  according to the climatic influences as stoma loses water. For instance, desert plants lack in stomata  according to the climatic influences as stoma loses water. For instance, desert plants lack in stomata  while Figure  tropic 1.alSome  planof ts the have natural  higher design  numb principles ers of stomat as an ever a [62– -growing 64].  classification, where the last item in while tropical plants have higher numbers of stomata [62–64].  Figure 1. Some of the natural design principles as an ever‐growing classification, where the last item  the list presents continuity. in the list presents continuity.  Figure 2. Stomatal adaptations in plants by changing size and density.  Figure 2. Stomatal adaptations in plants by changing size and density. Figure 2. Stomatal adaptations in plants by changing size and density.  In engineering and design this is different, where a system is often designed to achieve one  In engineering and design this is di erent, where a system is often designed to achieve one In engineering and design this is different, where a system is often designed to achieve one  function and it does not reconfigure itself. Therefore, the strategy is static, where a design is made  function and it does not reconfigure itself. Therefore, the strategy is static, where a design is made function and it does not reconfigure itself. Therefore, the strategy is static, where a design is made  and must satisfy all needs during the lifetime [13]. However, adaptability in building skins learnt  and must satisfy all needs during the lifetime [13]. However, adaptability in building skins learnt and must satisfy all needs during the lifetime [13]. However, adaptability in building skins learnt  from  nature  is  an  emerging  topic  with  many  examples.  Some  examples  of  Bio‐ABS  include  the  from nature is an emerging topic with many examples. Some examples of Bio-ABS include the from  nature  is  an  emerging  topic  with  many  examples.  Some  examples  of  Bio‐ABS  include  the  Homeostatic Façade System that is an adaptive shading component, changing its shape according to  Homeostatic Façade System that is an adaptive shading component, changing its shape according Homeostatic Façade System that is an adaptive shading component, changing its shape according to  solar radiation levels [65]. Also, the Ocean Pavilion, a full‐scale application of the shading device  to solar radiation levels [65]. Also, the Ocean Pavilion, a full-scale application of the shading device solar radiation levels [65]. Also, the Ocean Pavilion, a full‐scale application of the shading device  Flectofin™, regulates solar irradiance levels by an automated hingeless mechanism [66] (Figure 3).  Flectofin—, regulates solar irradiance levels by an automated hingeless mechanism [66] (Figure 3). Flectofin™, regulates solar irradiance levels by an automated hingeless mechanism [66] (Figure 3).  Other  examples,  the  HygroScope  and  HygroSkin,  can  change  their  morphologies  through  the  Other examples, the HygroScope and HygroSkin, can change their morphologies through the changes Other  examples,  the  HygroScope  and  HygroSkin,  can  change  their  morphologies  through  the  changes in humidity by hygroscopic material properties of wood [67,68].  in humidity by hygroscopic material properties of wood [67,68]. changes in humidity by hygroscopic material properties of wood [67,68].                 Figure 3. Schematic illustrations of some Bio-ABS examples, from left to right; the Ocean Pavilion in        closed and open configurations, and Flectofin— in closed and open configurations. Figure 3. Schematic illustrations of some Bio‐ABS examples, from left to right; the Ocean Pavilion in  Figure 3. Schematic illustrations of some Bio‐ABS examples, from left to right; the Ocean Pavilion in  closed and open configurations, and Flectofin™ in closed and open configurations.  3.2. Achieving Multifunctionality through a Multi-Scaled Hierarchy closed and open configurations, and Flectofin™ in closed and open configurations.  3.2. Ac Hierar hievin chy g Multifunctionality is having functional  through featur  a Mul estiin‐Scale a multi-level d Hierarchystr   ucture from nano-to-macro scales. 3.2. Achieving Multifunctionality through a Multi‐Scaled Hierarchy  Having di erentiated scales allows organisms to develop multiple functional adaptations at various Hierarchy is having functional features in a multi‐level structure from nano‐to‐macro scales.  levels. Hier For archy example,  is having adapting  functthe ional form  featof ures an in or gan a mu such lti‐level as a tr structure ee branch from is one  nan level o‐to‐of ma adaptation, cro scales.  Having differentiated scales allows organisms to develop multiple functional adaptations at various  Havin and a second g differentiated is the micr  scale ostrsuctur  allow ess organisms of the tree bark’s to deve material lop mult [69 iple ] (Figur  functieonal 4).  This adapta dual tions optimization  at various  levels. For example, adapting the form of an organ such as a tree branch is one level of adaptation,  levels. For example, adapting the form of an organ such as a tree branch is one level of adaptation,  and a second is the microstructures of the tree bark’s material [69] (Figure 4). This dual optimization  and a second is the microstructures of the tree bark’s material [69] (Figure 4). This dual optimization  is well known as a strategy for solving engineering problems. This approach can be combined with  is well known as a strategy for solving engineering problems. This approach can be combined with  Buildings 2020, 10, 114 6 of 28 is well known as a strategy for solving engineering problems. This approach can be combined with Buildings 2020, 10, 114  6 of 31  adaptability and achieve multifunctionality in Bio-ABS. An example to hierarchy in nature is seen in adaptability and achieve multifunctionality in Bio‐ABS. An example to hierarchy in nature is seen in  trees. The shape of a branch is created by the assembly of molecules to cells and of cells to wood with a trees. The shape of a branch is created by the assembly of molecules to cells and of cells to wood with  specific shape. Therefore, at every scale, the branch is both form and material, where the materials a specific shape. Therefore, at every scale, the branch is both form and material, where the materials  compose the form; therefore, the biological structure becomes hierarchical [70]. It is important to compose the form; therefore, the biological structure becomes hierarchical [70]. It is important to note  that tree bark and tannins is categorized under hierarchy due to being a material at a small scale  note that tree bark and tannins is categorized under hierarchy due to being a material at a small scale covering the larger scaled tree bark. The adaptations of tannins are dependent on its scale, not its  covering the larger scaled tree bark. The adaptations of tannins are dependent on its scale, not its form. form.  Figure 4. A tree trunk and tannins. Photo by Madeleine Maguire on Unsplash.  Figure 4. A tree trunk and tannins. Photo by Madeleine Maguire on Unsplash. Hierarchical biological structures can be adopted to achieve multifunctionality in architecture  Hierarchical biological structures can be adopted to achieve multifunctionality in architecture through  multi‐scaled  structures  with  multiple  uses.  For  example,  building  systems  at  a  larger  through multi-scaled structures with multiple uses. For example, building systems at a larger hierarchical level can host one function and its material at a smaller scale can host another. This can  be explained through the hierarchical components of a conventional façade (Figure 5). The external  hierarchical level can host one function and its material at a smaller scale can host another. This can walls are at the large hierarchical scale as the enclosure of a building. The windows on the external  be explained through the hierarchical components of a conventional façade (Figure 5). The external walls are smaller and provide external views. The window openings are even smaller and provide  walls are at the large hierarchical scale as the enclosure of a building. The windows on the external ventilation. The glazing material of the windows is at the smallest scale, limiting solar gains or light.  walls are smaller and provide external views. The window openings are even smaller and provide The combination of these components at difference scales creates a façade with multiple functions.  Therefore, through using hierarchical scales in conventional systems with adaptability, it is possible  ventilation. The glazing material of the windows is at the smallest scale, limiting solar gains or light. to achieve multifunctionality in developing Bio‐ABS.  The combination of these components at di erence scales creates a façade with multiple functions. Therefore, through using hierarchical scales in conventional systems with adaptability, it is possible to achieve multifunctionality in developing Bio-ABS. Buildings 2020, 10, 114  7 of 31  Figure  5.  Hierarchical  components  on  a  conventional  façade  system  at  diverse  scales  including  Figure 5. Hierarchical components on a conventional façade system at diverse scales including external external walls, windows, window openings, and glazing material.  walls, windows, window openings, and glazing material. 3.3. Achieving Multifunctionality through a Heterogeneous Geometric Differentiation  Heterogeneity is characterized by a geometric differentiation of elements in multi‐dimensional  structures hosting different functions with various forms. [30]. Form and function are interrelated in  nature. As such, it is almost impossible to separate one from another. Nature uses shape or form,  rather than added material and energy, to meet functional requirements. This allows the organism to  accomplish  its  needs  using  a  minimum  of  resources  [7].  In  addition,  chemical  and  structural  heterogeneities play an important role in allowing local adjustments to be integrated.  There is often a functional reason behind a form in nature. For example, the carnivorous plant  Venus  flytrap  (Dionaea  muscipula)  has  a  cup‐shaped  leaf  that  catches  insects  with  a  mechanism  trapping prey in (Figure 6). There are small hairs or cilia that are sensory organelles on the leaves. A  slight disturbance of the cilia by an insect triggers the collapse of the leaf. This mechanism, called  snap  instability,  is  achieved  by  its  shape,  and  its  kinetics  has  been  studied  by  researchers  and  transferred into shading devices [30,71,72]. This shape of leaves helps the plant save energy when  moving. It is important to note that as the function of the cilia is achieved by their form rather than  their scale, this adaptation of the Venus flytrap is categorized under heterogeneity.  Figure  6.  Venus  flytrap  (Dionaea  muscipula)  with  its  specialized  cilia.  Photo  by  Gabriel  on  Unsplash.  Heterogeneity can be adopted into architecture to achieve multifunctionality through having  various  morphologies.  For  example,  different  geometrical  forms  with  diverse  functions  can  be  integrated  in  a  system.  This  can  be  explained  through  the  heterogeneous  components  of  a  conventional roof (Figure 7). The roof itself functions as the top covering of a building and the eaves  Buildings 2020, 10, 114  7 of 31  Buildings 2020, 10, 114 7 of 28 Figure  5.  Hierarchical  components  on  a  conventional  façade  system  at  diverse  scales  including  external walls, windows, window openings, and glazing material.  3.3. Achieving Multifunctionality through a Heterogeneous Geometric Di erentiation 3.3. Achieving Multifunctionality through a Heterogeneous Geometric Differentiation  Heterogeneity is characterized by a geometric di erentiation of elements in multi-dimensional Heterogeneity is characterized by a geometric differentiation of elements in multi‐dimensional  structures hosting di erent functions with various forms. [30]. Form and function are interrelated in structures hosting different functions with various forms. [30]. Form and function are interrelated in  nature. As such, it is almost impossible to separate one from another. Nature uses shape or form, nature. As such, it is almost impossible to separate one from another. Nature uses shape or form,  rather than added material and energy, to meet functional requirements. This allows the organism rather than added material and energy, to meet functional requirements. This allows the organism to  to accomplish its needs using a minimum of resources [7]. In addition, chemical and structural accomplish  its  needs  using  a  minimum  of  resources  [7].  In  addition,  chemical  and  structural  heterogeneities play an important role in allowing local adjustments to be integrated. heterogeneities play an important role in allowing local adjustments to be integrated.  There is often a functional reason behind a form in nature. For example, the carnivorous plant There is often a functional reason behind a form in nature. For example, the carnivorous plant  Venus flytrap (Dionaea muscipula) has a cup-shaped leaf that catches insects with a mechanism trapping Venus  flytrap  (Dionaea  muscipula)  has  a  cup‐shaped  leaf  that  catches  insects  with  a  mechanism  prey in (Figure 6). There are small hairs or cilia that are sensory organelles on the leaves. A slight trapping prey in (Figure 6). There are small hairs or cilia that are sensory organelles on the leaves. A  disturbance of the cilia by an insect triggers the collapse of the leaf. This mechanism, called snap slight disturbance of the cilia by an insect triggers the collapse of the leaf. This mechanism, called  instability, is achieved by its shape, and its kinetics has been studied by researchers and transferred snap  instability,  is  achieved  by  its  shape,  and  its  kinetics  has  been  studied  by  researchers  and  into shading devices [30,71,72]. This shape of leaves helps the plant save energy when moving. It is transferred into shading devices [30,71,72]. This shape of leaves helps the plant save energy when  important to note that as the function of the cilia is achieved by their form rather than their scale, this moving. It is important to note that as the function of the cilia is achieved by their form rather than  adaptation of the Venus flytrap is categorized under heterogeneity. their scale, this adaptation of the Venus flytrap is categorized under heterogeneity.  Figure  6.  Venus  flytrap  (Dionaea  muscipula)  with  its  specialized  cilia.  Photo  by  Gabriel  on  Figure 6. Venus flytrap (Dionaea muscipula) with its specialized cilia. Photo by Gabriel on Unsplash. Unsplash.  Heterogeneity can be adopted into architecture to achieve multifunctionality through having Heterogeneity can be adopted into architecture to achieve multifunctionality through having  various morphologies. For example, di erent geometrical forms with diverse functions can be integrated various  morphologies. in a system. This   Forcan   exbe ample, explained   different through   geothe metrical heter ogeneous forms  with components   diverse  funct of a conventional ions  can  be  integrated  in  a  system.  This  can  be  explained  through  the  heterogeneous  components  of  a  roof (Figure 7). The roof itself functions as the top covering of a building and the eaves are the edges of conventional the roof which  roofpr (Fi oject gure beyond  7). Thethe  rooside f itseof lf funct a building. ions asThe  the eaves top covering function ofas a building shadings and and the thr ough eaves  their geometric di erentiation from the roof, the system becomes multifunctional. Therefore, through combining the use of heterogeneous scales in conventional systems with adaptability, it is possible to achieve multifunctionality in developing Bio-ABS. 3.4. Integrating Hierarchy and Heterogeneity Together Hierarchy through scales and heterogeneity through form in nature is developed in various complexities much further than the human eye can detect. In many cases, color and light transmittance or refraction is achieved by nano-scaled ridges, combining the principles of hierarchy and heterogeneity together. For instance, Morpho menelaus has transparent wings that are covered with micro scaled structures forming a textured pattern that di use light to achieve its color (Figure 8) [73]. This is a more ecient solution than having pigments, which in time can lose their properties or require energy to maintain. The wings function as means of flight bodies. The micro-scaled ridges add the wings an additional function, by having hierarchical elements. The wings being the larger-scale flight function and the ridges being the micro-scaled colorists therefore becoming heterogeneous [74,75]. Buildings 2020, 10, 114  8 of 31  are the edges of the roof which project beyond the side of a building. The eaves function as shadings  and  through  their  geometric  differentiation  from  the  roof,  the  system  becomes  multifunctional.  Therefore,  through  combining  the  use  of  heterogeneous  scales  in  conventional  systems  with  adaptability, it is possible to achieve multifunctionality in developing Bio‐ABS.  Buildings 2020, 10, 114  8 of 31  are the edges of the roof which project beyond the side of a building. The eaves function as shadings  and  through  their  geometric  differentiation  from  the  roof,  the  system  becomes  multifunctional.  Buildings 2020, 10, 114 8 of 28 Therefore,  through  combining  the  use  of  heterogeneous  scales  in  conventional  systems  with  adaptability, it is possible to achieve multifunctionality in developing Bio‐ABS.  Figure 7. Heterogeneity in a conventional roof structure showing the heterogeneous forms of the roof  and eaves.  3.4. Integrating Hierarchy and Heterogeneity Together  Hierarchy  through  scales and  heterogeneity  through  form in  nature is  developed in  various  complexities  much  further  than  the  human  eye  can  detect.  In  many  cases,  color  and  light  transmittance or refraction is achieved by nano‐scaled ridges, combining the principles of hierarchy  and heterogeneity together. For instance, Morpho menelaus has transparent wings that are covered  with micro scaled structures forming a textured pattern that diffuse light to achieve its color (Figure  8) [73]. This is a more efficient solution than having pigments, which in time can lose their properties  or require energy to maintain. The wings function as means of flight bodies. The micro‐scaled ridges  add the wings an additional function, by having hierarchical elements. The wings being the larger‐ Figure 7. Heterogeneity in a conventional roof structure showing the heterogeneous forms of the roof  Figure 7. Heterogeneity in a conventional roof structure showing the heterogeneous forms of the roof scale  flight  function  and  the  ridges  being  the  micro‐scaled  colorists  therefore  becoming  and eaves.  heterogeneous [74,75].  and eaves. 3.4. Integrating Hierarchy and Heterogeneity Together  Hierarchy  through  scales and  heterogeneity  through  form in  nature is  developed in  various  complexities  much  further  than  the  human  eye  can  detect.  In  many  cases,  color  and  light  transmittance or refraction is achieved by nano‐scaled ridges, combining the principles of hierarchy  and heterogeneity together. For instance, Morpho menelaus has transparent wings that are covered  with micro scaled structures forming a textured pattern that diffuse light to achieve its color (Figure  8) [73]. This is a more efficient solution than having pigments, which in time can lose their properties  Figure 8. From left to right: Morpho Menelaus, its wings, micro‐scaled structures forming a pattern  Figure 8. From left to right: Morpho Menelaus, its wings, micro-scaled structures forming a pattern over or require energy to maintain. The wings function as means of flight bodies. The micro‐scaled ridges  over the wings, a single scale of Morpho Menelaus and a scale showing a few ridges giving color. Photo  the wings, a single scale of Morpho Menelaus and a scale showing a few ridges giving color. Photo by add the wings an additional function, by having hierarchical elements. The wings being the larger‐ by Damon On Road on Unsplash.  Damon On Road on Unsplash. scale  flight  function  and  the  ridges  being  the  micro‐scaled  colorists  therefore  becoming  heterogeneous Hierarchy  [an 74,d75  heterogeneity ].    can  be  integrated  together  in  achieving  multifunctionality  into  Hierarchy and heterogeneity can be integrated together in achieving multifunctionality into architecture through differentiating functions at diverse scales and geometries. Similar to Morpho  menelaus, a building can host a function on its different elements situated at diverse scales and on its  architecture through di erentiating functions at diverse scales and geometries. Similar to Morpho menelaus, a building can host a function on its di erent elements situated at diverse scales and on its functional surfaces di erentiated by various geometries. For example, in conventional structures, this is achieved through Buildings having  2020, 10the , 114  hierarchy of system, component, material at diverse scales 9 of 31added   together with surface structures as di erentiated geometries. In this way, the traditional hierarchical parts of a functional surfaces differentiated by various geometries. For example, in conventional structures, this  Figure 8. From left to right: Morpho Menelaus, its wings, micro‐scaled structures forming a pattern  building are formed. is achieved Then,  through the  hav material ing the hierar pr chy operties  of system, of compone the specialized nt, material at diver surfaces, se scalesi.e.,  addenanostr d  uctured over the wings, a single scale of Morpho Menelaus and a scale showing a few ridges giving color. Photo  together with surface structures as differentiated geometries. In this way, the traditional hierarchical  surfaces, are used at as small scale of the hierarchy. The material property adds heterogeneous forms by Damon On Road on Unsplash.  parts  of  a  building  are  formed.  Then,  the  material  properties  of  the  specialized  surfaces,  i.e.,  in the hierarchy and therefore the whole system achieves multifunctionality through hierarchy and nanostructured  surfaces,  are  used  at  as  small  scale  of  the  hierarchy.  The  material  property  adds  Hier heterogeneous archy  and  form heterogeneity s in the hier  arch can ybe and  in ttherefor egrated e  the together  whole  sy instem   ach iach eving ieve smult  multififuunct nctiional onalitiyty    into  heterogeneity (Figure 9). through hierarchy and heterogeneity (Figure 9).  architecture through differentiating functions at diverse scales and geometries. Similar to Morpho  menelaus, a building can host a function on its different elements situated at diverse scales and on its  Figure  9.  How  buildings  can  achieve  multifunctionality  through  integrating  hierarchical  building  Figure 9. How buildings can achieve multifunctionality through integrating hierarchical building components with heterogeneous forms of material properties.  components with heterogeneous forms of material properties. 4. Methodology  Several research methods are used in this study to achieve multifunctionality in Bio‐ABS and to  measure the benefit of implementing multifunctional Bio‐ABS in buildings. These methods include  the following.  (1) Literature  review,  synthesis,  and  comparative  analysis  of  the  existing  biomimetic  design  frameworks.  (2) The case study of Echinocactus grusonii demonstrating a new biomimetic design framework to  achieve multifunctionality in Bio‐ABS.  (3) Building performance simulation of a digital base‐case building model and the case study of a  multifunctional Bio‐ABS.  (4) Comparative analysis of the simulation results showing the improvement in thermal comfort  multifunctional Bio‐ABS offers.  The literature review, synthesis, and comparative analysis of the existing design frameworks  aim at identifying the research gaps in developing Bio‐ABS. In doing so, they draw attention to the  limitations  and  successes  of  existing  frameworks  to  develop  Bio‐ABS  and  outline  whether  multifunctionality is addressed. However, it is found that achieving multifunctionality with existing  frameworks  remains  a  gap,  and  to  address  this,  a  new  framework  is  proposed.  Therefore,  as  a  method, framework is used in order to address the challenges faced in developing multifunctional  Bio‐ABS.  Frameworks,  in  general,  provide  a  holistic  approach  to  address  specific  problems  or  challenges and they present the opportunity to be further improved as validated methodologies. To  aid  the  framework  developed,  a  preliminary  database  is  created  by  mapping  multifunctional  mechanisms of organisms through a systematic classification as a growing source of multifunctional  biological mechanisms. The new framework presents a process to develop multifunctional Bio‐ABS  using  the  database.  Furthermore,  a  case  study  of  Echinocactus  grusonii  (golden  barrel  cactus)  implemented on a naturally ventilated educational building modeled digitally is developed through  the demonstration of the new framework. This case study provides an example to use the database  and framework to develop multifunctional Bio‐ABS by translating the natural design principles of  hierarchy and heterogeneity.  Buildings 2020, 10, 114 9 of 28 4. Methodology Several research methods are used in this study to achieve multifunctionality in Bio-ABS and to measure the benefit of implementing multifunctional Bio-ABS in buildings. These methods include the following. (1) Literature review, synthesis, and comparative analysis of the existing biomimetic design frameworks. (2) The case study of Echinocactus grusonii demonstrating a new biomimetic design framework to achieve multifunctionality in Bio-ABS. (3) Building performance simulation of a digital base-case building model and the case study of a multifunctional Bio-ABS. (4) Comparative analysis of the simulation results showing the improvement in thermal comfort multifunctional Bio-ABS o ers. The literature review, synthesis, and comparative analysis of the existing design frameworks aim at identifying the research gaps in developing Bio-ABS. In doing so, they draw attention to the limitations and successes of existing frameworks to develop Bio-ABS and outline whether multifunctionality is addressed. However, it is found that achieving multifunctionality with existing frameworks remains a gap, and to address this, a new framework is proposed. Therefore, as a method, framework is used in order to address the challenges faced in developing multifunctional Bio-ABS. Frameworks, in general, provide a holistic approach to address specific problems or challenges and they present the opportunity to be further improved as validated methodologies. To aid the framework developed, a preliminary database is created by mapping multifunctional mechanisms of organisms through a systematic classification as a growing source of multifunctional biological mechanisms. The new framework presents a process to develop multifunctional Bio-ABS using the database. Furthermore, a case study of Echinocactus grusonii (golden barrel cactus) implemented on a naturally ventilated educational building modeled digitally is developed through the demonstration of the new framework. This case study provides an example to use the database and framework to develop multifunctional Bio-ABS by translating the natural design principles of hierarchy and heterogeneity. The digital base-case building is taken from the repository of U.S. Department of Energy that provides models for various building types. The building type selected is educational to investigate problems associated with comfort in schools, as most existing studies focus on oce and commercial buildings [76–82]. Building performance simulation (BPS) of the digital base-case building targeting thermal comfort through the Adaptive Comfort Model applicable to naturally ventilated buildings is performed. The multifunctional Bio-ABS case study is implemented on the base-case building, replacing its windows. The software used to model and simulate the base-case building and case study is EnergyPlus. This was chosen as it provides a flexible input-output interface to model multifunctional facades using the built-in tool Energy Management System (EMS). EMS has customizable input objects that is suitable to model adaptive facades [79,83,84]. A comparative analysis for the BPS results of the base-case building and Bio-ABS case study is made to draw out the improvements in comfort multifunctional Bio-ABS o er over conventional buildings. 5. Classification of Biological Mechanisms for Multifunctionality Bio-ABS This section presents a database mapping multifunctional properties of organisms. To do so, we classified biological mechanisms in terms of multifunctionality. The classification is comprised of three layers in Table 2: (1) Named species presenting the biological system, (2) adaptability presenting the type of biological adaptations, and (3) multifunctionality presenting biological functional strategies divided into hierarchy and heterogeneity sub-categories. Buildings 2020, 10, 114 10 of 28 Table 2. The classification parameters of biological mechanisms for achieving multifunctionality in developing Bio-ABS. Layer Scope Parameters Biological system - 1. Species Scientific name - Physical Stimulus Chemical 2. Adaptability Dynamic Process Static Heat Light Environmental factor Air Water Energy 3. Multifunctionality Maintain Function Exchange Gain Lose Biological mechanism Mechanism Functional strategy Performance measure Pre-cellular Atom, molecule Sub-cellular Organelle Biological 3.a. Hierarchy organization scale Cellular Cell Multicellular Tissue, organ, organism Ecological Ecosystem, biome Form Morphological Structure Texture Adaptation type 3.b. Heterogeneity Chemical response and level Physiological Trait Kinetic response Behavioral Tropism Nastic movement 5.1. Species and Adaptability Layers The species layer comprises the name of the biological system and its scientific name. The stimulus presents the set of triggers biological mechanisms respond to, defined as physical and chemical. Physical stimuli refer to the internal and external environmental triggers including the changes in environmental factors. These range anywhere from heat, light, to water content. Chemical stimuli refer to physiological triggers detected by a receptor. Chemical stimuli promote internal responses including changes in pH. Adaptive features of living systems occur as either dynamic or static processes, demonstrating the kinds of changes. A dynamic process relates to motion such as behavioral adaptations. In static processes, no change is present. Examples include nanostructured textural features of living systems such as waxy surface structures of water lily (Nymphaeaceae) and lotus flower (Nelumbo nucifera) keeping them dry o the water [85,86]. 5.2. Multifunctionality Layer 5.2.1. Environmental Factor, Function, and Mechanism The environmental factor refers to climatic variables that biological mechanisms control, categorized as heat, light, air, water, and energy. For example, heat includes surface or body temperature (referred as thermoregulation in living systems), absorption, and dissipation of heat. Light Buildings 2020, 10, 114 11 of 28 is related to the impact and management of solar irradiance and radiation including light intensity, reflection, refraction, and absorption. Air is related to air and gas management including oxygen intake, air flow and gas exchange. Water is related to water content in the body or in the air or the surrounding environment of a living system including absorbing the moisture from the air, di usion of moisture, and waxy surfaces to hold moisture over the surface. Energy is related to the generation and conservation of energy. The function describes the control that biological mechanisms host over the environmental factors. These include gain, lose, maintain, and exchange. Gain refers to absorbing, warming up, and enhancing; describing an increase. Lose is the opposite of gain, referring to reflecting, refracting, cooling down, and evaporation; describing a decrease. Maintain refers to managing, intensifying, and thermal regulation; describing a certain variable is remained as a constant. Last, exchange refers to absorbing, taking, and filtering; describing the simultaneous emergence of gain and lose. The biological mechanism is the driving force of the classification that presents the functional characteristics of living systems. Examples of biological mechanisms include self-shading areoles and spines of cacti, and shrinking and swelling stem structures of succulents [87]. A functional strategy refers to the performative role played by an organism’s adaptations. Examples include maximizing the amount of light reflected, passive ventilation through altering air pressure and thermoregulation through retaining absorbed heat [88]. 5.2.2. Hierarchy Biological organization is the hierarchical order of biological systems, extending from atoms to biospheres Each level in the hierarchy represents an increase in organizational complexity, with each ‘object’ being composed of the previous level’s basic unit. The basic principle behind the organization is the concept of emergence: the properties found at a hierarchical level are not present and irrelevant at the lower levels. In most simple terms, the biological organization level relates to the level at which the biological mechanism is part of a living system (Figure 10). Organisms achieve Buildings 2020, 10, 114  12 of 31  multifunctionality through having multiple functions located at their hierarchical multi-level biological the biological mechanism is part of a living system (Figure 10). Organisms achieve multifunctionality  structures. To promote biomimetic strategies with multiple functions, the biological levels of those through having multiple functions located at their hierarchical multi‐level biological structures. To  biological mechanisms are identified. This categorization aims at presenting how diverse functions are promote  biomimetic  strategies  with  multiple  functions,  the  biological  levels  of  those  biological  combined in living systems and gives clues to creating corresponding technical systems. For instance, mechanisms  are  identified.  This  categorization  aims  at  presenting  how  diverse  functions  are  combined in living systems and gives clues to creating corresponding technical systems. For instance,  if a biological mechanism is situated at a cell level, it can be combined with another mechanisms that is if a biological mechanism is situated at a cell level, it can be combined with another mechanisms that  located at a di erent level such as organ or organism [34]. is located at a different level such as organ or organism [34].  Ecological levels Super- • Population cellular • Community or (multicellular Cellular biocoenosis ) level levels • Ecosystem • Tissue •Biome •Cell Sub-cellular •Organ level •Organ • Organelle system Pre-cellular level •Organism •Atoms • Molecule • Biomolecular complex Figure 10. Biological organization scales.  Figure 10. Biological organization scales. 5.2.3. Heterogeneity  Morphological  adaptions  occur  through  the  changes  in  the  morphology  of  an  organism.  Examples include the movement of wooden‐like scales of the big pine cone (Pinus coultieri) when the  water content in the air fluctuates to manage moisture. In morphological adaptations, form is related  to the size or shape of an organism. Structure relates to a structure of an organism, as biological spatial  and structural material‐systems. Examples include shell structures such as the sea urchin (Echnoidea)  and sand dollar (Clypeasteroida). Texture results from segmentation trends of biological surfaces of an  organism. Examples include thorny fruit trees such as durian, to provide self‐shading with scale  structures [89].  Physiological  adaptations  occur  through  internal  changes  of  an  organism.  Examples  include  Crassulacean Acid Metabolism in cacti, a carbon fixation pathway where the stomata remain shut  during the day to reduce evapotranspiration, while open at night to collect carbon dioxide to diffuse  into cells. In physiological adaptations, trait relates to phenotypic characteristics of an organism as  results of the evolutionary processes. Examples include the eye color as a character of humans, while  blue, brown, and green colors are traits. Chemical processes result from internal chemical processes  of  an  organism.  Examples  include  the  physiology  of  stomatal  openings  facilitating  gas  exchange  through a pair of specialized guard cells [61].  Behavioral  adaptations  are  changes  in  the  behavior  of  an  organism,  mostly  resulting  in  movement. Kinetic response is the movement in living systems other than plants. Examples include  kangaroos (Macropodidae) licking their paws for evaporation and crouching into smaller position  for  decreased  heat  gain.  Nastic  movement  is  plants’  response  to  an  external  stimulus  (i.e.,  temperature, light, and chemicals) independent from its direction. Examples include thermonasty of  tulips (Tulipa), closing and openings according to the changes in temperature and thigmonasty of  wood  sorrels  (Oxalidaceae)  as  a  response  to  vibration.  Tropism  is  plants’  response  to  an  external  Buildings 2020, 10, 114 12 of 28 5.2.3. Heterogeneity Morphological adaptions occur through the changes in the morphology of an organism. Examples include the movement of wooden-like scales of the big pine cone (Pinus coultieri) when the water content in the air fluctuates to manage moisture. In morphological adaptations, form is related to the size or shape of an organism. Structure relates to a structure of an organism, as biological spatial and structural material-systems. Examples include shell structures such as the sea urchin (Echnoidea) and sand dollar (Clypeasteroida). Texture results from segmentation trends of biological surfaces of an organism. Examples include thorny fruit trees such as durian, to provide self-shading with scale structures [89]. Physiological adaptations occur through internal changes of an organism. Examples include Crassulacean Acid Metabolism in cacti, a carbon fixation pathway where the stomata remain shut during the day to reduce evapotranspiration, while open at night to collect carbon dioxide to di use into cells. In physiological adaptations, trait relates to phenotypic characteristics of an organism as results of the evolutionary processes. Examples include the eye color as a character of humans, while blue, brown, and green colors are traits. Chemical processes result from internal chemical processes of an organism. Examples include the physiology of stomatal openings facilitating gas exchange through a pair of specialized guard cells [61]. Behavioral adaptations are changes in the behavior of an organism, mostly resulting in movement. Kinetic response is the movement in living systems other than plants. Examples include kangaroos (Macropodidae) licking their paws for evaporation and crouching into smaller position for decreased heat gain. Nastic movement is plants’ response to an external stimulus (i.e., temperature, light, and chemicals) independent from its direction. Examples include thermonasty of tulips (Tulipa), Buildings 2020, 10, 114  13 of 31  closing and openings according to the changes in temperature and thigmonasty of wood sorrels (Oxalidaceae) as a response to vibration. Tropism is plants’ response to an external stimulus (i.e., oxygen, stimulus (i.e., oxygen, sun, and humidity) depending on its direction, as opposed to nastic movement.  sun, and humidity) depending on its direction, as opposed to nastic movement. Examples include Examples include hydrotropism such as tomato roots, the tendency to grow towards higher moisture  hydrotropism such as tomato roots, the tendency to grow towards higher moisture content (Figure 11). content (Figure 11).  Figure 11. Examples of adaptations or characteristics from left to right; in morphology—succulent’s  Figure 11. Examples of adaptations or characteristics from left to right; in morphology—succulent’s form, sea urchin’s structure, durian’s thorns; in physiology—eye color trait, photosynthesis of stoma;  form, sea urchin’s structure, durian’s thorns; in physiology—eye color trait, photosynthesis of stoma; in behavior—licking paws for evapotranspiration, thermonasty, and phototropism.  in behavior—licking paws for evapotranspiration, thermonasty, and phototropism. 5.3. Examples of Classified Biological Systems  5.3. Examples of Classified Biological Systems In an attempt to demonstrate this systematic classification, we mapped biological systems in a  In an attempt to demonstrate this systematic classification, we mapped biological systems in a ‘preliminary  database’  for  achieving  multifunctionality  in  biomimetic  designs  (Table  3).  The  ‘preliminary database’ for achieving multifunctionality in biomimetic designs (Table 3). The biological biological systems are organized to present their multifunctional properties, giving insight to their  systems are organized to present their multifunctional properties, giving insight to their hierarchical or hierarchical or heterogeneous structures. The classification and the database are to be used as part of  heterogeneous structures. The classification and the database are to be used as part of the framework the framework proposed in this paper further. The table presented below provides the information  proposed in this paper further. The table presented below provides the information on an extract on an extract (sixteen entries) from the database. The database in its current format consists of 43  (sixteen entries) from the database. The database in its current format consists of 43 entries and it is yet entries and it is yet to be complete as a growing source of multifunctional mechanisms of biological  to be complete as a growing source of multifunctional mechanisms of biological systems. systems.  Table 3. A preliminary mapping of several biological systems through the systematic classification.  (in stimulus P: physical, C: chemical; in process D: dynamic, S: static; in biological organization scales  O: organ, T: tissue, C: cell; in adaptation types M: morphological, P: physiological, B: behavioral; in  adaptation levels F: form, S: structure, TEX: texture, CR: chemical response, KR: kinetic response, NM:  nastic movement, TRO: tropism; N/A: Not available). Information is gathered from various sources  [6,8,12,13,50,89–110].  Species  Adaptability  Multifunctionality  Biologi Adapta cal  Adaptat tion  Organi ion  Stimul Pro Level  Biological System  Function  Mechanism  zation  Type  us  cess  (Hetero Scale  (Hetero geneity (Hierar geneity)  )  chy)  Managing  UV  Australian  radiation,  Banksia Seeds  Maintain/Exchange  high ambient  P  D  T  P  Trait  (Banksia  light and heat  summer  attenuata)  temperature s by crack  openings  Translucent  and colored  Stone Plant  Gain/Maintain/Lose  patterned  N/A  S  T  P  Trait  (Lithops)  light  epidermal  windows on  the leaves  Buildings 2020, 10, 114 13 of 28 Table 3. A preliminary mapping of several biological systems through the systematic classification. (in stimulus P: physical, C: chemical; in process D: dynamic, S: static; in biological organization scales O: organ, T: tissue, C: cell; in adaptation types M: morphological, P: physiological, B: behavioral; in adaptation levels F: form, S: structure, TEX: texture, CR: chemical response, KR: kinetic response, NM: nastic movement, TRO: tropism; N/A: Not available). Information is gathered from various sources [6,8,12,13,50,89–110]. Species Adaptability Multifunctionality Biological Adaptation Adaptation Organization Biological System Stimulus Process Function Mechanism Level Type Scale (Heterogeneity) (Heterogeneity) (Hierarchy) Managing UV radiation, Australian Banksia Maintain/Exchange high ambient summer Seeds (Banksia P D T P Trait light and heat temperatures by crack attenuata) openings Translucent and colored Gain/Maintain/Lose N/A S patterned epidermal T P Trait light windows on the leaves Stone Plant (Lithops) Gain/Maintain Shrinking and swelling P D waterLoose/Maintain O M F leaves heat Triangular reflective hair Saharan Silver Ant Maintain/Lose light and grooves reducing heat (Cataglyphis P D T M TEX and heat absorption, reflection, and bombycina) refraction Highly reflective shell Maintain/Lose light Desert Snail N/A S surface allowing O P Trait and heat (Sphincterochila conduction boisseri) Layer of insulating air P D Maintain heat O B KR cushion Glass Snail Glossy translucent shell Maintain/Lose light (Oxychilus N/A S called glass house allowing O P Trait and heat draparnaudi) reflectance Wings scale structures Maintain light and P D allowing structural O M TEX Butterfly—Menelaus heat coloration Blue Butterfly Microscopically thin layers (Morpho menelaus) of film (chitin) on wings N/A S Gain energy O P Trait absorbing energy/infrared light Tannins on the bark surface Maintain light and managing optical N/A S T P Trait heat properties through Bark of Trees nanostructures Rough bark surface Maintain air, light, producing shadowed areas N/A S and heat amongst the illuminated T M TEX Lose light and heat ones, stimulating convection of air Swelling and shrinking cortex achieving high Maintain water Cactus-Barrel cactus P D surface to volume ratio O M F Lose light and heat (Echinocatus through the ribs structured grusonii) stem Self-shading areoles and N/A S Lose light and heat spines over the cortex T M TEX epidermal layer Exchange heat, air, Microscopic and permeable Stoma C D C P CR and light stomatal openings Maintain/Exchange Open/closed configurations P D T B KR light and water of the shell Hygroscopic nasal passages Camel (Camelus) Maintain/Lose heat cooling exhaled air during P D T P Trait Exchange water night and extracting water vapor from air Maintain heat and Managing water content water Spurge (Euphorbias) N/A S and heat through waxy T P Trait Lose heat surface covering the stem Gain water Curling movement of the Maintain/Gain heat leaves triggered by heat Rhododendron P D Maintain water allowing the reduction of O B TRO Leaves Lose light and heat the total quantity of light absorbed by the leaf Special structures Maintain/Lose light absorbing solar radiation, N/A S C P CR Gain energy and managing light by Fern Leaves reflection and refraction Exchange air and Permeability of outer leaf C D C P CR water surface allowing di usion Buildings 2020, 10, 114 14 of 28 Table 3. Cont. Species Adaptability Multifunctionality Biological Adaptation Adaptation Organization Biological System Stimulus Process Function Mechanism Level Type Scale (Heterogeneity) (Heterogeneity) (Hierarchy) Long, transparent, hollow Gain heat light N/A S guard hairs scattering and T M TEX Maintain/Lose light Polar Bear (Ursus reflecting sunlight Dense underfur, darkly maritimus) Maintain light and N/A S pigmented skin, and T P Trait heat blubbering Movement through the Big pinecone (Pinus Exchange water, air, P D material capacity of T M TEX coulteri) and light wooden scales Gain/Maintain Swelling and shrinking Succulents P D water cortex achieving high O M F Lose light and heat surface to volume ratio 6. Developing a Framework to Achieve Multifunctionality in Bio-ABS To achieve multifunctionality in Bio-ABS, a framework called the ‘Multi-Biomechanism Approach’ is proposed. This is a top-down approach focusing on technical problems to be solved through biological inspiration. It is comprised of four stages (Figure 12): (1) Identifying a technical problem. (2) Selecting a biological solution. (3) Achieving multifunctionality. (4) Developing a biomimetic strategy. Each stage is comprised of sub-stages, which are facilitated by the classification of multifunctional biological mechanisms as outlined in Table 3. Stage one is comprised of the two sub-stages of selecting a base-case scenario that includes a location, the climate, and the performance analysis of that base-case scenario and identifying functional requirements to improve the performance. Stage two is comprised of matching functional requirements of the base-case scenario with a corresponding biological system found in the database. A suitable biological system with multifunctional properties is selected to serve as a case study. Stage three is comprised of outlining the properties of the chosen biological system as hierarchical and heterogeneous structures to achieve multifunctionality. This includes the identification of biological organization scales, adaptation levels and types of the chosen biological mechanisms. Stage four is comprised of designing a Bio-ABS with functions at diverse scales and with di erent geometries. In doing so, several configurations of the Bio-ABS are produced, and actuation mechanisms are presented that deliver climate-adaptability. Further details on how to perform the stages of the framework are described thoroughly in the following sections of this paper with a case study demonstrating its use. 6.1. Stage 1: Identifying Technical Problems The identification of technical problems involves identifying optical, acoustic, and energetic controls over a base-case scenario. This is achieved through selecting location, climate, and a base-case building to identify functional requirements. A performance analysis of the base-case is proposed to define the functions required, such as through building performance simulation. The functions defined are suggested to use a simplified language as maintain, exchange, lose, and gain; of the environmental factors as heat, light, air, water, and energy. For instance, results of a performance analysis may suggest that cooling energy loads are relatively high. This indicates heat regulation through the function lose can be investigated as thermoregulation in organisms. Buildings 2020, 10, 114  17 of 31  6. Developing a Framework to Achieve Multifunctionality in Bio‐ABS  To  achieve  multifunctionality  in  Bio‐ABS,  a  framework  called  the  ‘Multi‐Biomechanism  Approach’ is proposed. This is a top‐down approach focusing on technical problems to be solved  through biological inspiration. It is comprised of four stages (Figure 12):  (1) Identifying a technical problem.  (2) Selecting a biological solution.  (3) Achieving multifunctionality.  (4) Developing a biomimetic strategy.  Each  stage  is  comprised  of  sub‐stages,  which  are  facilitated  by  the  classification  of  multifunctional biological mechanisms as outlined in Table 3. Stage one is comprised of the two sub‐ stages of selecting a base‐case scenario that includes a location, the climate, and the performance  analysis  of  that  base‐case  scenario  and  identifying  functional  requirements  to  improve  the  performance. Stage two is comprised of matching functional requirements of the base‐case scenario  with  a  corresponding  biological  system  found in  the  database. A suitable  biological  system with  multifunctional properties is selected to serve as a case study. Stage three is comprised of outlining  the properties of the chosen biological system as hierarchical and heterogeneous structures to achieve  multifunctionality. This includes the identification of biological organization scales, adaptation levels  and types of the chosen biological mechanisms. Stage four is comprised of designing a Bio‐ABS with  functions at diverse scales and with different geometries. In doing so, several configurations of the  Bio‐ABS are produced, and actuation mechanisms are presented that deliver climate‐adaptability.  Further  details  on  how  to  perform  the  stages  of  the  framework  are  described  thoroughly  in  the  Buildings 2020, 10, 114 15 of 28 following sections of this paper with a case study demonstrating its use.  Figure 12. The multi-biomechanism approach and its stages. (1) Identifying technical Figure 12. The multi‐biomechanism approach and its stages. (1) Identifying technical problems, (2)  problems, (2) investigating biological solutions, (3) achieving multifunctionality, and (4) developing investigating biological solutions, (3)  achieving multifunctionality, and (4) developing  biomimetic  biomimetic strategies. strategies.  6.2. Stage 2: Investigating Biological Solutions The second stage is to find solutions in nature that respond to similar problems as identified in Stage 1. This stage is comprised of matching functional requirements, investigating corresponding biological mechanisms, and selecting biological models. To match functional requirements between the base-case building and nature, the same terms for functions (maintain, exchange, lose, and gain) and environmental factors (heat, light, air, water, and energy) are suggested to be used. 6.3. Stage 3: Achieving Multifunctionality The third stage is to achieve multifunctionality through selecting multiple biological mechanisms, situating mechanisms at diverse scales, and developing actuation mechanisms. Multiple biological mechanisms whether they belong to the same biological model or not, should be selected to develop a multifunctional system. The significance in this stage is to employ hierarchy or heterogeneity as drivers. This means either situating the selected mechanisms at diverse scales, or selecting diverse types of morphological, physiological, or behavioral adaptations in a heterogeneous structure. 6.4. Stage 4: Developing Biomimetic Strategies The final stage is developing biomimetic strategies, comprised of developing a façade design, selecting smart materials as actuators, and producing configurations. For example, the Stone Plant (Lithops) maintains light levels through its translucent and colored structures. This mechanism can be transferred as a texture changing its light transmittance. Moreover, the opening movement of stomata Buildings 2020, 10, 114 16 of 28 is a dynamic process that relates to a motion happening at a cellular scale. These mechanisms can be combined together and translated into a potential Bio-ABS design. 7. The Case Study of Echinocactus grusonii This section describes the case study of a multifunctional Bio-ABS following the four stages of the Multi-Biomechanism Approach. The case study of Echinocactus grusonii is implemented on a digital reference building through translating its multifunctional properties using the concepts of hierarchy and heterogeneity. Further on, building performance simulation of the base-case building before and after implementing the multifunctional Bio-ABS case study is conducted. A comparative analysis of the simulation results is presented showing the performance improvements. 7.1. Stage 1: Identifying Technical Problems To determine the technical problems in a base-case scenario, a climatic context with a location and reference building must be selected. A base-case scenario is selected in Sydney, Australia, with humid warm temperate climate characterized by warm summers and cool winters [111]. A digital reference educational building from the United States Department of Energy repository was selected to serve as a base-case model [112]. The building type selected is educational to investigate problems associated with comfort in schools, as most existing studies focus on oces and commercial buildings [78–84]. The reference building was located in Atlanta, USA, as Atlanta shows climatic similarity to Sydney. It is anticipated that the geometry of the reference building is suitable for a similar climate. The reference building is simulated using the software EnergyPlus, in which the building was already modeled. The simulation results are presented further in this section in ‘7.5. Comparative analysis of environmental performance evaluation’. As results of the simulation, technical problems in the building are identified. The technical problems are defined as excessive heat, need for cooling, and high solar gains. The problems are revised using the simplified language specified in the framework. The translation of excessive heat is described as to lose and maintain heat, the need for cooling as to gain and exchange air, and high solar gains as to lose and maintain light (Table 4). Table 4. Defining technical problems as functional requirements. Technical Problem Functional Requirement Excessive heat Lose/maintain heat Need for cooling Gain/exchange air High solar gains Lose/maintain light 7.2. Stage 2: Investigating Biological Solutions A search for the functional requirements resulted with several biological systems including Echinocactus grusonii, Pinus coultieri, and succulents. The search for three di erent functions in the database is performed to investigate various biological mechanisms. The first function (air regulation) results with 11 entries including Echinocactus grusonii, big pine cone (Pinus coulteri), stomata, succulents, and barnacles (Chthamalus stellatus). The second function (light regulation) results with 33 entries including Echinocactus grusonii, Pinus coulteri, succulents, Mimosa pudica, Lithops, and Saharan silver ant (Cataglyphis bombycina). The third function (heat regulation) results with 43 entries including Echinocactus grusonii, Pinus coulteri, stomata, succulents, Mimosa pudica, Lithops, and Cataglyphis bombycina. The functions are as listed below. (1) Function IN (‘Exchange’, ‘Gain’) AND ‘Environmental Factor ’ = ‘Air ’, (2) Function IN (‘Lose’, ‘Maintain’) AND ‘Environmental Factor ’ = ‘Light’ (3) Function IN (‘Lose’, ‘Maintain’) AND ‘Environmental Factor ’ = ‘Heat’ Buildings 2020, 10, 114 17 of 28 As results of the search, three biological systems are found in the intersection with corresponding strategies. These are Echinocactus grusonii, Pinus coulteri, and succulents. In addition, cacti and succulents have their stomatal openings situated on the external layer of their epidermis, which forms a hierarchical adaptation at a smaller scale of the stem. In Pinus coulter, stomata are situated on the leaves that are part of the tree instead. Pinus coulteri exchanges water, air, and light by a response to moisture. It presents a movement through the movement by the wooden scales, which results in one type of morphological adaptation as a texture. Succulents gain and maintain water; lose light and heat through swelling and shrinking cortex, similar to cacti. However, this results in one type of morphological adaptation as a form of an organ. However, Echinocactus grusonii not only achieves what succulents do through a similar adaptation with a di erent form, and have their stomata on their stem di erent to pine cone, but it also loses light and heat through its self-shading areoles and spines. This additional morphological adaptation is a texture. Therefore, Echinocactus grusonii is chosen among the three biological systems as it provides two morphological adaptations at diverse hierarchical scales (organ and tissue) and has di erent textural heterogeneous structures (areoles and spines). Some of the adaptations of Echinocactus grusonii involve the swelling and shrinking movement and high surface-to-volume ratio of the stem, self-shading areoles, and spines over the cortex as a morphology; and the microscopic stomatal openings as physiological mechanisms (Table 5). The cactus stem swells, shrinks, and maintains a high surface-to-volume ratio, through the unique ribs structure. Studies show that Echinocactus grusonii can expand up to 54% of its initial surface area [105,109]. At the shrunk state, self-shaded areas in between the ribs help cool the surface temperatures down. The surface-to-volume ratio increases as the cactus gets larger, losing heat and light. There are areoles on the cortex out of which grow spines, self-shading and creating cooler microclimate. Studies show that Echinocactus grusonii can achieve up to a di erence of 17 C in winter and 25 C in summer between the surface and air temperatures through these morphological adaptations [64]. Stomata are microscopic pores on leaves to transpire water and exchange air and heat, but in cacti they are placed directly on the stem. Echinocactus grusonii has 15 to 70 stomata per square millimeter [103]. Table 5. Echinocactus grusonii and its properties. (in stimulus P: physical, C: chemical; in process D: dynamic, S: static; in biological organization scales O: organ, T: tissue, C: cell; in adaptation types M: morphological, P: physiological; in adaptation levels F: form, TEX: texture, CR: chemical response; N/A: Not available). Species Adaptability Multifunctionality Biological Adaptation Adaptation Organization Biological System Stimulus Process Function Mechanism Type Level Scale (Heterogeneity) (Heterogeneity) (Hierarchy) Swelling and shrinking cortex achieving high Maintain water P D surface to volume ratio O M F Cactus-Barrel cactus Lose light and heat through the ribs structured (Echinocatus stem grusonii) Self-shading areoles and N/A S Lose light and heat spines over the cortex T M TEX epidermal layer Exchange heat, air, Microscopic and permeable Stoma C D C P CR and light stomatal openings 7.3. Stage 3: Achieving Multifunctionality The mechanisms of Echinocactus grusonii are situated at diverse scales of biological organization and di erentiated morphologies. For example, the swelling and shrinking cortex is a morphological adaptation that hosts the function of losing heat by the di erentiated form of the ribs’ structure covering the cortex over the spherical stem. This is an example of heterogeneity in nature. Moreover, the self-shading areoles and spines are morphological adaptations as a di erentiated form of texture over the ribs presenting heterogeneity. On the other hand, the microscopic stomatal openings operate as physiological adaptation. All three adaptations are situated at di erent scales of biological organization: Buildings 2020, 10, 114 18 of 28 stomatal openings at the cellular level and areoles and spines at the tissue and ribs structured cortex at the organ levels. This shows an example for hierarchy in nature. Therefore, the translation of the cortex can be activated by heat and light. Being at the largest level among the mechanisms, it may be transferred into a larger spatial scale. The translation of the stomatal openings may work in conjunction with the ribbed stem, regulating heat and light. This mechanism can be transferred as openings at a medium-level spatial scale for air intake, activated by temperature. The areoles and spines regulate light through creating a texture over the cortex, activated by light. This mechanism can be translated at Buildings 2020, 10, 114  21 of 31  a smaller scale such as sub-component (Figure 13). Figure 13. Multifunctionality through hierarchy and heterogeneity in Echinocactus grusonii. Figure 13. Multifunctionality through hierarchy and heterogeneity in Echinocactus grusonii.  7.4. Stage 4: Developing Biomimetic Strategies 7.4. Stage 4: Developing Biomimetic Strategies  The selected mechanisms of Echinocactus grusonii are translated into a façade design to improve the The selected mechanisms of Echinocactus grusonii are translated into a façade design to improve  performance of the base-case scenario. The ribbed stem is translated into a morphology regulating heat the performance of the base‐case scenario. The ribbed stem is translated into a morphology regulating  by expanding and contracting triggered by temperature di erence. As the form of a stem is a sphere heat by expanding and contracting triggered by temperature difference. As the form of a stem is a  but through giving it dimension by the ribs, it becomes geometrically heterogeneous and hosts another sphere but through giving it dimension by the ribs, it becomes geometrically heterogeneous and hosts  function of shading. This achieves cooling between the ribbed surfaces instead of reaching extreme another function of shading. This achieves cooling between the ribbed surfaces instead of reaching  temperatures otherwise without ribs. The self-shading areoles and spines texture is translated into an extreme  temperatures  otherwise  without  ribs.  The  self‐shading  areoles  and  spines  texture  is  opacity-changing glazing (photochromic) regulating light and solar gains triggered by solar radiation. translated into an opacity‐changing glazing (photochromic) regulating light and solar gains triggered  The photochromic glazing chemically changes its properties various solar heat gain coecient and by solar radiation. The photochromic glazing chemically changes its properties various solar heat  visible light transmittance values to di erent levels of solar irradiance [113]. This is similar to having gain coefficient and visible light transmittance values to different levels of solar irradiance [113]. This  an additional function through heterogeneous surface properties. The heterogeneous morphology is  similar  to  having  an  additional  function  through  heterogeneous  surface  properties.  The  and the hierarchical shading material together achieve multifunctionality. The stomata are translated heterogeneous  morphology  and  the  hierarchical  shading  material  together  achieve  into openings regulating heat and air triggered by heat for ventilation. This presents hosting another multifunctionality. The stomata are translated into openings regulating heat and air triggered by heat  function by hierarchy and combine with the other two mechanisms interdependently, as it is linked to for ventilation. This presents hosting another function by hierarchy and combine with the other two  the ribbed morphology. Therefore, the design hosts two functions at its hierarchical and heterogeneous mechanisms interdependently, as it is linked to the ribbed morphology. Therefore, the design hosts  structure (Figure 14). two functions at its hierarchical and heterogeneous structure (Figure 14).  The Bio-ABS design is a folding module with an expanding and contracting mechanism activated by temperature di erence through the use of thermally restrictive smart material of shape memory alloys (SMAs). SMAs change their length when exposed to di erences in solar radiation levels [114,115]. Through this morphology, the design forms a ribbed structure while creating openings for ventilation. The opening’s size is controlled by the actuator ’s displacement, as a percentage of contraction in length. The component is formed by isosceles triangle shaped creases connected by mountain folds and divided into two identical creases by valley folds. The design is a symmetric double-line vertex of degree 6-case rigid origami with a hexagonal base, as hexagon o ers improved mechanical properties. The double-line technique allows the creases to have a gap for material thickness. Folds allow the component to change its shape while keeping the triangular creases rigid. A selected material placed in the central point can trigger the system with by a pull and push force into a pattern similar to the biomechanics of the rib structure of Echinocactus grusonii. The second function is achieved by color Figure  14.  Movement  and  dimensions  of  the  façade  module  in  elevation  and  section,  where  red  arrows represent the displacement of valley folds and green arrows represent the displacement of  mountain folds. The  Bio‐ABS  design  is  a  folding  module  with  an  expanding  and  contracting  mechanism  activated by temperature difference through the use of thermally restrictive smart material of shape  memory alloys (SMAs). SMAs change their length when exposed to differences in solar radiation  levels  [114,115].  Through  this  morphology,  the  design  forms  a  ribbed  structure  while  creating  Buildings 2020, 10, 114  21 of 31  Figure 13. Multifunctionality through hierarchy and heterogeneity in Echinocactus grusonii.  7.4. Stage 4: Developing Biomimetic Strategies  The selected mechanisms of Echinocactus grusonii are translated into a façade design to improve  the performance of the base‐case scenario. The ribbed stem is translated into a morphology regulating  heat by expanding and contracting triggered by temperature difference. As the form of a stem is a  sphere but through giving it dimension by the ribs, it becomes geometrically heterogeneous and hosts  another function of shading. This achieves cooling between the ribbed surfaces instead of reaching  extreme  temperatures  otherwise  without  ribs.  The  self‐shading  areoles  and  spines  texture  is  translated into an opacity‐changing glazing (photochromic) regulating light and solar gains triggered  by solar radiation. The photochromic glazing chemically changes its properties various solar heat  gain coefficient and visible light transmittance values to different levels of solar irradiance [113]. This  is  similar  to  having  an  additional  function  through  heterogeneous  surface  properties.  The  Buildings 2020, 10, 114 19 of 28 heterogeneous  morphology  and  the  hierarchical  shading  material  together  achieve  multifunctionality. The stomata are translated into openings regulating heat and air triggered by heat  changing smart materials called chromogenics that present an example for functional surface material for ventilation. This presents hosting another function by hierarchy and combine with the other two  properties. A study on visualizing the façade on the base-case reference building through replacing its mechanisms interdependently, as it is linked to the ribbed morphology. Therefore, the design hosts  windows with 188 modules is presented in Figure 15. two functions at its hierarchical and heterogeneous structure (Figure 14).  Buildings 2020, 10, 114  22 of 31  openings  for  ventilation.  The  opening’s  size  is  controlled  by  the  actuator’s  displacement,  as  a  percentage of contraction in length. The component is formed by isosceles triangle shaped creases  connected by mountain folds and divided into two identical creases by valley folds. The design is a  symmetric double‐line vertex of degree 6‐case rigid origami with a hexagonal base, as hexagon offers  improved  mechanical  properties.  The  double‐line  technique  allows  the  creases  to  have  a  gap  for  material  thickness.  Folds  allow  the  component  to  change  its  shape  while  keeping  the  triangular  creases rigid. A selected material placed in the central point can trigger the system with by a pull and  push force into a pattern similar to the biomechanics of the rib structure of Echinocactus grusonii. The    second function is achieved by color changing smart materials called chromogenics that present an  Figure Figure14.   14. Movement Movement and and dimensions dimensions of of the the façade façade module module in in elevati elevatio onn and and section, section, wher where e r  ed red  example for functional surface material properties. A study on visualizing the façade on the base‐ arr arrows ows r epr represent esent the  thedisplacement  displacementof ofvalley  valleyfolds  foldsand  andgr green een arr  arrows ows r epr represent esent the  thedisp  displ lacement acementof of  case reference building through replacing its windows with 188 modules is presented in Figure 15.  mountain mountainfolds.  folds. The  Bio‐ABS  design  is  a  folding  module  with  an  expanding  and  contracting  mechanism  activated by temperature difference through the use of thermally restrictive smart material of shape  memory alloys (SMAs). SMAs change their length when exposed to differences in solar radiation  levels  [114,115].  Through  this  morphology,  the  design  forms  a  ribbed  structure  while  creating  Figure 15. The pattern the Bio-ABS module, with various changing configurations, when implemented Figure  15.  The  pattern  the  Bio‐ABS  module,  with  various  changing  configurations,  when  onimplemented the reference building’s on  the  reference windows   build consisting ing’s  windows of 188 modules;   consisting fr om of  left 188 to mod right uleopening s;  from  left ratio  to incr   right eases   and opening from bottom  ratio into creases top glazing  and from opacity  bottom decr  to eases. top glazing opacity decreases.  The The aesthetics  aesthetiof cs this of thi system s system exist exist in the  in built the built and designed and designed realm, realm, for instance,  for instthe ance, dynamic  the dyn shading amic  shading façade on the Al Bahar Tower in Abu Dhabi [116]. However, the operation and performance  façade on the Al Bahar Tower in Abu Dhabi [116]. However, the operation and performance of this of this design differ significantly, in that they manage multiple parameters (ventilation and shade).  design di er significantly, in that they manage multiple parameters (ventilation and shade). As another As  another  difference,  this  design  integrates  the  smart  materials  of  shape  memory  alloys  and  di erence, this design integrates the smart materials of shape memory alloys and photochromic photochromic cells within its mechanisms and therefore having a passive operation of the system. As  cells within its mechanisms and therefore having a passive operation of the system. As such, Al such,  Al  Bahar  Towers  are  automated  through  building  management  system  (BMS)  that  uses  Bahar Towers are automated through building management system (BMS) that uses electricity [116]. electricity [116]. Therefore, most designs in the area with similar constructions are active, meaning  Therefore, most designs in the area with similar constructions are active, meaning they are operated they are operated by electricity [116,117]. Those designs are mostly programmed to operate at certain  by electricity [116,117]. Those designs are mostly programmed to operate at certain situations and situations  and  therefore  they  are  not  considered  as  fully  climate  adaptable.  The  morphological  therefore they are not considered as fully climate adaptable. The morphological movement of the movement of the origami folds is known, while the parameters that control the movement are unique,  origami folds is known, while the parameters that control the movement are unique, including the including the thermally activated pull and push through the central point. Another difference is the  thermally activated pull and push through the central point. Another di erence is the integration of integration  of  hierarchical  scales  and  heterogeneous  material  properties  into  this  design.  Most  hierarchical scales and heterogeneous material properties into this design. Most existing similar designs existing similar designs perform a single function and do not consider the integration of multi‐scale  and multi‐dimension transferred from the natural design principles of hierarchy and heterogeneity,  respectively.  7.5. Comparative Analysis of Environmental Performance Evaluation  To quantify the performance improvement Bio‐ABS offer, a comparative analysis with the base‐ case building is done through building performance simulation. Only one thermal zone, a classroom  is modeled to simplify the process (Figure 16). The ventilation type is switched to natural ventilation  from mechanical ventilation to determine thermal comfort through the Adaptive Model. Glazing type  Buildings 2020, 10, 114 20 of 28 perform a single function and do not consider the integration of multi-scale and multi-dimension transferred from the natural design principles of hierarchy and heterogeneity, respectively. 7.5. Comparative Analysis of Environmental Performance Evaluation To quantify the performance improvement Bio-ABS o er, a comparative analysis with the base-case building is done through building performance simulation. Only one thermal zone, a classroom is modeled to simplify the process (Figure 16). The ventilation type is switched to natural ventilation from Buildings 2020, 10, 114  23 of 31  mechanical ventilation to determine thermal comfort through the Adaptive Model. Glazing type and its thermal properties, aperture ratio, and ventilation rate are compliant with National Construction and  its  thermal  properties,  aperture  ratio,  and  ventilation  rate  are  compliant  with  National  Code (NCC) of Australian Building Codes Board (Table 6) [118,119]. Construction Code (NCC) of Australian Building Codes Board (Table 6) [118,119].     Figure 16. Base‐case building.  Figure 16. Base-case building. Table 6. Performance descriptors of the base-case building. Table 6. Performance descriptors of the base‐case building.  Performance Descriptor Value Reference Performance Descriptor  Value  Reference  Lighting Lighting load  load  8 W/m8 W/m  Equipment load 5 W/m Equipment load  5 W/m  Occupants density 0.4 people/m Occupants density  0.4 people/m  [118,119] Ventilation operation schedule Temperature Ventilation operation schedule  Temperature  [118,119]  Window-to-wall ratio 40% Window‐to‐wall ratio  40%  Glazing opening ratio 25% Glazing opening ratio  25%  Glazing thermal transmittance 1.786 W/m K Glazing thermal transmittance  1.786 W/m²K  Glazing solar heat gain coecient 0.39 Glazing Floor  solar area heat gain coefficient  97 m 0.39  Zone volume 388 m [112] Floor area  97 m  Floor-to-ceiling height 4 m Zone volume  388 m  [112]  External walls thermal resistance 1.469 W/mK Floor‐to‐ceiling height  4 m  Air change rate 7.5 ac/h [120] External walls thermal resistance  1.469 W/mK  Air change rate  7.5 ac/h  [120]  Building performance simulation is performed to determine thermal comfort analysis of the Building  performance  simulation  is  performed  to  determine  thermal  comfort  analysis  of  the  base-case building using EnergyPlus. The climate file used is available at EnergyPlus Weather for Sydney base‐case IWEC  building (International  using EnergyP Weather lus. Th fore Ener climat gye Calculations) file used is ava station ilable at number  EnergyPlus 947,670.  Weat Thermal her for  Sydney  IWEC  (International  Weather  for  Energy  Calculations)  station  number  947670.  Thermal  comfort is calculated through the adaptive model and found that according to 90% Acceptability Limits (A.L.), comfort 74.03%  is calculated of the time  through occupi  the ed ad does aptinot ve model fall in the andcomfort  found that zone accordin with 1588 g to h 90 of% discomfort  Acceptabil and ity  Limits (A.L.), 74.03% of the time occupied does not fall in the comfort zone with 1588 h of discomfort  according to 80% A.L., it is 38.14% with 818.25 h of discomfort (The calculation follows the presence of and occupants  according on toa 80% daily A.L. basis , it is in 38 weekdays .14% with fr 81 om 8.2 08:00 5 h of am  discomfort to 16:00 pm (The by cal acu fraction lation follows of 0.75 the and  presence from  of occupants on a daily basis in weekdays from 08:00 am to 16:00 pm by a fraction of 0.75 and from 16:00 pm to  16:00 pm to 21:00 pm by a fraction of 0.15) (Table 7). 21:00 pm by a fraction of 0.15) (Table 7).  Table 7. Comfort analysis of the base-case building. Table 7. Comfort analysis of the base‐case building.  Analysis Type Acceptability Limits Discomfort Hours Discomfort Ratio Analysis Type  Acceptability Limits  Discomfort Hours  Discomfort Ratio  90% 1588 h 74.03% Adaptive thermal Adaptive thermal comfort  90%  1588 h  74.03%  comfort 80% 818.25 h 38.14% 80%  818.25 h  38.14%  The simulation results are analyzed to understand the causes for increased discomfort ratio. The  results show that maximum values for indoor temperatures are calculated as 37 °C for mean radiant  and 38°C for operative and air temperatures. This suggests that the maximum temperatures are above  the limits for temperature, that is, 33–33.5 °C. Moreover, the windows and infiltration are identified  as the causes for heat loss with values of 18 kWh/m² and 41 kWh/m², respectively. The evaluation  shows that the base‐case building suffers high temperatures and excessive heat gains. This suggests  that solar gains negatively impact comfort in the building and the regulation of heat and light must  be addressed to improve the performance (Figure 17).  Buildings 2020, 10, 114 21 of 28 The simulation results are analyzed to understand the causes for increased discomfort ratio. The results show that maximum values for indoor temperatures are calculated as 37 C for mean radiant and 38 C for operative and air temperatures. This suggests that the maximum temperatures are above the limits for temperature, that is, 33–33.5 C. Moreover, the windows and infiltration are identified as 2 2 the causes for heat loss with values of 18 kWh/m and 41 kWh/m , respectively. The evaluation shows that the base-case building su ers high temperatures and excessive heat gains. This suggests that solar gains negatively impact comfort in the building and the regulation of heat and light must be addressed to improve the performance (Figure 17). The windows of the base-case building are replaced with the Bio-ABS design and the performance is analyzed through simulation. The multifunctional Bio-ABS is modeled in EnergyPlus using its feature EMS, that integrates customizable input–output objects and allows using if statements. The photochromic (PC) glazing is modeled with its four states changing the solar heat gain coecient (SHGC = 0.508, 0.396, 0.325, 0.238) and visible light transmittance (VLT = 0.595, 0.446, 0.341, 0.238) with a fixed thermal transmittance (U-value = 1.786 W/m K). The U-value of the base-case building and the case study are the same. The SHGC and VLT of the base-case building are calculated as the average values of the four states of the case study. The properties of the PC glazing are taken from a previous study outlining the performance improving PC glazing systems for the chosen climatic context [82]. The properties of the morphology triggering Shape Memory Alloys (SMAs) are set to demonstrate a comparable case against the base-case, which provides the same window opening ratio (25%) with a corresponding SMA displacement ratio. Other properties of the SMA including the actuation (18 C) and de-actuation temperatures (60 C) are determined to provide an adaptable system operated by changes in temperature. The simulation results after replacing the base-case building’s windows with the Bio-ABS show a decrease in discomfort hours by 23.18% for 90% A.L. and 5.09% for 80% A.L. (Figure 18). Buildings 2020, 10, 114  24 of 31  Mean Indoor Temeprature 38.56 37.67 38.08 25.25 25.18 25.11 14.82 14.89 14.96 Mean Radiant Operative Temperature Air Temperature Temperature (MRT) Temperature type Minimum Mean Maximum Figure 17. Indoor temperature analysis of the base‐case building, where the gray line presents the  Figure 17. Indoor temperature analysis of the base-case building, where the gray line presents the maxi maximum, mum, rred ed line line pr present esentss the the mean mean and and the the gr green een line line pr presents esents the the minimum minimum values. values.  The mean values for the indoor temperatures of mean radiant, mean operative, and mean air The  windows  of  the  base‐case  building  are  replaced  with  the  Bio‐ABS  design  and  the  temperatures are decreased (Figure 19). The mean value for MRT is decreased by 2.23 C, the mean performance is analyzed through simulation. The multifunctional Bio‐ABS is modeled in EnergyPlus  value for operative temperature is decreased by 2.76 C, and the mean value for air temperature using  its  feature  EMS,  that  integrates  customizable  input–output  objects  and  allows  using  if  is decreased by 3.28 C. Overall, the implementation of this multifunctional Bio-ABS improves the statements. The photochromic (PC) glazing is modeled with its four states changing the solar heat  thermal comfort in an educational building in Sydney. This study has focused on the integration of a gain coefficient (SHGC = 0.508, 0.396, 0.325, 0.238) and visible light transmittance (VLT = 0.595, 0.446,  PC glazing and SMA activated ventilation with set values for its performance descriptors (i.e., actuation 0.341, 0.238) with a fixed thermal transmittance (U‐value = 1.786 W/m²K). The U‐value of the base‐ temperature, SHGC, VLT). Further work could investigate di erent living systems, their functional case building and the case study are the same. The SHGC and VLT of the base‐case building are  calculated as the average values of the four states of the case study. The properties of the PC glazing  are taken from a previous study outlining the performance improving PC glazing systems for the  chosen  climatic  context  [82].  The  properties  of  the  morphology  triggering  Shape  Memory  Alloys  (SMAs) are set to demonstrate a comparable case against the base‐case, which provides the same  window opening ratio (25%) with a corresponding SMA displacement ratio. Other properties of the  SMA including the actuation (18 °C) and de‐actuation temperatures (60 °C) are determined to provide  an adaptable system operated by changes in temperature. The simulation results after replacing the  base‐case building’s windows with the Bio‐ABS show a decrease in discomfort hours by 23.18% for  90% A.L. and 5.09% for 80% A.L. (Figure 18).  Comparative Analysis in Thermal Comfort 23.18% difference 1090.75 1000 818.25 5.06% difference 90% A.L. 80% A.L. Adaptive Comfort Model Acceptability Limits Base‐case building Multifunctional Bio‐ABS case study Temperature value (°C) Discomfort hours (h) Buildings 2020, 10, 114  24 of 31  Mean Indoor Temeprature 38.56 38.08 37.67 25.25 25.18 25.11 14.82 14.89 14.96 Mean Radiant Operative Temperature Air Temperature Temperature (MRT) Temperature type Minimum Mean Maximum Figure 17. Indoor temperature analysis of the base‐case building, where the gray line presents the  maximum, red line presents the mean and the green line presents the minimum values.  The  windows  of  the  base‐case  building  are  replaced  with  the  Bio‐ABS  design  and  the  performance is analyzed through simulation. The multifunctional Bio‐ABS is modeled in EnergyPlus  using  its  feature  EMS,  that  integrates  customizable  input–output  objects  and  allows  using  if  statements. The photochromic (PC) glazing is modeled with its four states changing the solar heat  gain coefficient (SHGC = 0.508, 0.396, 0.325, 0.238) and visible light transmittance (VLT = 0.595, 0.446,  0.341, 0.238) with a fixed thermal transmittance (U‐value = 1.786 W/m²K). The U‐value of the base‐ case building and the case study are the same. The SHGC and VLT of the base‐case building are  calculated as the average values of the four states of the case study. The properties of the PC glazing  are taken from a previous study outlining the performance improving PC glazing systems for the  chosen  climatic  context  [82].  The  properties  of  the  morphology  triggering  Shape  Memory  Alloys  (SMAs) are set to demonstrate a comparable case against the base‐case, which provides the same  window opening ratio (25%) with a corresponding SMA displacement ratio. Other properties of the  Buildings 2020, 10, 114 22 of 28 SMA including the actuation (18 °C) and de‐actuation temperatures (60 °C) are determined to provide  an adaptable system operated by changes in temperature. The simulation results after replacing the  transfer into multifunctional engineered designs, consider di erent performance descriptors of Bio-ABS, base‐case building’s windows with the Bio‐ABS show a decrease in discomfort hours by 23.18% for  and simulate their environmental performance. 90% A.L. and 5.09% for 80% A.L. (Figure 18).  Comparative Analysis in Thermal Comfort 23.18% difference 1090.75 Buildings 2020, 10, 114  25 of 31  1000 818.25 Figure  18.  Comparative  analysis  in  thermal  comfort  between  the  base‐case  building  and  the  5.06% difference multifunctional Bio‐ABS case study.  The mean values for the indoor temperatures of mean radiant, mean operative, and mean air  temperatures are decreased (Figure 19). The mean value for MRT is decreased by 2.23 °C, the mean  90% A.L. 80% A.L. value for operative temperature is decreased by 2.76 °C, and the mean value for air temperature is  Adaptive Comfort Model Acceptability Limits decreased  by  3.28  °C.  Overall,  the  implementation  of  this  multifunctional  Bio‐ABS  improves  the  thermal comfort in an educational building in Sydney. This study has focused on the integration of a  Base‐case building Multifunctional Bio‐ABS case study PC  glazing  and  SMA  activated  ventilation  with  set  values  for  its  performance  descriptors  (i.e.,  actuation temperature, SHGC, VLT). Further work could investigate different living systems, their  functional  transfer  into  multifunctional  engineered  designs,  consider  different  performance  Figure 18. Comparative analysis in thermal comfort between the base-case building and the descriptors of Bio‐ABS, and simulate their environmental performance.  multifunctional Bio-ABS case study. Mean Indoor Temperature Comparison  25.25 25.18 25.11 23.02 22.42 21.83 Mean Mean Radiant Mean Operative Mean Air Temperature (MRT) Temperature Temperature Mean indoor temperature type Base‐case building Multifunctional Bio‐ABS case study Figure 19. Mean indoor temperature comparison between the base‐case building, and the case study.  Figure 19. Mean indoor temperature comparison between the base-case building, and the case study. 8. Conclusions 8. Conclusions  This paper presents a framework for achieving multifunctionality in Bio-ABS. It does so by This  paper  presents  a  framework  for  achieving  multifunctionality  in  Bio‐ABS.  It  does  so  by  translating hierarchy and heterogeneity from nature into architecture. A systematic classification to translating hierarchy and heterogeneity from nature into architecture. A systematic classification to  map biological systems from the perspective of how they host multiple functions in their heterogeneous map  biological  systems  from  the  perspective  of  how  they  host  multiple  functions  in  their  multi-level structures is presented. Several biological systems are mapped using the classification to heterogeneous multi‐level structures is presented. Several biological systems are mapped using the  define a “preliminary database” to categorize biological data. This database could be expanded over classification to define a “preliminary database” to categorize biological data. This database could be  time to create a systemic collection of biological information as a resource for biomimetic design. expanded  over  time  to  create  a  systemic  collection  of  biological  information  as  a  resource  for  Hierarchy and heterogeneity in nature are described and their transfer into designs can achieve biomimetic design.  multifunctionality. Hierarchy is described as having multiple scales and heterogeneity as multiple Hierarchy and heterogeneity in nature are described and their transfer into designs can achieve  geometric di erentiations. Their transfer into Bio-ABS is proposed through a framework named multifunctionality. Hierarchy is described as having multiple scales and heterogeneity as multiple  the “Multi-Biomechanism Approach”, that uses the systematic classification. The framework is geometric differentiations. Their transfer into Bio‐ABS is proposed through a framework named the  “Multi‐Biomechanism  Approach”,  that  uses  the  systematic  classification.  The  framework  is  demonstrated  through  the  case  study  of  translating  Echinocactus  grusosnii  and  three  of  its  many  biological  adaptations:  rib  structured  cortex,  self‐shading  areoles  and  spines,  and  microscopic  stomatal  openings.  A  Bio‐ABS  design  is  presented  showing  how  the  hierarchical  features  of  the  areoles, spines, and stomatal openings, as well as the heterogeneous form of the ribs structure can be  translated into a biomimetic strategy integrated in a building skin.  The base‐case building and the case study of the multifunctional Bio‐ABS replacing the windows  of the base‐case building are simulated to calculate their performance. The comparative analysis of  the results show that Bio‐ABS offer improved comfort both for 80% and 90% Acceptability Limits  according to Adaptive Comfort Model. The mean value for MRT is decreased by 2.23 °C, the mean  value for operative temperature is decreased by 2.76 °C, and the mean value for air temperature is  decreased by 3.28 °C. Overall, the results after replacing the base‐case building’s windows with the  Temperature value (°C) Discomfort hours (h) Temperature (°C) Buildings 2020, 10, 114 23 of 28 demonstrated through the case study of translating Echinocactus grusosnii and three of its many biological adaptations: rib structured cortex, self-shading areoles and spines, and microscopic stomatal openings. A Bio-ABS design is presented showing how the hierarchical features of the areoles, spines, and stomatal openings, as well as the heterogeneous form of the ribs structure can be translated into a biomimetic strategy integrated in a building skin. The base-case building and the case study of the multifunctional Bio-ABS replacing the windows of the base-case building are simulated to calculate their performance. The comparative analysis of the results show that Bio-ABS o er improved comfort both for 80% and 90% Acceptability Limits according to Adaptive Comfort Model. The mean value for MRT is decreased by 2.23 C, the mean value for operative temperature is decreased by 2.76 C, and the mean value for air temperature is decreased by 3.28 C. Overall, the results after replacing the base-case building’s windows with the Bio-ABS show a decrease in discomfort hours by 23.18% for 90% Acceptability Limits and 5.09% for 80% A.L. for adaptive thermal comfort. As results of the work carried out and the findings, this research draws attention to multifunctionality in nature and in engineered designs, particularly of Bio-ABS, and promotes biomimetic design as a promising approach to be taken to develop environmentally sustainable building systems. This study attempts to point out the significance of the “natural design principles” and their limited application in architecture. However, it is limited to the translation of hierarchy and heterogeneity, excluding others that may help achieving multifunctionality, which further work can focus. Author Contributions: A.K.: Conceptualization, methodology, software, formal analysis, investigation, resources, data curation, writing—original draft, writing—review & editing, visualization, funding acquisition. P.O.: Conceptualization, methodology, formal analysis, investigation, resources, data curation, writing—original draft, writing—review & editing, visualization, funding acquisition, supervision. S.B.: Conceptualization, methodology, formal analysis, investigation, resources, data curation, writing—review & editing, funding acquisition, supervision. F.F.: Conceptualization, methodology, software, formal analysis, investigation, resources, data curation, writing—review & editing, funding acquisition, supervision. All authors have read and agreed to the published version of the manuscript. Funding: This work was supported by the Faculty of Built Environment at UNSW Sydney under Grant Wightman PG School Architecture (PGA1005). Acknowledgments: The authors acknowledge the support provided by UNSW Sydney. Conflicts of Interest: The authors declare no conflict of interest. References 1. Hasselaar, B.L. Climate adaptive skins: Towards the new energy-ecient façade. In Proceedings of the 1st International Conference on the Management of Natural Resources, Sustainable Development and Ecological Hazards; 2006; pp. 351–360. Available online: https://www.scribd.com/document/458674117/ WIT-transactions-on-ecology-and-the-environment-volume-99-C-A-Brebbia-Management-of-Natural- Resources-Sustainable-Development-And-Ecological-Ha (accessed on 1 June 2020). 2. Del Grosso, A.E.; Basso, P. Adaptive building skin structures. Smart Mater. Struct. 2010, 19, 124011. [CrossRef] 3. Loonen, R.C.; Trcka, M.; Costola, D.; Hensen, J.L. Climate adaptive building shells: State-of-the-art and future challenges. Renew. Sustain. Energy Rev. 2013, 25, 483–493. [CrossRef] 4. Aelenei, D. Adaptive Façade: Concept, Applications, Research Questions. Energy Procedia 2016, 91, 269–275. [CrossRef] 5. Kuru, A.; Oldfield, P.; Bonser, S.; Fiorito, F. Biomimetic adaptive building skins: Energy and environmental regulation in buildings. Energy Build. 2019, 205, 109544. [CrossRef] 6. Gruber, P. Biomimetics in Architecture; Springer Verlag Wien: Wien, Austria, 2011. 7. Vincent, J.F.; Bogatyreva, O.A.; Bogatyrev, N.R.; Bowyer, A.; Pahl, A.K. Biomimetics: Its practice and theory. J. R. Soc. Interface 2006, 3, 471–482. [CrossRef] [PubMed] 8. Bar-Cohen, Y. (Ed.) Biomimetics: Nature-Based Innovation; CRC Press, Taylor and Francis Group Publishing: Boca Raton, FL, USA, 2012. Buildings 2020, 10, 114 24 of 28 9. López, M.; Rubio, R.; Martín, S.; Croxford, B.; Jackson, R. Active materials for adaptive architectural envelopes based on plant adaptation principles. J. Facade Des. Eng. 2015, 3, 27–38. [CrossRef] 10. Badarnah Kadri, L. Towards the LIVING Envelope: Biomimetics for Building Envelope Adaptation. Ph.D. Thesis, Technical University Delft, Delft, The Netherlands, 2015. 11. Kuru, A.; Fiorito, F.; Oldfield, P.; Bonser, S.P. Multi-functional biomimetic adaptive façades: A case study. In Proceedings of the FACADE 2018 Final Conference of COST TU1403 Adaptive Facades Network, Lucerne, Switzerland, 26–27 November 2018; pp. 241–250. 12. Badarnah, L. Form follows environment: Biomimetic approaches to building envelope design. Buildings 2017, 7, 40. [CrossRef] 13. López, M.; Rubio, R.; Martín, S.; Croxford, B. How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes. Renew. Sustain. Energy Rev. 2017, 67, 692–703. [CrossRef] 14. Vincent, J.F.V.; Mann, D.L. Systematic technology transfer from biology to engineering. Philos. Trans. Math. Phys. Eng. Sci. 2002, 15, 159–173. [CrossRef] [PubMed] 15. Shu, L.H. A natural-language approach to biomimetic design. Artif. Intell. Eng. Des. Anal. Manuf. 2010, 24, 507–519. [CrossRef] 16. Helms, M.; Vattam, S.S.; Goel, A.K. Biologically inspired design: Process and products. Des. Stud. 2009, 30, 606–622. [CrossRef] 17. Biomimicry Institute. Biomimicry.net: Biomimicry 3.8. Available online: http://biomimicry.net/ (accessed on 25 June 2020). 18. Hirtz, J.; Stone, R.B.; McAdams, D.A.; Szykman, S.; Wood, K.L. A functional basis for engineering design: Reconciling and evolving previous e orts. Res. Eng. Des. Theory Appl. Concurr. Eng. 2002, 13, 65–82. [CrossRef] 19. Biomimicry Institute. AskNature: A Project of Biomimicry 3.8. Available online: www.asknature.org (accessed on 24 June 2020). 20. Vincent, J.F.V. Research and Practice on the Theory of Inventive Problem Solving (TRIZ); Springer: Berlin, Germany, 2016. 21. Bogatyrev, N.; Bogatyreva, O. TRIZ evolutionary trends in biology and technology: Two opposites. In Proceedings of the CIRP Design Conference, Cranfield, UK, 30–31 March 2009; p. 293. 22. Wilson, J.O. A Systematic Appraoch to Bio-Inspired Conceptual Design. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2008. 23. Gamage, R.S.D.; Wickramanayake, A.U. Parallels between nature and design teaching through nature studies. Built Environ. Sri Lanka 2005, 5, 1–12. 24. Svendsen, N.; Torben, L.A. How does biologically inspired design cope with multi-functionality? In Proceedings of the International Conference on Engineering Design ICED19, Delft, The Netherlands, 5–8 August 2019; pp. 349–358. 25. Cruz, E.; Raskin, K.; Aujard, F. Biological strategies for adpative building envelopes. In Proceedings of the FACADE 2018 Final Conference of COST TU1403 Adaptive Facades Network, Lucerne, Switzerland, 26–27 November 2018; pp. 223–229. 26. Kuru, A.; Fiorito, F.; Oldfield, P.; Bonser, S.P. Multi-functional biomimetic adaptive façades: Developing a framework. In Proceedings of the FACADE 2018 Final Conference of COST TU1403 Adaptive Facades Network, Lucerne, Switzerland, 26–27 November 2018; pp. 231–240. 27. Fratzl, P.; Dunlop, J.; Weinkamer, R. Materials Design Inspired by Nature: Function through Inner Architecture; RSC Publishing—Royal Society of Chemisstry: Cambridge, UK, 2013. 28. Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263–1334. [CrossRef] 29. Dunlop, J.W.C.; Fratzl, P. Biological composites. Ann. Rev. Mater. Res. 2010, 40, 1–24. [CrossRef] 30. Knippers, J.; Speck, T. Design and construction principles in nature and architecture. Bioinspir. Biomim. 2012, 7, 15002. [CrossRef] [PubMed] 31. Jeronimidis, G.; Atkins, A.G. Mechanics of biological materials and structures: Nature’s lessons for the engineer. Proc. Inst. Mech. Eng. 1995, 209, 221–235. [CrossRef] 32. Burgert, I.; Fratzl, P. Actuation systems in plants as prototypes for bioinspired devices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1541–1557. [CrossRef] Buildings 2020, 10, 114 25 of 28 33. Pedersen Zari, M. Ecosystem processes for biomimetic architectural and urban design. Archit. Sci. Rev. 2014, 58, 106–119. [CrossRef] 34. John, G.; Clements-Croome, D.; Jeronimidis, G. Sustainable building solutions: A review of lessons from the natural world. Build. Environ. 2005, 40, 319–328. [CrossRef] 35. Garcia-Holguera, M.; Clark, O.G.; Sprecher, A.; Gaskin, S. Ecosystem biomimetics for resource use optimization in buildings. Build. Res. Inf. 2016, 44, 263–278. [CrossRef] 36. Appio, F.P.; Achiche, S.; Martini, A. On designers’ use of biomimicry tools during the new product development process: An empirical investigation. Technol. Anal. Strateg. Manag. 2017, 29, 775–789. [CrossRef] 37. Pedersen Zari, M. Biomimetic Approaches To Architectural Design for Increased Sustainability. In Proceedings of the SB07 NZ Sustainable Building Conference, Auckland, New Zealand, 14–16 November 2017. 38. Hastrich, C. The biomimicry design spiral. Biomimicry Newsl. 2006, 4, 5–6. 39. Ahmar, S.E.; Fioravanti, A.; Hanafi, M. A Methodology for Computational Architectural Design Based on Biological Principles. In Proceedings of the 31st eCAADe Conference, Delft, The Netherlands, 18–20 September 2013. 40. Sheta, A.A.A.A. Biomimicry in Environmental Architecture: Exploring the Concept and Methods of the Bio-Inspired Environmental Architecrural Design. 2010. Available online: http://www.cpas-egypt.com/pdf/ Ayat_El-Jawhary/MS.c/MS.c.pdf (accessed on 25 June 2020). 41. Badarnah, L.; Kadri, U. A methodology for the generation of biomimetic design concepts. Archit. Sci. Rev. 2014, 8628, 1–14. [CrossRef] 42. Cohen, Y.H.; Reich, Y.; Greenberg, S. What can we learn from biological systems when applying the law of system completeness? Procedia Eng. 2015, 131, 104–114. [CrossRef] 43. Chakrabarti, A.; Siddharth, L.; Dinakar, M. Idea Inspire 3.0—A tool for analogical design. In Research into Design for Communities; Smart Innovation, Systems and Technologies; 2017; Volume 2, pp. 475–485. Available online: https://link.springer.com/chapter/10.1007%2F978-981-10-3521-0_41 (accessed on 25 June 2020). 44. Goel, A.; Rugaber, S.; Vattam, S. Structure, Behavior and Function of complex systems: The SBF Modeling Language. Artif. Intell. Eng. Des. Anal. Manuf. 2009, 23, 23–25. [CrossRef] 45. Gamage, A.; Hyde, R. A model based on biomimicry to enhance ecologically sustainable design. Archit. Sci. Rev. 2012, 55, 224–235. [CrossRef] 46. Schleicher, S.; Lienhard, J.; Poppinga, S.; Speck, T.; Knippers, J. A methodology for transferring principles of plant movements to elastic systems in architecture. Comput. Des. 2015, 60, 105–117. [CrossRef] 47. Pedersen Zari, M. Ecosystem services analysis for the design of regenerative built environments. Build. Res. Inf. 2012, 40, 54–64. [CrossRef] 48. Lienhard, J.; Schleicher, S.; Poppinga, S.; Masselter, T.; Milwich, M.; Speck, T.; Knippers, J. Flectofin: A hingeless flapping mechanism inspired by nature. Bioinspir. Biomim. 2011, 6, 045001. [CrossRef] 49. Badarnah, L.; Knaack, U. Shading/Energy generating skin inspired from natural systems. In Proceedings of the 2008 World Sustainable Building Conference: SB08, Melbourne, Australia, 21–15 September 2008; pp. 305–312. 50. Goel, A.G.; Mcadams, D.A.; Stone, R.B. (Eds.) Biologically Inspired Design: Computational Methods and Tools; Springer: London, UK, 2014. 51. Martone, P.T.; Boller, M.; Burgert, I.; Dumais, J.; Edwards, J.; Mach, K.; Rowe, N.; Rueggeberg, M.; Seidel, R.; Speck, T. Mechanics without muscle: Biomechanical inspiration from the plant Wworld. Integr. Comp. Biol. 2010, 50, 888–907. [CrossRef] [PubMed] 52. Rowe, N.P.; Speck, T. Hydraulics and mechanics of plants: Novelty, innovation and evolution. In The Evolution of Plant Physiology; Academic, A.R., Poole, I., Eds.; Elsevier: London, UK, 2004; pp. 301–329. 53. Garland, T. Quick guide: Tradeo s. Curr. Biol. 2014, 24, 60–61. [CrossRef] [PubMed] 54. Knaack, U.; Klein, T.; Bilow, M.; Auer, T. Facades: Principles of Construction, 2nd ed.; BIRKHAUSER: Berlin, Germany, 2014. 55. Prieto, A.; Knaack, U.; Auer, T.; Klein, T. Passive cooling & climate responsive façade design: Exploring the limits of passive cooling strategies to improve the performance of commercial buildings in warm climates Energy & Buildings Passive cooling & climate responsive façade design exploring the. Energy Build. 2018, 175, 30–47. 56. Gruber, P. Has biomimetics arrived in architecture? Bioinspir. Biomim. 2012, 7, 010201. [CrossRef] Buildings 2020, 10, 114 26 of 28 57. Fiorito, F.; Sauchelli, M.; Arroyo, D.; Pesenti, M.; Imperadori, M.; Masera, G.; Ranzi, G. Shape morphing solar shadings: A review. Renew. Sustain. Energy Rev. 2016, 55, 863–884. [CrossRef] 58. Palomo, I.; Dujardin, Y.; Midler, E.; Robin, M.; Sanz, M.; Pascual, U. Modeling trade-o s across carbon sequestration, biodiversity conservation, and equity in the distribution of global REDD+ funds. In Proceedings of the National Academy of Sciences, 21 October 2019; Volume 116, pp. 22645–22650. [CrossRef] 59. Speck, T.; Rowe, N. How to become a successful climber–mechanical, anatomical, ultra-structrural and biochemical variations during ontogeny in plants with di erent climbing strategies. In Proceedings of the 5th International PLant Biomechanics Conference, Lausanne, Switzerland, 21–23 May 2007; Volume 1, pp. 103–108. 60. Al-Obaidi, K.M.; Ismail, M.A.; Hussein, H.; Abdul, A.M. Biomimetic building skins: An adaptive approach. Renew. Sustain. Energy Rev. 2017, 79, 1472–1491. [CrossRef] 61. Levitt, J. Physiological basis of stomatal response. In Water and Plant Life; Springer: Berlin/Heidelberg, Germany, 1976; Volume 19. 62. Bertolino, L.T.; Caine, R.S.; Gray, J.E. Impact of stomatal density and morphology on Water-Use eciency in a changing world. Front. Plant Sci. 2019, 10, 1–11. [CrossRef] 63. Ye, H.; Yuan, Z.; Zhang, S. The heat and mass transfer analysis of a leaf. J. Bionic Eng. 2013, 10, 170–176. [CrossRef] 64. Nobel, P.S. Water relations and photosynthesis of a barrel cactus, Ferocactus acanthodes, in the Colorado desert. Oecologia 1977, 27, 117–133. Available online: https://link.springer.com/article/10.1007/BF00345817 (accessed on 25 June 2020). [CrossRef] 65. Decker, M. Emergent Futures: Nanotechnology and emergenct materials in architecture. In Proceedings of the BTES Conference 2013—Tectonics of Teaching Roger Williams University, New Jersey Institite of Technology, Bristol, RI, USA, 11–13 July 2013. 66. Schinegger, K.; Rutzinger, S.; Oberascher, M.; Weber, G. One Ocean: Theme Pavilion EXPO 2012 Yeosu, Residenz Verlag. Available online: http://www.soma-architecture.com/index.php?page=theme_pavilion& parent=2 (accessed on 25 June 2020). 67. Reichert, S.; Menges, A.; Correa, D. Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput. Des. 2015, 60, 50–69. [CrossRef] 68. Menges, A. HygroScope: Meteorosensitive morphology. In Proceedings of the Project Catalogue of the 32nd Annual Conference of the Association for Computer-Aided Design in Architecture ACADIA, San Francisco, CA, USA, 18–21 October 2012. 69. Henrion, W.; Tributsch, H. Optical solar energy adaptations and radiative temperature control of green leaves and tree barks. Sol. Energy Mater. Sol. Cells 2009, 93, 98–107. [CrossRef] 70. Jeronimidis, G. Design and function of structural biological materials. Pergamon Mater. Ser. 2000, 4, 19–29. 71. Schleicher, S. Bio-Inspired Compliant Mechanisms for Architectural Design: Transferring Bending and Folding Principles of Plant Leaves to Flexible Kinetic Structures; University of Stuttgart: Stuttgart, Germany, 2016. 72. Speck, T.; Knippers, J.; Speck, O. Self-X materials and structures in nature and technology: Bio-inspiration as a driving force for technical innovation. Archit. Des. 2015, 85, 34–39. [CrossRef] 73. Vukusic, P.; Sambles, J.R.; Lawrence, C.R.; Wootton, R.J. Quantified interference and di raction in single Morpho butterfly scales. Proc. R. Soc. B Biol. Sci. 1999, 266, 1403–1411. [CrossRef] 74. Yoshioka, S.; Kinoshita, S. Wavelength–selective and anisotropic light–di using scale on the wing of the Morpho butterfly. Proc. R. Soc. Publ. Biol. Sci. 2004, 271, 581–587. [CrossRef] [PubMed] 75. Prum, R.O. Anatomically diverse butterfly scales all produce structural colours by coherent scattering. J. Exp. Biol. 2006, 209, 748–765. [CrossRef] [PubMed] 76. Bui, D.K.; Nguyen, T.N.; Ghazlan, A.; Ngo, N.T. Enhancing building energy eciency by adaptive façade: A computational optimization approach. Appl. Energy 2020, 265, 114797. [CrossRef] 77. Sheikh, W.T.; Asghar, Q. Adaptive biomimetic facades: Enhancing energy eciency of highly glazed buildings. Front. Archit. Res. 2019, 8, 319–331. [CrossRef] 78. Park, B.R.; Hong, J.; Choi, E.J.; Choi, Y.J.; Lee, C. Improvement in energy performance of building envelope incorporating electrochromic windows (ECWs). Energies 2019, 12, 1181. [CrossRef] Buildings 2020, 10, 114 27 of 28 79. Giovannini, L.; Favoino, F.; Pellegrino, A.; Lo Verso, V.R.M.; Serra, V.; Zinzi, M. Thermochromic glazing performance: From component experimental characterisation to whole building performance evaluation. Appl. Energy 2019, 251, 113335. [CrossRef] 80. Svetozarevic, B.; Begle, M.; Jayathissa, P.; Caranovic, S.; Shephard, R.F.; Nagy, Z.; Hischier, I.; Hofer, J.; Schluter, A. Dynamic photovoltaic building envelopes for adaptive energy and comfort management. Nat. Energy 2019, 4, 671–682. [CrossRef] 81. Gao, Y.; Dong, J.; Isabella, O.; Santbergen, R.; Tan, H.; Zeman, M.; Zhang, G. A photovoltaic window with sun-tracking shading elements towards maximum power generation and non-glare daylighting. Appl. Energy 2018, 228, 1454–1472. [CrossRef] 82. Fiorito, F.; Cannavale, A.; Santamouris, M. Development, testing and evaluation savings potentials of photovoltachromic windows in oce buildings. A perspective study for Australian climates. Sol. Energy 2020, 205, 358–371. [CrossRef] 83. Loonen, R.C.G.M.; Favoino, F.; Hensen, J.L.M.; Overend, M. Review of current status, requirements and opportunities for building performance simulation of adaptive facades. J. Build. Perform. Simul. 2016, 1493, 1–19. [CrossRef] 84. Loonen, R. Approaches for Computational Performance Optimization of Innovative Adaptive Façade Concepts; Issue 153 Bouwstenen series of the Department of the Built Environment; Eindhoven University of Technology: Eindhoven, The Netherlands, 2018. 85. Bhushan, B.; Jung, Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 2011, 56, 1–108. [CrossRef] 86. Gorb, S.; Speck, T. Biological and biomimetic materials and surfaces. Beilstein J. Nanotechnol. 2017, 8, 403–407. [CrossRef] 87. Garrett, T.Y.; Huynh, C.; North, G.B. Root contraction helps protect the “Living rock” cactus Ariocarpus fissuratus from lethal high temperatures when growing in rocky soil temperatures when growing in rocky soil 1. Am. J. Bot. 2010, 97, 1951–1960. [CrossRef] 88. Worall, M. Intelligent thermoregulation and homeostasis: Lessons from nature. In Proceedings of the CIB World Congress, Salford, UK, 11–13 May 2010. 89. Badarnah, L. Light Management Lessons from Nature for Building Applications. In Proceedings of the International Conference on Sustainable Design, Engineering and Construction, Tempe, AZ, USA, 18–20 May 2016; Volume 145, pp. 595–602. 90. Helfman, Y.C.; Reich, Y. Biomimetic Design Method for Innovation and Sustainability; Springer: Berlin, Germany, 91. Gruber, P. Transfer of nature to architecture—Analysis of case studies. In Proceedings of the Biological Approaches for Engineering Conference, University of Southampton, Southampton, UK, 17–19 March 2008. 92. Mazzoleni, I. Architecture Follows Nature; Taylor & Francis: Oxfordshire, UK, 2013. 93. Pawlyn, M. Biomimicry in Architecture; RIBA Publishing: London, UK, 2011. 94. Harman, J. The Shark’s Paintbrush: Biomimicry and How Nature Is Inspiring Innovation; Knopf Doubleday Publishing Group: New York, NY, USA, 2013. 95. Kapsali, V. Biomimetics for Designers; Thames and Hudson: London, UK, 2016. 96. Knippers, J.; Nickel, K.G. (Eds.) Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures; Springer International Publishing: Cham, Switzerland, 2016. 97. Pacheco, F.-T.; Labrincha, J.A.; Diamanti, M.V.; Yu, C.P.; Lee, H.K. (Eds.) Biotechnologies and Biomimetics for Civil Engineering; Springer International Publishing: Cham, Switzerland, 2015. 98. Pohl, G.; Nachtigall, W. Biomimetics for Architecture and Design: Nature—Analogies—Technology; Springer: Cham, Switzerland, 2015. [CrossRef] 99. Shi, N.N.; Tsai, C.C.; Camino, F.; Bernard, G.D.; Yu, N.; Wehner, R. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 2015, 349, 298–301. [CrossRef] 100. Bhasin, D.; McAdams, D. The characterization of biological organization, abstraction, and novelty in biomimetic design. Designs 2018, 2, 54. [CrossRef] 101. Field, K.J.; George, R.; Fearn, B.; Quick, W.P.; Davey, M.P. Best of both worlds: Simultaneous high-light and shade-tolerance adaptations within individual leaves of the living stone lithops aucampiae. PLoS ONE 2013, 8, e75671. [CrossRef] Buildings 2020, 10, 114 28 of 28 102. Badarnah, L. Environmental adaptation of buildings through morphological di erentiation. In Proceedings of the 15th Conference on Advanced Building Skins, Bern, Switzerland, 1–2 October 2018. 103. Gibson, A.; Nobel, P. The Cactus Primer; Harvard University Press: Cambridge, MA, USA, 1986. 104. Bar-Cohen, Y. Biomimetics—Using nature to inspire human innovation. Bioinspir. Biomim. 2006, 1, 1–12. [CrossRef] 105. Bhushan, B. Biomimetics: Lessons from nature—An overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1445–1486. [CrossRef] 106. Bhushan, B. Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology; Springer: Berlin/Heidelberg, Germany, 2012. 107. Brownell, B.; Swackhamer, M. Hyper-Natural: Architecture’s New Relationship with Nature; Princeton Architectural Press: New York, NY, USA, 2015. 108. Laver, J.; Cli ord, D.; Vollen, J. High performance masonry wall systems: Principles derived from natural analogues. WIT Trans. Ecol. Environ. 2008, 114, 243–252. 109. Dawson, C.; Vincent, J.F.V.; Rocca, A.M. How pine cones open. Nature 1997, 39, 668. [CrossRef] 110. Mott, K.A.; Gibson, A.C.; Leary, J.W.O. The adaptive significance of amphistomatic leaves. Plant Cell Environ. 1982, 5, 455–460. [CrossRef] 111. Bureau of Meteorology. Climate Statistics for Australian Locations. 2016. Available online: www.bom.gov.au (accessed on 24 June 2020). 112. U.S.D. of Energy. US DoE Documentation. Available online: https://www.environment.gov.au/energy (accessed on 27 June 2020). 113. Casini, M. Active dynamic windows for buildings: A review. Renew. Energy 2018, 119, 923–934. [CrossRef] 114. Formentini, M.; Lenci, S. An innovative building envelope (kinetic façade) with Shape Memory Alloys used as actuators and sensors. Autom. Constr. 2018, 85, 220–231. [CrossRef] 115. Pesenti, M.; Masera, G.; Fiorito, F. Exploration of Adaptive Origami Shading Concepts through Integrated Dynamic Simulations. J. Archit. Eng. 2018, 24, 4018022. [CrossRef] 116. Attia, S. Evaluation of adaptive facades: The case study of Al Bahr Towers in the UAE. QSci. Connect 2017, 6. [CrossRef] 117. Suralkar, R. Solar responsive kinetic facade shading systems inspired by plant mvoements in nature. In Proceedings of the People and Buildings, the oces of Arup UK, Netowkr for Comfort and Energy Use in Buildings, London, UK, 23 September 2011. 118. ABCB. NCC 2019 BCA Volume 1. 2019. Available online: https://ncc.abcb.gov.au/ncc-online/NCC/2019/NCC- 2019-Volume-One (accessed on 24 June 2020). 119. ABCB. NCC 2019 BCA Volume 2. 2019. Available online: https://ncc.abcb.gov.au/ncc-online/NCC/2019/NCC- 2019-Volume-Two (accessed on 24 June 2020). 120. Australian Standards. AS 1668 2 Supplement 1—2002 the Use of Ventilation and Airconditioning in Buildings—Ventilation Design for Indoor Air Contaminant Control. 2016. Available online: https://www. saiglobal.com/PDFTemp/Previews/OSH/as/as1000/1600/N16682S1.pdf (accessed on 24 June 2020). © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Buildings Multidisciplinary Digital Publishing Institute

A Framework to Achieve Multifunctionality in Biomimetic Adaptive Building Skins

Loading next page...
 
/lp/multidisciplinary-digital-publishing-institute/a-framework-to-achieve-multifunctionality-in-biomimetic-adaptive-2NAQfu9wRB

References (125)

Publisher
Multidisciplinary Digital Publishing Institute
Copyright
© 1996-2020 MDPI (Basel, Switzerland) unless otherwise stated Disclaimer The statements, opinions and data contained in the journals are solely those of the individual authors and contributors and not of the publisher and the editor(s). Terms and Conditions Privacy Policy
ISSN
2075-5309
DOI
10.3390/buildings10070114
Publisher site
See Article on Publisher Site

Abstract

buildings Article A Framework to Achieve Multifunctionality in Biomimetic Adaptive Building Skins 1 , 1 2 1 , 3 Aysu Kuru * , Philip Oldfield , Stephen Bonser and Francesco Fiorito Faculty of Built Environment, University of New South Wales, Sydney, NSW 2052, Australia; p.oldfield@unsw.edu.au (P.O.); f.fiorito@unsw.edu.au (F.F.) School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; s.bonser@unsw.edu.au Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, 70126 Bari, Italy * Correspondence: a.kuru@unsw.edu.au or aysuek@gmail.com Received: 5 May 2020; Accepted: 23 June 2020; Published: 27 June 2020 Abstract: Building skins should host multiple functions for increased performance. Addressing this, their design can benefit by learning from nature to achieve multifunctionality, where multifunctional strategies have evolved over years. However, existing frameworks to develop biomimetic adaptive building skins (Bio-ABS) have limited capabilities transferring multifunctionality from nature into designs. This study shows that through investigating the principles of hierarchy and heterogeneity, multifunctionality in nature can be transferred into biomimetic strategies. We aim at mapping the existing knowledge in biological adaptations from the perspective of multifunctionality and developing a framework achieving multifunctionality in Bio-ABS. The framework is demonstrated through the case study of Echinocactus grusonii implemented as a Bio-ABS on a digital base-case building. The methods include the Bio-ABS case study demonstrating the framework and simulating the performance of the case study and base-case building to comparatively analyze the results. The outcomes are a framework to develop multifunctional Bio-ABS and simulation results on the performance improvement Bio-ABS o er. The performance comparison between the Bio-ABS and base-case building show that there is a decrease in the discomfort hours by a maximum of 23.18%. In conclusion, translating heterogeneity and hierarchy principles in nature into engineered designs is a key aspect to achieve multifunctionality in Bio-ABS o ering improved strategies in performance over conventional buildings. Keywords: biomimetics; building skin; multifunctionality; architectural design; building envelope; adaptability; design framework; building performance simulation 1. Introduction Building design has advanced through technological developments, making the design and realization of innovative structures possible using new materials and construction techniques [1]. These breakthroughs in architecture helped building parts to host diverse functions, such as external walls shifting from being mostly load-bearing structures to having alternative roles [2]. The building skin now primarily acts as a thermal, acoustic, and visual barrier between the exterior and interior [3]. This change has seen the building skin heavily influence the building performance [4]. In response, new technologies including biomimetic adaptive building skins (Bio-ABS) are emerging that can adapt to changing environmental conditions, foster increased comfort, and reduce operational carbon emissions [5,6]. Buildings 2020, 10, 114; doi:10.3390/buildings10070114 www.mdpi.com/journal/buildings Buildings 2020, 10, 114 2 of 28 Using biological functions to design technical systems is called biomimetics [7,8]. Biomimetics is used in developing Bio-ABS, due to the opportunities in transferring biological adaptations into the design of climate-adaptable buildings [9–11]. There is extensive research in transferring biological adaptations into Bio-ABS with multiple frameworks and case studies [12–18]. Some of these frameworks are supported with resources such as databases or linguistic approaches [16,18–23]. Despite such developments, there is still a need for defining strategies to translate multifunctional strategies from nature into Bio-ABS, because environmental regulation in buildings often requires having multiple functions [5,24,25]. Most published works explore developing biomimetic strategies focusing on environmental adaptability, but are limited in addressing multifunctionality [10,26]. Multifunctional mechanisms in nature is achieved through the “natural design principles” including heterogeneity and hierarchy [27–29]. Organisms have developed multi-layered structures (hierarchy) with di erent morphologies of basic components (heterogeneity) to achieve multifunctionality [29–32]. This paper aims at structuring and mapping the existing knowledge in biological adaptations from the perspective of multifunctionality and developing a design framework to achieve multifunctionality in Bio-ABS. To do so, we provide (1) an understanding of how to achieve multifunctionality in building skin design through hierarchy and heterogeneity, (2) a systematic classification of multifunctional properties in biological systems, (3) a framework for developing multifunctional Bio-ABS, and (4) a case study of Echinocactus grusonii demonstrating the framework. 2. Existing Biomimetic Design Frameworks to Develop Bio-ABS Several biomimetic design frameworks to develop Bio-ABS have been developed supported with case studies [16,18–23]. Most of these frameworks have focused on biological adaptations, being the main purpose of Bio-ABS [9,12,13,33]. However, it is important to fulfill multiple functional requirements in buildings for improved performance. There is limited exploration of this in the literature. However, nature o ers ways to achieve multifunctionality, named the “natural design principles”, yet to be significantly investigated in biomimetic design [30]. In this section, we review and discuss the existing biomimetic design frameworks to develop Bio-ABS regarding to what extent multifunctionality is addressed. Most biomimetic design frameworks are applicable for use in architecture and some specialized to design Bio-ABS. All frameworks comprise of phases either starting with a technical problem followed by a biological solution (TD) or starting with a biological solution followed by a technical problem (BU), and all ending with developing a biomimetic strategy (Table 1). Some include databases to search for biological adaptations. The ones with no databases provide other means of investigation including linguistic approaches to define commonalities between nature and design, systematic analogical translation to find biological systems [18,22,23,34–37]. Biomimetic principles for the development of adaptive architectural envelopes, is based on understanding plants adaptations at macro- and micro-scales to be abstracted into adaptive architectural envelopes [13]. The framework focuses on dynamic mechanisms responding to external stimuli through movement and static strategies with surface properties. A case study developed using the framework is an adaptive architectural envelope inspired by plants genus Mesembryanthemum where seeds swell with rain [9]. The design is triggered by rainwater as an opening system [13]. The opportunity in this framework is addressing diversity in biological scales relating to hierarchy. This framework only considers plant adaptations; therefore, it is exclusive of other living systems in di erent kingdoms. Moreover, the mechanisms investigated are only triggered by external environmental influences limiting the diversity in biological domain. Most importantly, this framework has not specified how to combine multiple functions, either a combination of static and dynamic or otherwise. Buildings 2020, 10, 114 3 of 28 Table 1. List of existing biomimetic design frameworks (TD: Top-down, BU: Bottom-up). Reference Biomimetic Design Framework TD BU Database [20] BioTRIZ X X [36] Design Spiral-Helix Model X Computational Architectural Design Based on Biological [37] X Principles [38] Bioinspired Environmental Architectural Design X X [39] BioGEN X X [34] BioMAPS X [40] Ecomimetic X [41] New Product Development Process X [42] The Law of System Completeness X X [43] Idea-Inspire X X [44] Design by Analogy to Nature Engine (DANE) X X [45] Biomimicry Theoretical Model X Biomimetic Principles for the Development of Adaptive [13] X Architectural Envelopes Transferring Plant Movements to Elastic Systems in [46] X Architecture [17] Biomimicry 3.8 X X X [35] Typological Analysis X X [22] Analogical Translation X X [23] Nature Studies Analysis X X [47] Ecosystem for Biomimetic Design X X [18] Engineering-to-Biology Thesaurus X X Transferring plant movements to elastic systems is used to develop kinetic elastic architectural systems inspired by plant movements [46]. A case study developed using this framework is Flectofin—, a shading prototype inspired by the petal movements of the bird of paradise flower [48]. The device is a hingeless louver system unfolding through a force. The success of this framework is investigating and transferring dynamic adaptations in nature into architecture. This framework only focused on plant movements and mechanical eciency, it is limited in terms of multifunctionality. It could be, if it investigates environmental triggers informing movements in nature, to develop Bio-ABS. However, currently, the biological domain and biomimetic output can be triggered by the same stimulus, but they may not host the same function. For example, petals of the bird of paradise flower move for pollination, but Flectofin— moves to provide shading. Moreover, this framework does not address how to integrate multiple functions together. For example, would it be possible to combine two types of plant(s) movements hosting di erent purposes and how? “BioTRIZ” is a problem-solving method undertaken via a database of biological data [20,21]. The database’s purpose is to make biological information available in a language specific to engineering. However, the process is out of biological context, meaning the strategies do not exist in nature, but as theoretical ideas. For example, the surface segmentation trend is observed in nature as naturally transparent ridged surfaces refracting light and becoming colored due to nanostructures. Such as the Menelaus butterfly (Morpho menelaus) has transparent wings which look blue with sunlight. This property could be transferred into functional surface structures. The success of this framework is introducing heterogeneity through generalizing concepts. The limitation is the absence of the biological solution and multifunctionality is not addressed. It could be, if this framework integrates how to achieve multifunctionality in addition to identifying heterogeneity in nature. “Biomimicry 3.8” o ers a framework accompanied with an online database of biological strategies, called AskNature [17]. AskNature contains over 1600 biological strategies and provides a taxonomy to organize biological adaptations [19]. The steps applied in the process are called the“Design Spiral”. The success of this framework is the database accessible to everyone, as a key aspect in investigating biological strategies. The diculty in adopting this framework is the lack of clarification in some stages; Buildings 2020, 10, 114 4 of 28 abstract, emulate, and evaluate. The abstraction stage is described as brainstorming ideas from nature; emulation as seeking expert advice and evaluation as integrating life’s principles. These measures are often complex and may be challenging for every design. The limitation of this framework is the lack of integrating multifunctionality. It could be, if the AskNature database provides multifunctional properties of organisms be used to design multifunctional strategies. This may require adding a step in the ‘Design Spiral’ on achieving multifunctionality. ‘BioGen’ is another biomimetic design framework [10,41]. It creates an exploration model mapping functional aspects, relevant processes and influencing factors. The biological entities called pinnacles are presented as examples for a specific function or process. An example of a case study developed by using BioGen is the Shading/Energy Generating Skin, inspired by plants tracking sun radiation, designed to tilt according to the angle of the sun [49]. While the creator of BioGen has proposed a discussion on multi-regulation of the four environmental factors (heat, light, water, and air) this is a theoretical approach and lacks further development. Multi-regulation is addressed by mapping biological functions of the same living system regulating multiple environmental factors dependently, i.e., ventilation is associated with heat regulation. This presents a success in addressing multifunctionality, but its applicability is limited and must be fulfilled with examples. It may also benefit addressing multifunctionality through combining functions of di erent living systems (inter)dependently. DANE is another framework exploring analogical reasoning in biomimetics [44]. DANE follows the steps of defining the problem, searching for the biological solution, and applying the principle [50]. An example to this approach is the Shark Attack Project, designed to protect swimmers from sharks. It is inspired by pistol shrimp’s snapping mechanism that creates a sound. The design was a shark repellant emitting sounds. The success in this framework is the identification of biological functions that gives clues on the heterogeneous properties of organisms. The limitation is addressing multifunctionality, either analogically or as design outcomes. 3. Achieving Multifunctionality through Natural Design Principles During the course of evolution, living systems adapted their character to meet changing environmental conditions by multifunctional strategies [30]. The result is a compromise satisfying partially conflicting requirements; known as trade-o s [51,52]. A trade-o is having multiple functions through diminishing one property in return for gains in others [53]. The functional requirements of conventional buildings are complex and often contradictory and during the life cycle of a building, they must be adapted to changes [54,55]. Some examples of these functional requirements include decreasing solar gains, while providing views and improving illuminance levels [26,56,57]. These strategies are still mostly handled as isolated components that are monofunctional. One way to address this challenge is using biomimetics, as in nature, multifunctional trade-o strategies have been developed through evolution [58]. Multifunctionality is well understood in biology; however, its translation into architecture remains limited [24]. In this section, we present and discuss opportunities to achieve multifunctionality in biomimetics through the “natural design principles” (Figure 1). We include hierarchy (multi-scale) and heterogeneity (multidimension) and adaptability in this study. Beyond this, there remain opportunities to explore multifunctionality through other processes including anisotropy, redundancy, and more [59]. 3.1. Adaptability in Nature and Bio-ABS Adaptability is the ability of an organism to respond to changing internal or external conditions [60]. Most organisms have evolved various morphological, physiological, and behavioral adaptations to survive in their habitats. For example, plants exchange water vapor to decrease their internal temperatures during hot periods through their stomata. This is a means of di using useful gases for photosynthesis and to discharge excess materials to dissipate heat [61]. Depending on the natural habitat, stomata show various adaptations [62] (Figure 2). In some plants such as cacti and succulents, Buildings 2020, 10, 114  4 of 31  life’s principles. These measures are often complex and may be challenging for every design. The  limitation of this framework is the lack of integrating multifunctionality. It could be, if the AskNature  database  provides  multifunctional  properties  of  organisms  be  used  to  design  multifunctional  strategies. This may require adding a step in the ‘Design Spiral’ on achieving multifunctionality.  ‘BioGen’  is  another  biomimetic  design  framework  [10,41].  It  creates  an  exploration  model  mapping functional aspects, relevant processes and influencing factors. The biological entities called  pinnacles are presented as examples for a specific function or process. An example of a case study  developed by using BioGen is the Shading/Energy Generating Skin, inspired by plants tracking sun  radiation, designed to tilt according to the angle of the sun [49]. While the creator of BioGen has  proposed a discussion on multi‐regulation of the four environmental factors (heat, light, water, and  air) this is a theoretical approach and lacks further development. Multi‐regulation is addressed by  mapping biological functions of the same living system regulating multiple environmental factors  dependently, i.e., ventilation is associated with heat regulation. This presents a success in addressing  multifunctionality, but its applicability is limited and must be fulfilled with examples. It may also  benefit  addressing  multifunctionality  through  combining  functions  of  different  living  systems  (inter)dependently.  DANE is another framework exploring analogical reasoning in biomimetics [44]. DANE follows  the steps of defining the problem, searching for the biological solution, and applying the principle  [50]. An example to this approach is the Shark Attack Project, designed to protect swimmers from  sharks. It is inspired by pistol shrimp’s snapping mechanism that creates a sound. The design was a  shark  repellant  emitting  sounds.  The  success  in  this  framework  is  the  identification  of  biological  functions that gives clues on the heterogeneous properties of organisms. The limitation is addressing  multifunctionality, either analogically or as design outcomes.  3. Achieving Multifunctionality through Natural Design Principles  During  the  course  of  evolution,  living  systems  adapted  their  character  to  meet  changing  environmental conditions by multifunctional strategies [30]. The result is a compromise satisfying  partially  conflicting  requirements;  known  as  trade‐offs  [51,52].  A  trade‐off  is  having  multiple  functions  through  diminishing  one  property  in  return  for  gains  in  others  [53].  The  functional  requirements of conventional buildings are complex and often contradictory and during the life cycle  of  a  building,  they  must  be  adapted  to  changes  [54,55].  Some  examples  of  these  functional  requirements  include  decreasing  solar  gains,  while  providing  views  and  improving  illuminance  levels  [26,56,57].  These  strategies  are  still  mostly  handled  as  isolated  components  that  are  monofunctional.  One  way  to  address  this  challenge  is  using  biomimetics,  as  in  nature,  Buildings 2020, 10, 114 5 of 28 multifunctional trade‐off strategies have been developed through evolution [58]. Multifunctionality  Buildings is well 2020  understood , 10, 114   in biology; however, its translation into architecture remains limited [24]. In 5 of thi  31 s  Buildings 2020, 10, 114  5 of 31  stomata are positioned on the epidermal (outmost) layer of the stem as they have minimal leaves to section, we present and discuss opportunities to achieve multifunctionality in biomimetics through  3.1. Adaptability in Nature and Bio‐ABS  maintain a low surface to volume ratio. While in most plants, stomata are located on the leaves to ease the  “natural  design  principles”  (Figure  1).  We  include  hierarchy  (multi‐scale)  and  heterogeneity  3.1. Adaptability in Nature and Bio‐ABS  the process of photosynthesis. The number of stomatal openings varies in di erent species according (multidimension) and adaptability in this study. Beyond this, there remain opportunities to explore  Adaptability is the ability of an organism to respond to changing internal or external conditions  Adaptability is the ability of an organism to respond to changing internal or external conditions  to the climatic influences as stoma loses water. For instance, desert plants lack in stomata while tropical multifunctionality through other processes including anisotropy, redundancy, and more [59].  [60]. Most organisms have evolved various morphological, physiological, and behavioral adaptations  [60]. Most organisms have evolved various morphological, physiological, and behavioral adaptations  plants have higher numbers of stomata [62–64]. to  survive  in  their  habitats.  For  example,  plants  exchange  water  vapor  to  decrease  their  internal  to  survive  in  their  habitats.  For  example,  plants  exchange  water  vapor  to  decrease  their  internal  temperatures during hot periods through their stomata. This is a means of diffusing useful gases for  temperatures during hot periods through their stomata. This is a means of diffusing useful gases for  photosynthesis and to discharge excess materials to dissipate heat [61]. Depending on the natural  Natural design principles photosynthesis and to discharge excess materials to dissipate heat [61]. Depending on the natural  habitat, stomata show various adaptations [62] (Figure 2). In some plants such as cacti and succulents,  habitat, stomata show various adaptations [62] (Figure 2). In some plants such as cacti and succulents,  stomata are positioned on the epidermal (outmost) layer of the stem as they have minimal leaves to  stomata are positioned on the epidermal (outmost) layer of the stem as they have minimal leaves to  maintain a low surface to volume ratio. While in most plants, stomata are located on the leaves to  maintain a low surface to volume ratio. While in most plants, stomata are located on the leaves to  Adaptability Hierarchy Heterogeneity Anistropy Redundancy ... ease  the  process  of  photosynthesis.  The  number  of  stomatal  openings  varies  in  different  species  ease  the  process  of  photosynthesis.  The  number  of  stomatal  openings  varies  in  different  species  according to the climatic influences as stoma loses water. For instance, desert plants lack in stomata  according to the climatic influences as stoma loses water. For instance, desert plants lack in stomata  while Figure  tropic 1.alSome  planof ts the have natural  higher design  numb principles ers of stomat as an ever a [62– -growing 64].  classification, where the last item in while tropical plants have higher numbers of stomata [62–64].  Figure 1. Some of the natural design principles as an ever‐growing classification, where the last item  the list presents continuity. in the list presents continuity.  Figure 2. Stomatal adaptations in plants by changing size and density.  Figure 2. Stomatal adaptations in plants by changing size and density. Figure 2. Stomatal adaptations in plants by changing size and density.  In engineering and design this is different, where a system is often designed to achieve one  In engineering and design this is di erent, where a system is often designed to achieve one In engineering and design this is different, where a system is often designed to achieve one  function and it does not reconfigure itself. Therefore, the strategy is static, where a design is made  function and it does not reconfigure itself. Therefore, the strategy is static, where a design is made function and it does not reconfigure itself. Therefore, the strategy is static, where a design is made  and must satisfy all needs during the lifetime [13]. However, adaptability in building skins learnt  and must satisfy all needs during the lifetime [13]. However, adaptability in building skins learnt and must satisfy all needs during the lifetime [13]. However, adaptability in building skins learnt  from  nature  is  an  emerging  topic  with  many  examples.  Some  examples  of  Bio‐ABS  include  the  from nature is an emerging topic with many examples. Some examples of Bio-ABS include the from  nature  is  an  emerging  topic  with  many  examples.  Some  examples  of  Bio‐ABS  include  the  Homeostatic Façade System that is an adaptive shading component, changing its shape according to  Homeostatic Façade System that is an adaptive shading component, changing its shape according Homeostatic Façade System that is an adaptive shading component, changing its shape according to  solar radiation levels [65]. Also, the Ocean Pavilion, a full‐scale application of the shading device  to solar radiation levels [65]. Also, the Ocean Pavilion, a full-scale application of the shading device solar radiation levels [65]. Also, the Ocean Pavilion, a full‐scale application of the shading device  Flectofin™, regulates solar irradiance levels by an automated hingeless mechanism [66] (Figure 3).  Flectofin—, regulates solar irradiance levels by an automated hingeless mechanism [66] (Figure 3). Flectofin™, regulates solar irradiance levels by an automated hingeless mechanism [66] (Figure 3).  Other  examples,  the  HygroScope  and  HygroSkin,  can  change  their  morphologies  through  the  Other examples, the HygroScope and HygroSkin, can change their morphologies through the changes Other  examples,  the  HygroScope  and  HygroSkin,  can  change  their  morphologies  through  the  changes in humidity by hygroscopic material properties of wood [67,68].  in humidity by hygroscopic material properties of wood [67,68]. changes in humidity by hygroscopic material properties of wood [67,68].                 Figure 3. Schematic illustrations of some Bio-ABS examples, from left to right; the Ocean Pavilion in        closed and open configurations, and Flectofin— in closed and open configurations. Figure 3. Schematic illustrations of some Bio‐ABS examples, from left to right; the Ocean Pavilion in  Figure 3. Schematic illustrations of some Bio‐ABS examples, from left to right; the Ocean Pavilion in  closed and open configurations, and Flectofin™ in closed and open configurations.  3.2. Achieving Multifunctionality through a Multi-Scaled Hierarchy closed and open configurations, and Flectofin™ in closed and open configurations.  3.2. Ac Hierar hievin chy g Multifunctionality is having functional  through featur  a Mul estiin‐Scale a multi-level d Hierarchystr   ucture from nano-to-macro scales. 3.2. Achieving Multifunctionality through a Multi‐Scaled Hierarchy  Having di erentiated scales allows organisms to develop multiple functional adaptations at various Hierarchy is having functional features in a multi‐level structure from nano‐to‐macro scales.  levels. Hier For archy example,  is having adapting  functthe ional form  featof ures an in or gan a mu such lti‐level as a tr structure ee branch from is one  nan level o‐to‐of ma adaptation, cro scales.  Having differentiated scales allows organisms to develop multiple functional adaptations at various  Havin and a second g differentiated is the micr  scale ostrsuctur  allow ess organisms of the tree bark’s to deve material lop mult [69 iple ] (Figur  functieonal 4).  This adapta dual tions optimization  at various  levels. For example, adapting the form of an organ such as a tree branch is one level of adaptation,  levels. For example, adapting the form of an organ such as a tree branch is one level of adaptation,  and a second is the microstructures of the tree bark’s material [69] (Figure 4). This dual optimization  and a second is the microstructures of the tree bark’s material [69] (Figure 4). This dual optimization  is well known as a strategy for solving engineering problems. This approach can be combined with  is well known as a strategy for solving engineering problems. This approach can be combined with  Buildings 2020, 10, 114 6 of 28 is well known as a strategy for solving engineering problems. This approach can be combined with Buildings 2020, 10, 114  6 of 31  adaptability and achieve multifunctionality in Bio-ABS. An example to hierarchy in nature is seen in adaptability and achieve multifunctionality in Bio‐ABS. An example to hierarchy in nature is seen in  trees. The shape of a branch is created by the assembly of molecules to cells and of cells to wood with a trees. The shape of a branch is created by the assembly of molecules to cells and of cells to wood with  specific shape. Therefore, at every scale, the branch is both form and material, where the materials a specific shape. Therefore, at every scale, the branch is both form and material, where the materials  compose the form; therefore, the biological structure becomes hierarchical [70]. It is important to compose the form; therefore, the biological structure becomes hierarchical [70]. It is important to note  that tree bark and tannins is categorized under hierarchy due to being a material at a small scale  note that tree bark and tannins is categorized under hierarchy due to being a material at a small scale covering the larger scaled tree bark. The adaptations of tannins are dependent on its scale, not its  covering the larger scaled tree bark. The adaptations of tannins are dependent on its scale, not its form. form.  Figure 4. A tree trunk and tannins. Photo by Madeleine Maguire on Unsplash.  Figure 4. A tree trunk and tannins. Photo by Madeleine Maguire on Unsplash. Hierarchical biological structures can be adopted to achieve multifunctionality in architecture  Hierarchical biological structures can be adopted to achieve multifunctionality in architecture through  multi‐scaled  structures  with  multiple  uses.  For  example,  building  systems  at  a  larger  through multi-scaled structures with multiple uses. For example, building systems at a larger hierarchical level can host one function and its material at a smaller scale can host another. This can  be explained through the hierarchical components of a conventional façade (Figure 5). The external  hierarchical level can host one function and its material at a smaller scale can host another. This can walls are at the large hierarchical scale as the enclosure of a building. The windows on the external  be explained through the hierarchical components of a conventional façade (Figure 5). The external walls are smaller and provide external views. The window openings are even smaller and provide  walls are at the large hierarchical scale as the enclosure of a building. The windows on the external ventilation. The glazing material of the windows is at the smallest scale, limiting solar gains or light.  walls are smaller and provide external views. The window openings are even smaller and provide The combination of these components at difference scales creates a façade with multiple functions.  Therefore, through using hierarchical scales in conventional systems with adaptability, it is possible  ventilation. The glazing material of the windows is at the smallest scale, limiting solar gains or light. to achieve multifunctionality in developing Bio‐ABS.  The combination of these components at di erence scales creates a façade with multiple functions. Therefore, through using hierarchical scales in conventional systems with adaptability, it is possible to achieve multifunctionality in developing Bio-ABS. Buildings 2020, 10, 114  7 of 31  Figure  5.  Hierarchical  components  on  a  conventional  façade  system  at  diverse  scales  including  Figure 5. Hierarchical components on a conventional façade system at diverse scales including external external walls, windows, window openings, and glazing material.  walls, windows, window openings, and glazing material. 3.3. Achieving Multifunctionality through a Heterogeneous Geometric Differentiation  Heterogeneity is characterized by a geometric differentiation of elements in multi‐dimensional  structures hosting different functions with various forms. [30]. Form and function are interrelated in  nature. As such, it is almost impossible to separate one from another. Nature uses shape or form,  rather than added material and energy, to meet functional requirements. This allows the organism to  accomplish  its  needs  using  a  minimum  of  resources  [7].  In  addition,  chemical  and  structural  heterogeneities play an important role in allowing local adjustments to be integrated.  There is often a functional reason behind a form in nature. For example, the carnivorous plant  Venus  flytrap  (Dionaea  muscipula)  has  a  cup‐shaped  leaf  that  catches  insects  with  a  mechanism  trapping prey in (Figure 6). There are small hairs or cilia that are sensory organelles on the leaves. A  slight disturbance of the cilia by an insect triggers the collapse of the leaf. This mechanism, called  snap  instability,  is  achieved  by  its  shape,  and  its  kinetics  has  been  studied  by  researchers  and  transferred into shading devices [30,71,72]. This shape of leaves helps the plant save energy when  moving. It is important to note that as the function of the cilia is achieved by their form rather than  their scale, this adaptation of the Venus flytrap is categorized under heterogeneity.  Figure  6.  Venus  flytrap  (Dionaea  muscipula)  with  its  specialized  cilia.  Photo  by  Gabriel  on  Unsplash.  Heterogeneity can be adopted into architecture to achieve multifunctionality through having  various  morphologies.  For  example,  different  geometrical  forms  with  diverse  functions  can  be  integrated  in  a  system.  This  can  be  explained  through  the  heterogeneous  components  of  a  conventional roof (Figure 7). The roof itself functions as the top covering of a building and the eaves  Buildings 2020, 10, 114  7 of 31  Buildings 2020, 10, 114 7 of 28 Figure  5.  Hierarchical  components  on  a  conventional  façade  system  at  diverse  scales  including  external walls, windows, window openings, and glazing material.  3.3. Achieving Multifunctionality through a Heterogeneous Geometric Di erentiation 3.3. Achieving Multifunctionality through a Heterogeneous Geometric Differentiation  Heterogeneity is characterized by a geometric di erentiation of elements in multi-dimensional Heterogeneity is characterized by a geometric differentiation of elements in multi‐dimensional  structures hosting di erent functions with various forms. [30]. Form and function are interrelated in structures hosting different functions with various forms. [30]. Form and function are interrelated in  nature. As such, it is almost impossible to separate one from another. Nature uses shape or form, nature. As such, it is almost impossible to separate one from another. Nature uses shape or form,  rather than added material and energy, to meet functional requirements. This allows the organism rather than added material and energy, to meet functional requirements. This allows the organism to  to accomplish its needs using a minimum of resources [7]. In addition, chemical and structural accomplish  its  needs  using  a  minimum  of  resources  [7].  In  addition,  chemical  and  structural  heterogeneities play an important role in allowing local adjustments to be integrated. heterogeneities play an important role in allowing local adjustments to be integrated.  There is often a functional reason behind a form in nature. For example, the carnivorous plant There is often a functional reason behind a form in nature. For example, the carnivorous plant  Venus flytrap (Dionaea muscipula) has a cup-shaped leaf that catches insects with a mechanism trapping Venus  flytrap  (Dionaea  muscipula)  has  a  cup‐shaped  leaf  that  catches  insects  with  a  mechanism  prey in (Figure 6). There are small hairs or cilia that are sensory organelles on the leaves. A slight trapping prey in (Figure 6). There are small hairs or cilia that are sensory organelles on the leaves. A  disturbance of the cilia by an insect triggers the collapse of the leaf. This mechanism, called snap slight disturbance of the cilia by an insect triggers the collapse of the leaf. This mechanism, called  instability, is achieved by its shape, and its kinetics has been studied by researchers and transferred snap  instability,  is  achieved  by  its  shape,  and  its  kinetics  has  been  studied  by  researchers  and  into shading devices [30,71,72]. This shape of leaves helps the plant save energy when moving. It is transferred into shading devices [30,71,72]. This shape of leaves helps the plant save energy when  important to note that as the function of the cilia is achieved by their form rather than their scale, this moving. It is important to note that as the function of the cilia is achieved by their form rather than  adaptation of the Venus flytrap is categorized under heterogeneity. their scale, this adaptation of the Venus flytrap is categorized under heterogeneity.  Figure  6.  Venus  flytrap  (Dionaea  muscipula)  with  its  specialized  cilia.  Photo  by  Gabriel  on  Figure 6. Venus flytrap (Dionaea muscipula) with its specialized cilia. Photo by Gabriel on Unsplash. Unsplash.  Heterogeneity can be adopted into architecture to achieve multifunctionality through having Heterogeneity can be adopted into architecture to achieve multifunctionality through having  various morphologies. For example, di erent geometrical forms with diverse functions can be integrated various  morphologies. in a system. This   Forcan   exbe ample, explained   different through   geothe metrical heter ogeneous forms  with components   diverse  funct of a conventional ions  can  be  integrated  in  a  system.  This  can  be  explained  through  the  heterogeneous  components  of  a  roof (Figure 7). The roof itself functions as the top covering of a building and the eaves are the edges of conventional the roof which  roofpr (Fi oject gure beyond  7). Thethe  rooside f itseof lf funct a building. ions asThe  the eaves top covering function ofas a building shadings and and the thr ough eaves  their geometric di erentiation from the roof, the system becomes multifunctional. Therefore, through combining the use of heterogeneous scales in conventional systems with adaptability, it is possible to achieve multifunctionality in developing Bio-ABS. 3.4. Integrating Hierarchy and Heterogeneity Together Hierarchy through scales and heterogeneity through form in nature is developed in various complexities much further than the human eye can detect. In many cases, color and light transmittance or refraction is achieved by nano-scaled ridges, combining the principles of hierarchy and heterogeneity together. For instance, Morpho menelaus has transparent wings that are covered with micro scaled structures forming a textured pattern that di use light to achieve its color (Figure 8) [73]. This is a more ecient solution than having pigments, which in time can lose their properties or require energy to maintain. The wings function as means of flight bodies. The micro-scaled ridges add the wings an additional function, by having hierarchical elements. The wings being the larger-scale flight function and the ridges being the micro-scaled colorists therefore becoming heterogeneous [74,75]. Buildings 2020, 10, 114  8 of 31  are the edges of the roof which project beyond the side of a building. The eaves function as shadings  and  through  their  geometric  differentiation  from  the  roof,  the  system  becomes  multifunctional.  Therefore,  through  combining  the  use  of  heterogeneous  scales  in  conventional  systems  with  adaptability, it is possible to achieve multifunctionality in developing Bio‐ABS.  Buildings 2020, 10, 114  8 of 31  are the edges of the roof which project beyond the side of a building. The eaves function as shadings  and  through  their  geometric  differentiation  from  the  roof,  the  system  becomes  multifunctional.  Buildings 2020, 10, 114 8 of 28 Therefore,  through  combining  the  use  of  heterogeneous  scales  in  conventional  systems  with  adaptability, it is possible to achieve multifunctionality in developing Bio‐ABS.  Figure 7. Heterogeneity in a conventional roof structure showing the heterogeneous forms of the roof  and eaves.  3.4. Integrating Hierarchy and Heterogeneity Together  Hierarchy  through  scales and  heterogeneity  through  form in  nature is  developed in  various  complexities  much  further  than  the  human  eye  can  detect.  In  many  cases,  color  and  light  transmittance or refraction is achieved by nano‐scaled ridges, combining the principles of hierarchy  and heterogeneity together. For instance, Morpho menelaus has transparent wings that are covered  with micro scaled structures forming a textured pattern that diffuse light to achieve its color (Figure  8) [73]. This is a more efficient solution than having pigments, which in time can lose their properties  or require energy to maintain. The wings function as means of flight bodies. The micro‐scaled ridges  add the wings an additional function, by having hierarchical elements. The wings being the larger‐ Figure 7. Heterogeneity in a conventional roof structure showing the heterogeneous forms of the roof  Figure 7. Heterogeneity in a conventional roof structure showing the heterogeneous forms of the roof scale  flight  function  and  the  ridges  being  the  micro‐scaled  colorists  therefore  becoming  and eaves.  heterogeneous [74,75].  and eaves. 3.4. Integrating Hierarchy and Heterogeneity Together  Hierarchy  through  scales and  heterogeneity  through  form in  nature is  developed in  various  complexities  much  further  than  the  human  eye  can  detect.  In  many  cases,  color  and  light  transmittance or refraction is achieved by nano‐scaled ridges, combining the principles of hierarchy  and heterogeneity together. For instance, Morpho menelaus has transparent wings that are covered  with micro scaled structures forming a textured pattern that diffuse light to achieve its color (Figure  8) [73]. This is a more efficient solution than having pigments, which in time can lose their properties  Figure 8. From left to right: Morpho Menelaus, its wings, micro‐scaled structures forming a pattern  Figure 8. From left to right: Morpho Menelaus, its wings, micro-scaled structures forming a pattern over or require energy to maintain. The wings function as means of flight bodies. The micro‐scaled ridges  over the wings, a single scale of Morpho Menelaus and a scale showing a few ridges giving color. Photo  the wings, a single scale of Morpho Menelaus and a scale showing a few ridges giving color. Photo by add the wings an additional function, by having hierarchical elements. The wings being the larger‐ by Damon On Road on Unsplash.  Damon On Road on Unsplash. scale  flight  function  and  the  ridges  being  the  micro‐scaled  colorists  therefore  becoming  heterogeneous Hierarchy  [an 74,d75  heterogeneity ].    can  be  integrated  together  in  achieving  multifunctionality  into  Hierarchy and heterogeneity can be integrated together in achieving multifunctionality into architecture through differentiating functions at diverse scales and geometries. Similar to Morpho  menelaus, a building can host a function on its different elements situated at diverse scales and on its  architecture through di erentiating functions at diverse scales and geometries. Similar to Morpho menelaus, a building can host a function on its di erent elements situated at diverse scales and on its functional surfaces di erentiated by various geometries. For example, in conventional structures, this is achieved through Buildings having  2020, 10the , 114  hierarchy of system, component, material at diverse scales 9 of 31added   together with surface structures as di erentiated geometries. In this way, the traditional hierarchical parts of a functional surfaces differentiated by various geometries. For example, in conventional structures, this  Figure 8. From left to right: Morpho Menelaus, its wings, micro‐scaled structures forming a pattern  building are formed. is achieved Then,  through the  hav material ing the hierar pr chy operties  of system, of compone the specialized nt, material at diver surfaces, se scalesi.e.,  addenanostr d  uctured over the wings, a single scale of Morpho Menelaus and a scale showing a few ridges giving color. Photo  together with surface structures as differentiated geometries. In this way, the traditional hierarchical  surfaces, are used at as small scale of the hierarchy. The material property adds heterogeneous forms by Damon On Road on Unsplash.  parts  of  a  building  are  formed.  Then,  the  material  properties  of  the  specialized  surfaces,  i.e.,  in the hierarchy and therefore the whole system achieves multifunctionality through hierarchy and nanostructured  surfaces,  are  used  at  as  small  scale  of  the  hierarchy.  The  material  property  adds  Hier heterogeneous archy  and  form heterogeneity s in the hier  arch can ybe and  in ttherefor egrated e  the together  whole  sy instem   ach iach eving ieve smult  multififuunct nctiional onalitiyty    into  heterogeneity (Figure 9). through hierarchy and heterogeneity (Figure 9).  architecture through differentiating functions at diverse scales and geometries. Similar to Morpho  menelaus, a building can host a function on its different elements situated at diverse scales and on its  Figure  9.  How  buildings  can  achieve  multifunctionality  through  integrating  hierarchical  building  Figure 9. How buildings can achieve multifunctionality through integrating hierarchical building components with heterogeneous forms of material properties.  components with heterogeneous forms of material properties. 4. Methodology  Several research methods are used in this study to achieve multifunctionality in Bio‐ABS and to  measure the benefit of implementing multifunctional Bio‐ABS in buildings. These methods include  the following.  (1) Literature  review,  synthesis,  and  comparative  analysis  of  the  existing  biomimetic  design  frameworks.  (2) The case study of Echinocactus grusonii demonstrating a new biomimetic design framework to  achieve multifunctionality in Bio‐ABS.  (3) Building performance simulation of a digital base‐case building model and the case study of a  multifunctional Bio‐ABS.  (4) Comparative analysis of the simulation results showing the improvement in thermal comfort  multifunctional Bio‐ABS offers.  The literature review, synthesis, and comparative analysis of the existing design frameworks  aim at identifying the research gaps in developing Bio‐ABS. In doing so, they draw attention to the  limitations  and  successes  of  existing  frameworks  to  develop  Bio‐ABS  and  outline  whether  multifunctionality is addressed. However, it is found that achieving multifunctionality with existing  frameworks  remains  a  gap,  and  to  address  this,  a  new  framework  is  proposed.  Therefore,  as  a  method, framework is used in order to address the challenges faced in developing multifunctional  Bio‐ABS.  Frameworks,  in  general,  provide  a  holistic  approach  to  address  specific  problems  or  challenges and they present the opportunity to be further improved as validated methodologies. To  aid  the  framework  developed,  a  preliminary  database  is  created  by  mapping  multifunctional  mechanisms of organisms through a systematic classification as a growing source of multifunctional  biological mechanisms. The new framework presents a process to develop multifunctional Bio‐ABS  using  the  database.  Furthermore,  a  case  study  of  Echinocactus  grusonii  (golden  barrel  cactus)  implemented on a naturally ventilated educational building modeled digitally is developed through  the demonstration of the new framework. This case study provides an example to use the database  and framework to develop multifunctional Bio‐ABS by translating the natural design principles of  hierarchy and heterogeneity.  Buildings 2020, 10, 114 9 of 28 4. Methodology Several research methods are used in this study to achieve multifunctionality in Bio-ABS and to measure the benefit of implementing multifunctional Bio-ABS in buildings. These methods include the following. (1) Literature review, synthesis, and comparative analysis of the existing biomimetic design frameworks. (2) The case study of Echinocactus grusonii demonstrating a new biomimetic design framework to achieve multifunctionality in Bio-ABS. (3) Building performance simulation of a digital base-case building model and the case study of a multifunctional Bio-ABS. (4) Comparative analysis of the simulation results showing the improvement in thermal comfort multifunctional Bio-ABS o ers. The literature review, synthesis, and comparative analysis of the existing design frameworks aim at identifying the research gaps in developing Bio-ABS. In doing so, they draw attention to the limitations and successes of existing frameworks to develop Bio-ABS and outline whether multifunctionality is addressed. However, it is found that achieving multifunctionality with existing frameworks remains a gap, and to address this, a new framework is proposed. Therefore, as a method, framework is used in order to address the challenges faced in developing multifunctional Bio-ABS. Frameworks, in general, provide a holistic approach to address specific problems or challenges and they present the opportunity to be further improved as validated methodologies. To aid the framework developed, a preliminary database is created by mapping multifunctional mechanisms of organisms through a systematic classification as a growing source of multifunctional biological mechanisms. The new framework presents a process to develop multifunctional Bio-ABS using the database. Furthermore, a case study of Echinocactus grusonii (golden barrel cactus) implemented on a naturally ventilated educational building modeled digitally is developed through the demonstration of the new framework. This case study provides an example to use the database and framework to develop multifunctional Bio-ABS by translating the natural design principles of hierarchy and heterogeneity. The digital base-case building is taken from the repository of U.S. Department of Energy that provides models for various building types. The building type selected is educational to investigate problems associated with comfort in schools, as most existing studies focus on oce and commercial buildings [76–82]. Building performance simulation (BPS) of the digital base-case building targeting thermal comfort through the Adaptive Comfort Model applicable to naturally ventilated buildings is performed. The multifunctional Bio-ABS case study is implemented on the base-case building, replacing its windows. The software used to model and simulate the base-case building and case study is EnergyPlus. This was chosen as it provides a flexible input-output interface to model multifunctional facades using the built-in tool Energy Management System (EMS). EMS has customizable input objects that is suitable to model adaptive facades [79,83,84]. A comparative analysis for the BPS results of the base-case building and Bio-ABS case study is made to draw out the improvements in comfort multifunctional Bio-ABS o er over conventional buildings. 5. Classification of Biological Mechanisms for Multifunctionality Bio-ABS This section presents a database mapping multifunctional properties of organisms. To do so, we classified biological mechanisms in terms of multifunctionality. The classification is comprised of three layers in Table 2: (1) Named species presenting the biological system, (2) adaptability presenting the type of biological adaptations, and (3) multifunctionality presenting biological functional strategies divided into hierarchy and heterogeneity sub-categories. Buildings 2020, 10, 114 10 of 28 Table 2. The classification parameters of biological mechanisms for achieving multifunctionality in developing Bio-ABS. Layer Scope Parameters Biological system - 1. Species Scientific name - Physical Stimulus Chemical 2. Adaptability Dynamic Process Static Heat Light Environmental factor Air Water Energy 3. Multifunctionality Maintain Function Exchange Gain Lose Biological mechanism Mechanism Functional strategy Performance measure Pre-cellular Atom, molecule Sub-cellular Organelle Biological 3.a. Hierarchy organization scale Cellular Cell Multicellular Tissue, organ, organism Ecological Ecosystem, biome Form Morphological Structure Texture Adaptation type 3.b. Heterogeneity Chemical response and level Physiological Trait Kinetic response Behavioral Tropism Nastic movement 5.1. Species and Adaptability Layers The species layer comprises the name of the biological system and its scientific name. The stimulus presents the set of triggers biological mechanisms respond to, defined as physical and chemical. Physical stimuli refer to the internal and external environmental triggers including the changes in environmental factors. These range anywhere from heat, light, to water content. Chemical stimuli refer to physiological triggers detected by a receptor. Chemical stimuli promote internal responses including changes in pH. Adaptive features of living systems occur as either dynamic or static processes, demonstrating the kinds of changes. A dynamic process relates to motion such as behavioral adaptations. In static processes, no change is present. Examples include nanostructured textural features of living systems such as waxy surface structures of water lily (Nymphaeaceae) and lotus flower (Nelumbo nucifera) keeping them dry o the water [85,86]. 5.2. Multifunctionality Layer 5.2.1. Environmental Factor, Function, and Mechanism The environmental factor refers to climatic variables that biological mechanisms control, categorized as heat, light, air, water, and energy. For example, heat includes surface or body temperature (referred as thermoregulation in living systems), absorption, and dissipation of heat. Light Buildings 2020, 10, 114 11 of 28 is related to the impact and management of solar irradiance and radiation including light intensity, reflection, refraction, and absorption. Air is related to air and gas management including oxygen intake, air flow and gas exchange. Water is related to water content in the body or in the air or the surrounding environment of a living system including absorbing the moisture from the air, di usion of moisture, and waxy surfaces to hold moisture over the surface. Energy is related to the generation and conservation of energy. The function describes the control that biological mechanisms host over the environmental factors. These include gain, lose, maintain, and exchange. Gain refers to absorbing, warming up, and enhancing; describing an increase. Lose is the opposite of gain, referring to reflecting, refracting, cooling down, and evaporation; describing a decrease. Maintain refers to managing, intensifying, and thermal regulation; describing a certain variable is remained as a constant. Last, exchange refers to absorbing, taking, and filtering; describing the simultaneous emergence of gain and lose. The biological mechanism is the driving force of the classification that presents the functional characteristics of living systems. Examples of biological mechanisms include self-shading areoles and spines of cacti, and shrinking and swelling stem structures of succulents [87]. A functional strategy refers to the performative role played by an organism’s adaptations. Examples include maximizing the amount of light reflected, passive ventilation through altering air pressure and thermoregulation through retaining absorbed heat [88]. 5.2.2. Hierarchy Biological organization is the hierarchical order of biological systems, extending from atoms to biospheres Each level in the hierarchy represents an increase in organizational complexity, with each ‘object’ being composed of the previous level’s basic unit. The basic principle behind the organization is the concept of emergence: the properties found at a hierarchical level are not present and irrelevant at the lower levels. In most simple terms, the biological organization level relates to the level at which the biological mechanism is part of a living system (Figure 10). Organisms achieve Buildings 2020, 10, 114  12 of 31  multifunctionality through having multiple functions located at their hierarchical multi-level biological the biological mechanism is part of a living system (Figure 10). Organisms achieve multifunctionality  structures. To promote biomimetic strategies with multiple functions, the biological levels of those through having multiple functions located at their hierarchical multi‐level biological structures. To  biological mechanisms are identified. This categorization aims at presenting how diverse functions are promote  biomimetic  strategies  with  multiple  functions,  the  biological  levels  of  those  biological  combined in living systems and gives clues to creating corresponding technical systems. For instance, mechanisms  are  identified.  This  categorization  aims  at  presenting  how  diverse  functions  are  combined in living systems and gives clues to creating corresponding technical systems. For instance,  if a biological mechanism is situated at a cell level, it can be combined with another mechanisms that is if a biological mechanism is situated at a cell level, it can be combined with another mechanisms that  located at a di erent level such as organ or organism [34]. is located at a different level such as organ or organism [34].  Ecological levels Super- • Population cellular • Community or (multicellular Cellular biocoenosis ) level levels • Ecosystem • Tissue •Biome •Cell Sub-cellular •Organ level •Organ • Organelle system Pre-cellular level •Organism •Atoms • Molecule • Biomolecular complex Figure 10. Biological organization scales.  Figure 10. Biological organization scales. 5.2.3. Heterogeneity  Morphological  adaptions  occur  through  the  changes  in  the  morphology  of  an  organism.  Examples include the movement of wooden‐like scales of the big pine cone (Pinus coultieri) when the  water content in the air fluctuates to manage moisture. In morphological adaptations, form is related  to the size or shape of an organism. Structure relates to a structure of an organism, as biological spatial  and structural material‐systems. Examples include shell structures such as the sea urchin (Echnoidea)  and sand dollar (Clypeasteroida). Texture results from segmentation trends of biological surfaces of an  organism. Examples include thorny fruit trees such as durian, to provide self‐shading with scale  structures [89].  Physiological  adaptations  occur  through  internal  changes  of  an  organism.  Examples  include  Crassulacean Acid Metabolism in cacti, a carbon fixation pathway where the stomata remain shut  during the day to reduce evapotranspiration, while open at night to collect carbon dioxide to diffuse  into cells. In physiological adaptations, trait relates to phenotypic characteristics of an organism as  results of the evolutionary processes. Examples include the eye color as a character of humans, while  blue, brown, and green colors are traits. Chemical processes result from internal chemical processes  of  an  organism.  Examples  include  the  physiology  of  stomatal  openings  facilitating  gas  exchange  through a pair of specialized guard cells [61].  Behavioral  adaptations  are  changes  in  the  behavior  of  an  organism,  mostly  resulting  in  movement. Kinetic response is the movement in living systems other than plants. Examples include  kangaroos (Macropodidae) licking their paws for evaporation and crouching into smaller position  for  decreased  heat  gain.  Nastic  movement  is  plants’  response  to  an  external  stimulus  (i.e.,  temperature, light, and chemicals) independent from its direction. Examples include thermonasty of  tulips (Tulipa), closing and openings according to the changes in temperature and thigmonasty of  wood  sorrels  (Oxalidaceae)  as  a  response  to  vibration.  Tropism  is  plants’  response  to  an  external  Buildings 2020, 10, 114 12 of 28 5.2.3. Heterogeneity Morphological adaptions occur through the changes in the morphology of an organism. Examples include the movement of wooden-like scales of the big pine cone (Pinus coultieri) when the water content in the air fluctuates to manage moisture. In morphological adaptations, form is related to the size or shape of an organism. Structure relates to a structure of an organism, as biological spatial and structural material-systems. Examples include shell structures such as the sea urchin (Echnoidea) and sand dollar (Clypeasteroida). Texture results from segmentation trends of biological surfaces of an organism. Examples include thorny fruit trees such as durian, to provide self-shading with scale structures [89]. Physiological adaptations occur through internal changes of an organism. Examples include Crassulacean Acid Metabolism in cacti, a carbon fixation pathway where the stomata remain shut during the day to reduce evapotranspiration, while open at night to collect carbon dioxide to di use into cells. In physiological adaptations, trait relates to phenotypic characteristics of an organism as results of the evolutionary processes. Examples include the eye color as a character of humans, while blue, brown, and green colors are traits. Chemical processes result from internal chemical processes of an organism. Examples include the physiology of stomatal openings facilitating gas exchange through a pair of specialized guard cells [61]. Behavioral adaptations are changes in the behavior of an organism, mostly resulting in movement. Kinetic response is the movement in living systems other than plants. Examples include kangaroos (Macropodidae) licking their paws for evaporation and crouching into smaller position for decreased heat gain. Nastic movement is plants’ response to an external stimulus (i.e., temperature, light, and chemicals) independent from its direction. Examples include thermonasty of tulips (Tulipa), Buildings 2020, 10, 114  13 of 31  closing and openings according to the changes in temperature and thigmonasty of wood sorrels (Oxalidaceae) as a response to vibration. Tropism is plants’ response to an external stimulus (i.e., oxygen, stimulus (i.e., oxygen, sun, and humidity) depending on its direction, as opposed to nastic movement.  sun, and humidity) depending on its direction, as opposed to nastic movement. Examples include Examples include hydrotropism such as tomato roots, the tendency to grow towards higher moisture  hydrotropism such as tomato roots, the tendency to grow towards higher moisture content (Figure 11). content (Figure 11).  Figure 11. Examples of adaptations or characteristics from left to right; in morphology—succulent’s  Figure 11. Examples of adaptations or characteristics from left to right; in morphology—succulent’s form, sea urchin’s structure, durian’s thorns; in physiology—eye color trait, photosynthesis of stoma;  form, sea urchin’s structure, durian’s thorns; in physiology—eye color trait, photosynthesis of stoma; in behavior—licking paws for evapotranspiration, thermonasty, and phototropism.  in behavior—licking paws for evapotranspiration, thermonasty, and phototropism. 5.3. Examples of Classified Biological Systems  5.3. Examples of Classified Biological Systems In an attempt to demonstrate this systematic classification, we mapped biological systems in a  In an attempt to demonstrate this systematic classification, we mapped biological systems in a ‘preliminary  database’  for  achieving  multifunctionality  in  biomimetic  designs  (Table  3).  The  ‘preliminary database’ for achieving multifunctionality in biomimetic designs (Table 3). The biological biological systems are organized to present their multifunctional properties, giving insight to their  systems are organized to present their multifunctional properties, giving insight to their hierarchical or hierarchical or heterogeneous structures. The classification and the database are to be used as part of  heterogeneous structures. The classification and the database are to be used as part of the framework the framework proposed in this paper further. The table presented below provides the information  proposed in this paper further. The table presented below provides the information on an extract on an extract (sixteen entries) from the database. The database in its current format consists of 43  (sixteen entries) from the database. The database in its current format consists of 43 entries and it is yet entries and it is yet to be complete as a growing source of multifunctional mechanisms of biological  to be complete as a growing source of multifunctional mechanisms of biological systems. systems.  Table 3. A preliminary mapping of several biological systems through the systematic classification.  (in stimulus P: physical, C: chemical; in process D: dynamic, S: static; in biological organization scales  O: organ, T: tissue, C: cell; in adaptation types M: morphological, P: physiological, B: behavioral; in  adaptation levels F: form, S: structure, TEX: texture, CR: chemical response, KR: kinetic response, NM:  nastic movement, TRO: tropism; N/A: Not available). Information is gathered from various sources  [6,8,12,13,50,89–110].  Species  Adaptability  Multifunctionality  Biologi Adapta cal  Adaptat tion  Organi ion  Stimul Pro Level  Biological System  Function  Mechanism  zation  Type  us  cess  (Hetero Scale  (Hetero geneity (Hierar geneity)  )  chy)  Managing  UV  Australian  radiation,  Banksia Seeds  Maintain/Exchange  high ambient  P  D  T  P  Trait  (Banksia  light and heat  summer  attenuata)  temperature s by crack  openings  Translucent  and colored  Stone Plant  Gain/Maintain/Lose  patterned  N/A  S  T  P  Trait  (Lithops)  light  epidermal  windows on  the leaves  Buildings 2020, 10, 114 13 of 28 Table 3. A preliminary mapping of several biological systems through the systematic classification. (in stimulus P: physical, C: chemical; in process D: dynamic, S: static; in biological organization scales O: organ, T: tissue, C: cell; in adaptation types M: morphological, P: physiological, B: behavioral; in adaptation levels F: form, S: structure, TEX: texture, CR: chemical response, KR: kinetic response, NM: nastic movement, TRO: tropism; N/A: Not available). Information is gathered from various sources [6,8,12,13,50,89–110]. Species Adaptability Multifunctionality Biological Adaptation Adaptation Organization Biological System Stimulus Process Function Mechanism Level Type Scale (Heterogeneity) (Heterogeneity) (Hierarchy) Managing UV radiation, Australian Banksia Maintain/Exchange high ambient summer Seeds (Banksia P D T P Trait light and heat temperatures by crack attenuata) openings Translucent and colored Gain/Maintain/Lose N/A S patterned epidermal T P Trait light windows on the leaves Stone Plant (Lithops) Gain/Maintain Shrinking and swelling P D waterLoose/Maintain O M F leaves heat Triangular reflective hair Saharan Silver Ant Maintain/Lose light and grooves reducing heat (Cataglyphis P D T M TEX and heat absorption, reflection, and bombycina) refraction Highly reflective shell Maintain/Lose light Desert Snail N/A S surface allowing O P Trait and heat (Sphincterochila conduction boisseri) Layer of insulating air P D Maintain heat O B KR cushion Glass Snail Glossy translucent shell Maintain/Lose light (Oxychilus N/A S called glass house allowing O P Trait and heat draparnaudi) reflectance Wings scale structures Maintain light and P D allowing structural O M TEX Butterfly—Menelaus heat coloration Blue Butterfly Microscopically thin layers (Morpho menelaus) of film (chitin) on wings N/A S Gain energy O P Trait absorbing energy/infrared light Tannins on the bark surface Maintain light and managing optical N/A S T P Trait heat properties through Bark of Trees nanostructures Rough bark surface Maintain air, light, producing shadowed areas N/A S and heat amongst the illuminated T M TEX Lose light and heat ones, stimulating convection of air Swelling and shrinking cortex achieving high Maintain water Cactus-Barrel cactus P D surface to volume ratio O M F Lose light and heat (Echinocatus through the ribs structured grusonii) stem Self-shading areoles and N/A S Lose light and heat spines over the cortex T M TEX epidermal layer Exchange heat, air, Microscopic and permeable Stoma C D C P CR and light stomatal openings Maintain/Exchange Open/closed configurations P D T B KR light and water of the shell Hygroscopic nasal passages Camel (Camelus) Maintain/Lose heat cooling exhaled air during P D T P Trait Exchange water night and extracting water vapor from air Maintain heat and Managing water content water Spurge (Euphorbias) N/A S and heat through waxy T P Trait Lose heat surface covering the stem Gain water Curling movement of the Maintain/Gain heat leaves triggered by heat Rhododendron P D Maintain water allowing the reduction of O B TRO Leaves Lose light and heat the total quantity of light absorbed by the leaf Special structures Maintain/Lose light absorbing solar radiation, N/A S C P CR Gain energy and managing light by Fern Leaves reflection and refraction Exchange air and Permeability of outer leaf C D C P CR water surface allowing di usion Buildings 2020, 10, 114 14 of 28 Table 3. Cont. Species Adaptability Multifunctionality Biological Adaptation Adaptation Organization Biological System Stimulus Process Function Mechanism Level Type Scale (Heterogeneity) (Heterogeneity) (Hierarchy) Long, transparent, hollow Gain heat light N/A S guard hairs scattering and T M TEX Maintain/Lose light Polar Bear (Ursus reflecting sunlight Dense underfur, darkly maritimus) Maintain light and N/A S pigmented skin, and T P Trait heat blubbering Movement through the Big pinecone (Pinus Exchange water, air, P D material capacity of T M TEX coulteri) and light wooden scales Gain/Maintain Swelling and shrinking Succulents P D water cortex achieving high O M F Lose light and heat surface to volume ratio 6. Developing a Framework to Achieve Multifunctionality in Bio-ABS To achieve multifunctionality in Bio-ABS, a framework called the ‘Multi-Biomechanism Approach’ is proposed. This is a top-down approach focusing on technical problems to be solved through biological inspiration. It is comprised of four stages (Figure 12): (1) Identifying a technical problem. (2) Selecting a biological solution. (3) Achieving multifunctionality. (4) Developing a biomimetic strategy. Each stage is comprised of sub-stages, which are facilitated by the classification of multifunctional biological mechanisms as outlined in Table 3. Stage one is comprised of the two sub-stages of selecting a base-case scenario that includes a location, the climate, and the performance analysis of that base-case scenario and identifying functional requirements to improve the performance. Stage two is comprised of matching functional requirements of the base-case scenario with a corresponding biological system found in the database. A suitable biological system with multifunctional properties is selected to serve as a case study. Stage three is comprised of outlining the properties of the chosen biological system as hierarchical and heterogeneous structures to achieve multifunctionality. This includes the identification of biological organization scales, adaptation levels and types of the chosen biological mechanisms. Stage four is comprised of designing a Bio-ABS with functions at diverse scales and with di erent geometries. In doing so, several configurations of the Bio-ABS are produced, and actuation mechanisms are presented that deliver climate-adaptability. Further details on how to perform the stages of the framework are described thoroughly in the following sections of this paper with a case study demonstrating its use. 6.1. Stage 1: Identifying Technical Problems The identification of technical problems involves identifying optical, acoustic, and energetic controls over a base-case scenario. This is achieved through selecting location, climate, and a base-case building to identify functional requirements. A performance analysis of the base-case is proposed to define the functions required, such as through building performance simulation. The functions defined are suggested to use a simplified language as maintain, exchange, lose, and gain; of the environmental factors as heat, light, air, water, and energy. For instance, results of a performance analysis may suggest that cooling energy loads are relatively high. This indicates heat regulation through the function lose can be investigated as thermoregulation in organisms. Buildings 2020, 10, 114  17 of 31  6. Developing a Framework to Achieve Multifunctionality in Bio‐ABS  To  achieve  multifunctionality  in  Bio‐ABS,  a  framework  called  the  ‘Multi‐Biomechanism  Approach’ is proposed. This is a top‐down approach focusing on technical problems to be solved  through biological inspiration. It is comprised of four stages (Figure 12):  (1) Identifying a technical problem.  (2) Selecting a biological solution.  (3) Achieving multifunctionality.  (4) Developing a biomimetic strategy.  Each  stage  is  comprised  of  sub‐stages,  which  are  facilitated  by  the  classification  of  multifunctional biological mechanisms as outlined in Table 3. Stage one is comprised of the two sub‐ stages of selecting a base‐case scenario that includes a location, the climate, and the performance  analysis  of  that  base‐case  scenario  and  identifying  functional  requirements  to  improve  the  performance. Stage two is comprised of matching functional requirements of the base‐case scenario  with  a  corresponding  biological  system  found in  the  database. A suitable  biological  system with  multifunctional properties is selected to serve as a case study. Stage three is comprised of outlining  the properties of the chosen biological system as hierarchical and heterogeneous structures to achieve  multifunctionality. This includes the identification of biological organization scales, adaptation levels  and types of the chosen biological mechanisms. Stage four is comprised of designing a Bio‐ABS with  functions at diverse scales and with different geometries. In doing so, several configurations of the  Bio‐ABS are produced, and actuation mechanisms are presented that deliver climate‐adaptability.  Further  details  on  how  to  perform  the  stages  of  the  framework  are  described  thoroughly  in  the  Buildings 2020, 10, 114 15 of 28 following sections of this paper with a case study demonstrating its use.  Figure 12. The multi-biomechanism approach and its stages. (1) Identifying technical Figure 12. The multi‐biomechanism approach and its stages. (1) Identifying technical problems, (2)  problems, (2) investigating biological solutions, (3) achieving multifunctionality, and (4) developing investigating biological solutions, (3)  achieving multifunctionality, and (4) developing  biomimetic  biomimetic strategies. strategies.  6.2. Stage 2: Investigating Biological Solutions The second stage is to find solutions in nature that respond to similar problems as identified in Stage 1. This stage is comprised of matching functional requirements, investigating corresponding biological mechanisms, and selecting biological models. To match functional requirements between the base-case building and nature, the same terms for functions (maintain, exchange, lose, and gain) and environmental factors (heat, light, air, water, and energy) are suggested to be used. 6.3. Stage 3: Achieving Multifunctionality The third stage is to achieve multifunctionality through selecting multiple biological mechanisms, situating mechanisms at diverse scales, and developing actuation mechanisms. Multiple biological mechanisms whether they belong to the same biological model or not, should be selected to develop a multifunctional system. The significance in this stage is to employ hierarchy or heterogeneity as drivers. This means either situating the selected mechanisms at diverse scales, or selecting diverse types of morphological, physiological, or behavioral adaptations in a heterogeneous structure. 6.4. Stage 4: Developing Biomimetic Strategies The final stage is developing biomimetic strategies, comprised of developing a façade design, selecting smart materials as actuators, and producing configurations. For example, the Stone Plant (Lithops) maintains light levels through its translucent and colored structures. This mechanism can be transferred as a texture changing its light transmittance. Moreover, the opening movement of stomata Buildings 2020, 10, 114 16 of 28 is a dynamic process that relates to a motion happening at a cellular scale. These mechanisms can be combined together and translated into a potential Bio-ABS design. 7. The Case Study of Echinocactus grusonii This section describes the case study of a multifunctional Bio-ABS following the four stages of the Multi-Biomechanism Approach. The case study of Echinocactus grusonii is implemented on a digital reference building through translating its multifunctional properties using the concepts of hierarchy and heterogeneity. Further on, building performance simulation of the base-case building before and after implementing the multifunctional Bio-ABS case study is conducted. A comparative analysis of the simulation results is presented showing the performance improvements. 7.1. Stage 1: Identifying Technical Problems To determine the technical problems in a base-case scenario, a climatic context with a location and reference building must be selected. A base-case scenario is selected in Sydney, Australia, with humid warm temperate climate characterized by warm summers and cool winters [111]. A digital reference educational building from the United States Department of Energy repository was selected to serve as a base-case model [112]. The building type selected is educational to investigate problems associated with comfort in schools, as most existing studies focus on oces and commercial buildings [78–84]. The reference building was located in Atlanta, USA, as Atlanta shows climatic similarity to Sydney. It is anticipated that the geometry of the reference building is suitable for a similar climate. The reference building is simulated using the software EnergyPlus, in which the building was already modeled. The simulation results are presented further in this section in ‘7.5. Comparative analysis of environmental performance evaluation’. As results of the simulation, technical problems in the building are identified. The technical problems are defined as excessive heat, need for cooling, and high solar gains. The problems are revised using the simplified language specified in the framework. The translation of excessive heat is described as to lose and maintain heat, the need for cooling as to gain and exchange air, and high solar gains as to lose and maintain light (Table 4). Table 4. Defining technical problems as functional requirements. Technical Problem Functional Requirement Excessive heat Lose/maintain heat Need for cooling Gain/exchange air High solar gains Lose/maintain light 7.2. Stage 2: Investigating Biological Solutions A search for the functional requirements resulted with several biological systems including Echinocactus grusonii, Pinus coultieri, and succulents. The search for three di erent functions in the database is performed to investigate various biological mechanisms. The first function (air regulation) results with 11 entries including Echinocactus grusonii, big pine cone (Pinus coulteri), stomata, succulents, and barnacles (Chthamalus stellatus). The second function (light regulation) results with 33 entries including Echinocactus grusonii, Pinus coulteri, succulents, Mimosa pudica, Lithops, and Saharan silver ant (Cataglyphis bombycina). The third function (heat regulation) results with 43 entries including Echinocactus grusonii, Pinus coulteri, stomata, succulents, Mimosa pudica, Lithops, and Cataglyphis bombycina. The functions are as listed below. (1) Function IN (‘Exchange’, ‘Gain’) AND ‘Environmental Factor ’ = ‘Air ’, (2) Function IN (‘Lose’, ‘Maintain’) AND ‘Environmental Factor ’ = ‘Light’ (3) Function IN (‘Lose’, ‘Maintain’) AND ‘Environmental Factor ’ = ‘Heat’ Buildings 2020, 10, 114 17 of 28 As results of the search, three biological systems are found in the intersection with corresponding strategies. These are Echinocactus grusonii, Pinus coulteri, and succulents. In addition, cacti and succulents have their stomatal openings situated on the external layer of their epidermis, which forms a hierarchical adaptation at a smaller scale of the stem. In Pinus coulter, stomata are situated on the leaves that are part of the tree instead. Pinus coulteri exchanges water, air, and light by a response to moisture. It presents a movement through the movement by the wooden scales, which results in one type of morphological adaptation as a texture. Succulents gain and maintain water; lose light and heat through swelling and shrinking cortex, similar to cacti. However, this results in one type of morphological adaptation as a form of an organ. However, Echinocactus grusonii not only achieves what succulents do through a similar adaptation with a di erent form, and have their stomata on their stem di erent to pine cone, but it also loses light and heat through its self-shading areoles and spines. This additional morphological adaptation is a texture. Therefore, Echinocactus grusonii is chosen among the three biological systems as it provides two morphological adaptations at diverse hierarchical scales (organ and tissue) and has di erent textural heterogeneous structures (areoles and spines). Some of the adaptations of Echinocactus grusonii involve the swelling and shrinking movement and high surface-to-volume ratio of the stem, self-shading areoles, and spines over the cortex as a morphology; and the microscopic stomatal openings as physiological mechanisms (Table 5). The cactus stem swells, shrinks, and maintains a high surface-to-volume ratio, through the unique ribs structure. Studies show that Echinocactus grusonii can expand up to 54% of its initial surface area [105,109]. At the shrunk state, self-shaded areas in between the ribs help cool the surface temperatures down. The surface-to-volume ratio increases as the cactus gets larger, losing heat and light. There are areoles on the cortex out of which grow spines, self-shading and creating cooler microclimate. Studies show that Echinocactus grusonii can achieve up to a di erence of 17 C in winter and 25 C in summer between the surface and air temperatures through these morphological adaptations [64]. Stomata are microscopic pores on leaves to transpire water and exchange air and heat, but in cacti they are placed directly on the stem. Echinocactus grusonii has 15 to 70 stomata per square millimeter [103]. Table 5. Echinocactus grusonii and its properties. (in stimulus P: physical, C: chemical; in process D: dynamic, S: static; in biological organization scales O: organ, T: tissue, C: cell; in adaptation types M: morphological, P: physiological; in adaptation levels F: form, TEX: texture, CR: chemical response; N/A: Not available). Species Adaptability Multifunctionality Biological Adaptation Adaptation Organization Biological System Stimulus Process Function Mechanism Type Level Scale (Heterogeneity) (Heterogeneity) (Hierarchy) Swelling and shrinking cortex achieving high Maintain water P D surface to volume ratio O M F Cactus-Barrel cactus Lose light and heat through the ribs structured (Echinocatus stem grusonii) Self-shading areoles and N/A S Lose light and heat spines over the cortex T M TEX epidermal layer Exchange heat, air, Microscopic and permeable Stoma C D C P CR and light stomatal openings 7.3. Stage 3: Achieving Multifunctionality The mechanisms of Echinocactus grusonii are situated at diverse scales of biological organization and di erentiated morphologies. For example, the swelling and shrinking cortex is a morphological adaptation that hosts the function of losing heat by the di erentiated form of the ribs’ structure covering the cortex over the spherical stem. This is an example of heterogeneity in nature. Moreover, the self-shading areoles and spines are morphological adaptations as a di erentiated form of texture over the ribs presenting heterogeneity. On the other hand, the microscopic stomatal openings operate as physiological adaptation. All three adaptations are situated at di erent scales of biological organization: Buildings 2020, 10, 114 18 of 28 stomatal openings at the cellular level and areoles and spines at the tissue and ribs structured cortex at the organ levels. This shows an example for hierarchy in nature. Therefore, the translation of the cortex can be activated by heat and light. Being at the largest level among the mechanisms, it may be transferred into a larger spatial scale. The translation of the stomatal openings may work in conjunction with the ribbed stem, regulating heat and light. This mechanism can be transferred as openings at a medium-level spatial scale for air intake, activated by temperature. The areoles and spines regulate light through creating a texture over the cortex, activated by light. This mechanism can be translated at Buildings 2020, 10, 114  21 of 31  a smaller scale such as sub-component (Figure 13). Figure 13. Multifunctionality through hierarchy and heterogeneity in Echinocactus grusonii. Figure 13. Multifunctionality through hierarchy and heterogeneity in Echinocactus grusonii.  7.4. Stage 4: Developing Biomimetic Strategies 7.4. Stage 4: Developing Biomimetic Strategies  The selected mechanisms of Echinocactus grusonii are translated into a façade design to improve the The selected mechanisms of Echinocactus grusonii are translated into a façade design to improve  performance of the base-case scenario. The ribbed stem is translated into a morphology regulating heat the performance of the base‐case scenario. The ribbed stem is translated into a morphology regulating  by expanding and contracting triggered by temperature di erence. As the form of a stem is a sphere heat by expanding and contracting triggered by temperature difference. As the form of a stem is a  but through giving it dimension by the ribs, it becomes geometrically heterogeneous and hosts another sphere but through giving it dimension by the ribs, it becomes geometrically heterogeneous and hosts  function of shading. This achieves cooling between the ribbed surfaces instead of reaching extreme another function of shading. This achieves cooling between the ribbed surfaces instead of reaching  temperatures otherwise without ribs. The self-shading areoles and spines texture is translated into an extreme  temperatures  otherwise  without  ribs.  The  self‐shading  areoles  and  spines  texture  is  opacity-changing glazing (photochromic) regulating light and solar gains triggered by solar radiation. translated into an opacity‐changing glazing (photochromic) regulating light and solar gains triggered  The photochromic glazing chemically changes its properties various solar heat gain coecient and by solar radiation. The photochromic glazing chemically changes its properties various solar heat  visible light transmittance values to di erent levels of solar irradiance [113]. This is similar to having gain coefficient and visible light transmittance values to different levels of solar irradiance [113]. This  an additional function through heterogeneous surface properties. The heterogeneous morphology is  similar  to  having  an  additional  function  through  heterogeneous  surface  properties.  The  and the hierarchical shading material together achieve multifunctionality. The stomata are translated heterogeneous  morphology  and  the  hierarchical  shading  material  together  achieve  into openings regulating heat and air triggered by heat for ventilation. This presents hosting another multifunctionality. The stomata are translated into openings regulating heat and air triggered by heat  function by hierarchy and combine with the other two mechanisms interdependently, as it is linked to for ventilation. This presents hosting another function by hierarchy and combine with the other two  the ribbed morphology. Therefore, the design hosts two functions at its hierarchical and heterogeneous mechanisms interdependently, as it is linked to the ribbed morphology. Therefore, the design hosts  structure (Figure 14). two functions at its hierarchical and heterogeneous structure (Figure 14).  The Bio-ABS design is a folding module with an expanding and contracting mechanism activated by temperature di erence through the use of thermally restrictive smart material of shape memory alloys (SMAs). SMAs change their length when exposed to di erences in solar radiation levels [114,115]. Through this morphology, the design forms a ribbed structure while creating openings for ventilation. The opening’s size is controlled by the actuator ’s displacement, as a percentage of contraction in length. The component is formed by isosceles triangle shaped creases connected by mountain folds and divided into two identical creases by valley folds. The design is a symmetric double-line vertex of degree 6-case rigid origami with a hexagonal base, as hexagon o ers improved mechanical properties. The double-line technique allows the creases to have a gap for material thickness. Folds allow the component to change its shape while keeping the triangular creases rigid. A selected material placed in the central point can trigger the system with by a pull and push force into a pattern similar to the biomechanics of the rib structure of Echinocactus grusonii. The second function is achieved by color Figure  14.  Movement  and  dimensions  of  the  façade  module  in  elevation  and  section,  where  red  arrows represent the displacement of valley folds and green arrows represent the displacement of  mountain folds. The  Bio‐ABS  design  is  a  folding  module  with  an  expanding  and  contracting  mechanism  activated by temperature difference through the use of thermally restrictive smart material of shape  memory alloys (SMAs). SMAs change their length when exposed to differences in solar radiation  levels  [114,115].  Through  this  morphology,  the  design  forms  a  ribbed  structure  while  creating  Buildings 2020, 10, 114  21 of 31  Figure 13. Multifunctionality through hierarchy and heterogeneity in Echinocactus grusonii.  7.4. Stage 4: Developing Biomimetic Strategies  The selected mechanisms of Echinocactus grusonii are translated into a façade design to improve  the performance of the base‐case scenario. The ribbed stem is translated into a morphology regulating  heat by expanding and contracting triggered by temperature difference. As the form of a stem is a  sphere but through giving it dimension by the ribs, it becomes geometrically heterogeneous and hosts  another function of shading. This achieves cooling between the ribbed surfaces instead of reaching  extreme  temperatures  otherwise  without  ribs.  The  self‐shading  areoles  and  spines  texture  is  translated into an opacity‐changing glazing (photochromic) regulating light and solar gains triggered  by solar radiation. The photochromic glazing chemically changes its properties various solar heat  gain coefficient and visible light transmittance values to different levels of solar irradiance [113]. This  is  similar  to  having  an  additional  function  through  heterogeneous  surface  properties.  The  Buildings 2020, 10, 114 19 of 28 heterogeneous  morphology  and  the  hierarchical  shading  material  together  achieve  multifunctionality. The stomata are translated into openings regulating heat and air triggered by heat  changing smart materials called chromogenics that present an example for functional surface material for ventilation. This presents hosting another function by hierarchy and combine with the other two  properties. A study on visualizing the façade on the base-case reference building through replacing its mechanisms interdependently, as it is linked to the ribbed morphology. Therefore, the design hosts  windows with 188 modules is presented in Figure 15. two functions at its hierarchical and heterogeneous structure (Figure 14).  Buildings 2020, 10, 114  22 of 31  openings  for  ventilation.  The  opening’s  size  is  controlled  by  the  actuator’s  displacement,  as  a  percentage of contraction in length. The component is formed by isosceles triangle shaped creases  connected by mountain folds and divided into two identical creases by valley folds. The design is a  symmetric double‐line vertex of degree 6‐case rigid origami with a hexagonal base, as hexagon offers  improved  mechanical  properties.  The  double‐line  technique  allows  the  creases  to  have  a  gap  for  material  thickness.  Folds  allow  the  component  to  change  its  shape  while  keeping  the  triangular  creases rigid. A selected material placed in the central point can trigger the system with by a pull and  push force into a pattern similar to the biomechanics of the rib structure of Echinocactus grusonii. The    second function is achieved by color changing smart materials called chromogenics that present an  Figure Figure14.   14. Movement Movement and and dimensions dimensions of of the the façade façade module module in in elevati elevatio onn and and section, section, wher where e r  ed red  example for functional surface material properties. A study on visualizing the façade on the base‐ arr arrows ows r epr represent esent the  thedisplacement  displacementof ofvalley  valleyfolds  foldsand  andgr green een arr  arrows ows r epr represent esent the  thedisp  displ lacement acementof of  case reference building through replacing its windows with 188 modules is presented in Figure 15.  mountain mountainfolds.  folds. The  Bio‐ABS  design  is  a  folding  module  with  an  expanding  and  contracting  mechanism  activated by temperature difference through the use of thermally restrictive smart material of shape  memory alloys (SMAs). SMAs change their length when exposed to differences in solar radiation  levels  [114,115].  Through  this  morphology,  the  design  forms  a  ribbed  structure  while  creating  Figure 15. The pattern the Bio-ABS module, with various changing configurations, when implemented Figure  15.  The  pattern  the  Bio‐ABS  module,  with  various  changing  configurations,  when  onimplemented the reference building’s on  the  reference windows   build consisting ing’s  windows of 188 modules;   consisting fr om of  left 188 to mod right uleopening s;  from  left ratio  to incr   right eases   and opening from bottom  ratio into creases top glazing  and from opacity  bottom decr  to eases. top glazing opacity decreases.  The The aesthetics  aesthetiof cs this of thi system s system exist exist in the  in built the built and designed and designed realm, realm, for instance,  for instthe ance, dynamic  the dyn shading amic  shading façade on the Al Bahar Tower in Abu Dhabi [116]. However, the operation and performance  façade on the Al Bahar Tower in Abu Dhabi [116]. However, the operation and performance of this of this design differ significantly, in that they manage multiple parameters (ventilation and shade).  design di er significantly, in that they manage multiple parameters (ventilation and shade). As another As  another  difference,  this  design  integrates  the  smart  materials  of  shape  memory  alloys  and  di erence, this design integrates the smart materials of shape memory alloys and photochromic photochromic cells within its mechanisms and therefore having a passive operation of the system. As  cells within its mechanisms and therefore having a passive operation of the system. As such, Al such,  Al  Bahar  Towers  are  automated  through  building  management  system  (BMS)  that  uses  Bahar Towers are automated through building management system (BMS) that uses electricity [116]. electricity [116]. Therefore, most designs in the area with similar constructions are active, meaning  Therefore, most designs in the area with similar constructions are active, meaning they are operated they are operated by electricity [116,117]. Those designs are mostly programmed to operate at certain  by electricity [116,117]. Those designs are mostly programmed to operate at certain situations and situations  and  therefore  they  are  not  considered  as  fully  climate  adaptable.  The  morphological  therefore they are not considered as fully climate adaptable. The morphological movement of the movement of the origami folds is known, while the parameters that control the movement are unique,  origami folds is known, while the parameters that control the movement are unique, including the including the thermally activated pull and push through the central point. Another difference is the  thermally activated pull and push through the central point. Another di erence is the integration of integration  of  hierarchical  scales  and  heterogeneous  material  properties  into  this  design.  Most  hierarchical scales and heterogeneous material properties into this design. Most existing similar designs existing similar designs perform a single function and do not consider the integration of multi‐scale  and multi‐dimension transferred from the natural design principles of hierarchy and heterogeneity,  respectively.  7.5. Comparative Analysis of Environmental Performance Evaluation  To quantify the performance improvement Bio‐ABS offer, a comparative analysis with the base‐ case building is done through building performance simulation. Only one thermal zone, a classroom  is modeled to simplify the process (Figure 16). The ventilation type is switched to natural ventilation  from mechanical ventilation to determine thermal comfort through the Adaptive Model. Glazing type  Buildings 2020, 10, 114 20 of 28 perform a single function and do not consider the integration of multi-scale and multi-dimension transferred from the natural design principles of hierarchy and heterogeneity, respectively. 7.5. Comparative Analysis of Environmental Performance Evaluation To quantify the performance improvement Bio-ABS o er, a comparative analysis with the base-case building is done through building performance simulation. Only one thermal zone, a classroom is modeled to simplify the process (Figure 16). The ventilation type is switched to natural ventilation from Buildings 2020, 10, 114  23 of 31  mechanical ventilation to determine thermal comfort through the Adaptive Model. Glazing type and its thermal properties, aperture ratio, and ventilation rate are compliant with National Construction and  its  thermal  properties,  aperture  ratio,  and  ventilation  rate  are  compliant  with  National  Code (NCC) of Australian Building Codes Board (Table 6) [118,119]. Construction Code (NCC) of Australian Building Codes Board (Table 6) [118,119].     Figure 16. Base‐case building.  Figure 16. Base-case building. Table 6. Performance descriptors of the base-case building. Table 6. Performance descriptors of the base‐case building.  Performance Descriptor Value Reference Performance Descriptor  Value  Reference  Lighting Lighting load  load  8 W/m8 W/m  Equipment load 5 W/m Equipment load  5 W/m  Occupants density 0.4 people/m Occupants density  0.4 people/m  [118,119] Ventilation operation schedule Temperature Ventilation operation schedule  Temperature  [118,119]  Window-to-wall ratio 40% Window‐to‐wall ratio  40%  Glazing opening ratio 25% Glazing opening ratio  25%  Glazing thermal transmittance 1.786 W/m K Glazing thermal transmittance  1.786 W/m²K  Glazing solar heat gain coecient 0.39 Glazing Floor  solar area heat gain coefficient  97 m 0.39  Zone volume 388 m [112] Floor area  97 m  Floor-to-ceiling height 4 m Zone volume  388 m  [112]  External walls thermal resistance 1.469 W/mK Floor‐to‐ceiling height  4 m  Air change rate 7.5 ac/h [120] External walls thermal resistance  1.469 W/mK  Air change rate  7.5 ac/h  [120]  Building performance simulation is performed to determine thermal comfort analysis of the Building  performance  simulation  is  performed  to  determine  thermal  comfort  analysis  of  the  base-case building using EnergyPlus. The climate file used is available at EnergyPlus Weather for Sydney base‐case IWEC  building (International  using EnergyP Weather lus. Th fore Ener climat gye Calculations) file used is ava station ilable at number  EnergyPlus 947,670.  Weat Thermal her for  Sydney  IWEC  (International  Weather  for  Energy  Calculations)  station  number  947670.  Thermal  comfort is calculated through the adaptive model and found that according to 90% Acceptability Limits (A.L.), comfort 74.03%  is calculated of the time  through occupi  the ed ad does aptinot ve model fall in the andcomfort  found that zone accordin with 1588 g to h 90 of% discomfort  Acceptabil and ity  Limits (A.L.), 74.03% of the time occupied does not fall in the comfort zone with 1588 h of discomfort  according to 80% A.L., it is 38.14% with 818.25 h of discomfort (The calculation follows the presence of and occupants  according on toa 80% daily A.L. basis , it is in 38 weekdays .14% with fr 81 om 8.2 08:00 5 h of am  discomfort to 16:00 pm (The by cal acu fraction lation follows of 0.75 the and  presence from  of occupants on a daily basis in weekdays from 08:00 am to 16:00 pm by a fraction of 0.75 and from 16:00 pm to  16:00 pm to 21:00 pm by a fraction of 0.15) (Table 7). 21:00 pm by a fraction of 0.15) (Table 7).  Table 7. Comfort analysis of the base-case building. Table 7. Comfort analysis of the base‐case building.  Analysis Type Acceptability Limits Discomfort Hours Discomfort Ratio Analysis Type  Acceptability Limits  Discomfort Hours  Discomfort Ratio  90% 1588 h 74.03% Adaptive thermal Adaptive thermal comfort  90%  1588 h  74.03%  comfort 80% 818.25 h 38.14% 80%  818.25 h  38.14%  The simulation results are analyzed to understand the causes for increased discomfort ratio. The  results show that maximum values for indoor temperatures are calculated as 37 °C for mean radiant  and 38°C for operative and air temperatures. This suggests that the maximum temperatures are above  the limits for temperature, that is, 33–33.5 °C. Moreover, the windows and infiltration are identified  as the causes for heat loss with values of 18 kWh/m² and 41 kWh/m², respectively. The evaluation  shows that the base‐case building suffers high temperatures and excessive heat gains. This suggests  that solar gains negatively impact comfort in the building and the regulation of heat and light must  be addressed to improve the performance (Figure 17).  Buildings 2020, 10, 114 21 of 28 The simulation results are analyzed to understand the causes for increased discomfort ratio. The results show that maximum values for indoor temperatures are calculated as 37 C for mean radiant and 38 C for operative and air temperatures. This suggests that the maximum temperatures are above the limits for temperature, that is, 33–33.5 C. Moreover, the windows and infiltration are identified as 2 2 the causes for heat loss with values of 18 kWh/m and 41 kWh/m , respectively. The evaluation shows that the base-case building su ers high temperatures and excessive heat gains. This suggests that solar gains negatively impact comfort in the building and the regulation of heat and light must be addressed to improve the performance (Figure 17). The windows of the base-case building are replaced with the Bio-ABS design and the performance is analyzed through simulation. The multifunctional Bio-ABS is modeled in EnergyPlus using its feature EMS, that integrates customizable input–output objects and allows using if statements. The photochromic (PC) glazing is modeled with its four states changing the solar heat gain coecient (SHGC = 0.508, 0.396, 0.325, 0.238) and visible light transmittance (VLT = 0.595, 0.446, 0.341, 0.238) with a fixed thermal transmittance (U-value = 1.786 W/m K). The U-value of the base-case building and the case study are the same. The SHGC and VLT of the base-case building are calculated as the average values of the four states of the case study. The properties of the PC glazing are taken from a previous study outlining the performance improving PC glazing systems for the chosen climatic context [82]. The properties of the morphology triggering Shape Memory Alloys (SMAs) are set to demonstrate a comparable case against the base-case, which provides the same window opening ratio (25%) with a corresponding SMA displacement ratio. Other properties of the SMA including the actuation (18 C) and de-actuation temperatures (60 C) are determined to provide an adaptable system operated by changes in temperature. The simulation results after replacing the base-case building’s windows with the Bio-ABS show a decrease in discomfort hours by 23.18% for 90% A.L. and 5.09% for 80% A.L. (Figure 18). Buildings 2020, 10, 114  24 of 31  Mean Indoor Temeprature 38.56 37.67 38.08 25.25 25.18 25.11 14.82 14.89 14.96 Mean Radiant Operative Temperature Air Temperature Temperature (MRT) Temperature type Minimum Mean Maximum Figure 17. Indoor temperature analysis of the base‐case building, where the gray line presents the  Figure 17. Indoor temperature analysis of the base-case building, where the gray line presents the maxi maximum, mum, rred ed line line pr present esentss the the mean mean and and the the gr green een line line pr presents esents the the minimum minimum values. values.  The mean values for the indoor temperatures of mean radiant, mean operative, and mean air The  windows  of  the  base‐case  building  are  replaced  with  the  Bio‐ABS  design  and  the  temperatures are decreased (Figure 19). The mean value for MRT is decreased by 2.23 C, the mean performance is analyzed through simulation. The multifunctional Bio‐ABS is modeled in EnergyPlus  value for operative temperature is decreased by 2.76 C, and the mean value for air temperature using  its  feature  EMS,  that  integrates  customizable  input–output  objects  and  allows  using  if  is decreased by 3.28 C. Overall, the implementation of this multifunctional Bio-ABS improves the statements. The photochromic (PC) glazing is modeled with its four states changing the solar heat  thermal comfort in an educational building in Sydney. This study has focused on the integration of a gain coefficient (SHGC = 0.508, 0.396, 0.325, 0.238) and visible light transmittance (VLT = 0.595, 0.446,  PC glazing and SMA activated ventilation with set values for its performance descriptors (i.e., actuation 0.341, 0.238) with a fixed thermal transmittance (U‐value = 1.786 W/m²K). The U‐value of the base‐ temperature, SHGC, VLT). Further work could investigate di erent living systems, their functional case building and the case study are the same. The SHGC and VLT of the base‐case building are  calculated as the average values of the four states of the case study. The properties of the PC glazing  are taken from a previous study outlining the performance improving PC glazing systems for the  chosen  climatic  context  [82].  The  properties  of  the  morphology  triggering  Shape  Memory  Alloys  (SMAs) are set to demonstrate a comparable case against the base‐case, which provides the same  window opening ratio (25%) with a corresponding SMA displacement ratio. Other properties of the  SMA including the actuation (18 °C) and de‐actuation temperatures (60 °C) are determined to provide  an adaptable system operated by changes in temperature. The simulation results after replacing the  base‐case building’s windows with the Bio‐ABS show a decrease in discomfort hours by 23.18% for  90% A.L. and 5.09% for 80% A.L. (Figure 18).  Comparative Analysis in Thermal Comfort 23.18% difference 1090.75 1000 818.25 5.06% difference 90% A.L. 80% A.L. Adaptive Comfort Model Acceptability Limits Base‐case building Multifunctional Bio‐ABS case study Temperature value (°C) Discomfort hours (h) Buildings 2020, 10, 114  24 of 31  Mean Indoor Temeprature 38.56 38.08 37.67 25.25 25.18 25.11 14.82 14.89 14.96 Mean Radiant Operative Temperature Air Temperature Temperature (MRT) Temperature type Minimum Mean Maximum Figure 17. Indoor temperature analysis of the base‐case building, where the gray line presents the  maximum, red line presents the mean and the green line presents the minimum values.  The  windows  of  the  base‐case  building  are  replaced  with  the  Bio‐ABS  design  and  the  performance is analyzed through simulation. The multifunctional Bio‐ABS is modeled in EnergyPlus  using  its  feature  EMS,  that  integrates  customizable  input–output  objects  and  allows  using  if  statements. The photochromic (PC) glazing is modeled with its four states changing the solar heat  gain coefficient (SHGC = 0.508, 0.396, 0.325, 0.238) and visible light transmittance (VLT = 0.595, 0.446,  0.341, 0.238) with a fixed thermal transmittance (U‐value = 1.786 W/m²K). The U‐value of the base‐ case building and the case study are the same. The SHGC and VLT of the base‐case building are  calculated as the average values of the four states of the case study. The properties of the PC glazing  are taken from a previous study outlining the performance improving PC glazing systems for the  chosen  climatic  context  [82].  The  properties  of  the  morphology  triggering  Shape  Memory  Alloys  (SMAs) are set to demonstrate a comparable case against the base‐case, which provides the same  window opening ratio (25%) with a corresponding SMA displacement ratio. Other properties of the  Buildings 2020, 10, 114 22 of 28 SMA including the actuation (18 °C) and de‐actuation temperatures (60 °C) are determined to provide  an adaptable system operated by changes in temperature. The simulation results after replacing the  transfer into multifunctional engineered designs, consider di erent performance descriptors of Bio-ABS, base‐case building’s windows with the Bio‐ABS show a decrease in discomfort hours by 23.18% for  and simulate their environmental performance. 90% A.L. and 5.09% for 80% A.L. (Figure 18).  Comparative Analysis in Thermal Comfort 23.18% difference 1090.75 Buildings 2020, 10, 114  25 of 31  1000 818.25 Figure  18.  Comparative  analysis  in  thermal  comfort  between  the  base‐case  building  and  the  5.06% difference multifunctional Bio‐ABS case study.  The mean values for the indoor temperatures of mean radiant, mean operative, and mean air  temperatures are decreased (Figure 19). The mean value for MRT is decreased by 2.23 °C, the mean  90% A.L. 80% A.L. value for operative temperature is decreased by 2.76 °C, and the mean value for air temperature is  Adaptive Comfort Model Acceptability Limits decreased  by  3.28  °C.  Overall,  the  implementation  of  this  multifunctional  Bio‐ABS  improves  the  thermal comfort in an educational building in Sydney. This study has focused on the integration of a  Base‐case building Multifunctional Bio‐ABS case study PC  glazing  and  SMA  activated  ventilation  with  set  values  for  its  performance  descriptors  (i.e.,  actuation temperature, SHGC, VLT). Further work could investigate different living systems, their  functional  transfer  into  multifunctional  engineered  designs,  consider  different  performance  Figure 18. Comparative analysis in thermal comfort between the base-case building and the descriptors of Bio‐ABS, and simulate their environmental performance.  multifunctional Bio-ABS case study. Mean Indoor Temperature Comparison  25.25 25.18 25.11 23.02 22.42 21.83 Mean Mean Radiant Mean Operative Mean Air Temperature (MRT) Temperature Temperature Mean indoor temperature type Base‐case building Multifunctional Bio‐ABS case study Figure 19. Mean indoor temperature comparison between the base‐case building, and the case study.  Figure 19. Mean indoor temperature comparison between the base-case building, and the case study. 8. Conclusions 8. Conclusions  This paper presents a framework for achieving multifunctionality in Bio-ABS. It does so by This  paper  presents  a  framework  for  achieving  multifunctionality  in  Bio‐ABS.  It  does  so  by  translating hierarchy and heterogeneity from nature into architecture. A systematic classification to translating hierarchy and heterogeneity from nature into architecture. A systematic classification to  map biological systems from the perspective of how they host multiple functions in their heterogeneous map  biological  systems  from  the  perspective  of  how  they  host  multiple  functions  in  their  multi-level structures is presented. Several biological systems are mapped using the classification to heterogeneous multi‐level structures is presented. Several biological systems are mapped using the  define a “preliminary database” to categorize biological data. This database could be expanded over classification to define a “preliminary database” to categorize biological data. This database could be  time to create a systemic collection of biological information as a resource for biomimetic design. expanded  over  time  to  create  a  systemic  collection  of  biological  information  as  a  resource  for  Hierarchy and heterogeneity in nature are described and their transfer into designs can achieve biomimetic design.  multifunctionality. Hierarchy is described as having multiple scales and heterogeneity as multiple Hierarchy and heterogeneity in nature are described and their transfer into designs can achieve  geometric di erentiations. Their transfer into Bio-ABS is proposed through a framework named multifunctionality. Hierarchy is described as having multiple scales and heterogeneity as multiple  the “Multi-Biomechanism Approach”, that uses the systematic classification. The framework is geometric differentiations. Their transfer into Bio‐ABS is proposed through a framework named the  “Multi‐Biomechanism  Approach”,  that  uses  the  systematic  classification.  The  framework  is  demonstrated  through  the  case  study  of  translating  Echinocactus  grusosnii  and  three  of  its  many  biological  adaptations:  rib  structured  cortex,  self‐shading  areoles  and  spines,  and  microscopic  stomatal  openings.  A  Bio‐ABS  design  is  presented  showing  how  the  hierarchical  features  of  the  areoles, spines, and stomatal openings, as well as the heterogeneous form of the ribs structure can be  translated into a biomimetic strategy integrated in a building skin.  The base‐case building and the case study of the multifunctional Bio‐ABS replacing the windows  of the base‐case building are simulated to calculate their performance. The comparative analysis of  the results show that Bio‐ABS offer improved comfort both for 80% and 90% Acceptability Limits  according to Adaptive Comfort Model. The mean value for MRT is decreased by 2.23 °C, the mean  value for operative temperature is decreased by 2.76 °C, and the mean value for air temperature is  decreased by 3.28 °C. Overall, the results after replacing the base‐case building’s windows with the  Temperature value (°C) Discomfort hours (h) Temperature (°C) Buildings 2020, 10, 114 23 of 28 demonstrated through the case study of translating Echinocactus grusosnii and three of its many biological adaptations: rib structured cortex, self-shading areoles and spines, and microscopic stomatal openings. A Bio-ABS design is presented showing how the hierarchical features of the areoles, spines, and stomatal openings, as well as the heterogeneous form of the ribs structure can be translated into a biomimetic strategy integrated in a building skin. The base-case building and the case study of the multifunctional Bio-ABS replacing the windows of the base-case building are simulated to calculate their performance. The comparative analysis of the results show that Bio-ABS o er improved comfort both for 80% and 90% Acceptability Limits according to Adaptive Comfort Model. The mean value for MRT is decreased by 2.23 C, the mean value for operative temperature is decreased by 2.76 C, and the mean value for air temperature is decreased by 3.28 C. Overall, the results after replacing the base-case building’s windows with the Bio-ABS show a decrease in discomfort hours by 23.18% for 90% Acceptability Limits and 5.09% for 80% A.L. for adaptive thermal comfort. As results of the work carried out and the findings, this research draws attention to multifunctionality in nature and in engineered designs, particularly of Bio-ABS, and promotes biomimetic design as a promising approach to be taken to develop environmentally sustainable building systems. This study attempts to point out the significance of the “natural design principles” and their limited application in architecture. However, it is limited to the translation of hierarchy and heterogeneity, excluding others that may help achieving multifunctionality, which further work can focus. Author Contributions: A.K.: Conceptualization, methodology, software, formal analysis, investigation, resources, data curation, writing—original draft, writing—review & editing, visualization, funding acquisition. P.O.: Conceptualization, methodology, formal analysis, investigation, resources, data curation, writing—original draft, writing—review & editing, visualization, funding acquisition, supervision. S.B.: Conceptualization, methodology, formal analysis, investigation, resources, data curation, writing—review & editing, funding acquisition, supervision. F.F.: Conceptualization, methodology, software, formal analysis, investigation, resources, data curation, writing—review & editing, funding acquisition, supervision. All authors have read and agreed to the published version of the manuscript. Funding: This work was supported by the Faculty of Built Environment at UNSW Sydney under Grant Wightman PG School Architecture (PGA1005). Acknowledgments: The authors acknowledge the support provided by UNSW Sydney. Conflicts of Interest: The authors declare no conflict of interest. References 1. Hasselaar, B.L. Climate adaptive skins: Towards the new energy-ecient façade. In Proceedings of the 1st International Conference on the Management of Natural Resources, Sustainable Development and Ecological Hazards; 2006; pp. 351–360. Available online: https://www.scribd.com/document/458674117/ WIT-transactions-on-ecology-and-the-environment-volume-99-C-A-Brebbia-Management-of-Natural- Resources-Sustainable-Development-And-Ecological-Ha (accessed on 1 June 2020). 2. Del Grosso, A.E.; Basso, P. Adaptive building skin structures. Smart Mater. Struct. 2010, 19, 124011. [CrossRef] 3. Loonen, R.C.; Trcka, M.; Costola, D.; Hensen, J.L. Climate adaptive building shells: State-of-the-art and future challenges. Renew. Sustain. Energy Rev. 2013, 25, 483–493. [CrossRef] 4. Aelenei, D. Adaptive Façade: Concept, Applications, Research Questions. Energy Procedia 2016, 91, 269–275. [CrossRef] 5. Kuru, A.; Oldfield, P.; Bonser, S.; Fiorito, F. Biomimetic adaptive building skins: Energy and environmental regulation in buildings. Energy Build. 2019, 205, 109544. [CrossRef] 6. Gruber, P. Biomimetics in Architecture; Springer Verlag Wien: Wien, Austria, 2011. 7. Vincent, J.F.; Bogatyreva, O.A.; Bogatyrev, N.R.; Bowyer, A.; Pahl, A.K. Biomimetics: Its practice and theory. J. R. Soc. Interface 2006, 3, 471–482. [CrossRef] [PubMed] 8. Bar-Cohen, Y. (Ed.) Biomimetics: Nature-Based Innovation; CRC Press, Taylor and Francis Group Publishing: Boca Raton, FL, USA, 2012. Buildings 2020, 10, 114 24 of 28 9. López, M.; Rubio, R.; Martín, S.; Croxford, B.; Jackson, R. Active materials for adaptive architectural envelopes based on plant adaptation principles. J. Facade Des. Eng. 2015, 3, 27–38. [CrossRef] 10. Badarnah Kadri, L. Towards the LIVING Envelope: Biomimetics for Building Envelope Adaptation. Ph.D. Thesis, Technical University Delft, Delft, The Netherlands, 2015. 11. Kuru, A.; Fiorito, F.; Oldfield, P.; Bonser, S.P. Multi-functional biomimetic adaptive façades: A case study. In Proceedings of the FACADE 2018 Final Conference of COST TU1403 Adaptive Facades Network, Lucerne, Switzerland, 26–27 November 2018; pp. 241–250. 12. Badarnah, L. Form follows environment: Biomimetic approaches to building envelope design. Buildings 2017, 7, 40. [CrossRef] 13. López, M.; Rubio, R.; Martín, S.; Croxford, B. How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes. Renew. Sustain. Energy Rev. 2017, 67, 692–703. [CrossRef] 14. Vincent, J.F.V.; Mann, D.L. Systematic technology transfer from biology to engineering. Philos. Trans. Math. Phys. Eng. Sci. 2002, 15, 159–173. [CrossRef] [PubMed] 15. Shu, L.H. A natural-language approach to biomimetic design. Artif. Intell. Eng. Des. Anal. Manuf. 2010, 24, 507–519. [CrossRef] 16. Helms, M.; Vattam, S.S.; Goel, A.K. Biologically inspired design: Process and products. Des. Stud. 2009, 30, 606–622. [CrossRef] 17. Biomimicry Institute. Biomimicry.net: Biomimicry 3.8. Available online: http://biomimicry.net/ (accessed on 25 June 2020). 18. Hirtz, J.; Stone, R.B.; McAdams, D.A.; Szykman, S.; Wood, K.L. A functional basis for engineering design: Reconciling and evolving previous e orts. Res. Eng. Des. Theory Appl. Concurr. Eng. 2002, 13, 65–82. [CrossRef] 19. Biomimicry Institute. AskNature: A Project of Biomimicry 3.8. Available online: www.asknature.org (accessed on 24 June 2020). 20. Vincent, J.F.V. Research and Practice on the Theory of Inventive Problem Solving (TRIZ); Springer: Berlin, Germany, 2016. 21. Bogatyrev, N.; Bogatyreva, O. TRIZ evolutionary trends in biology and technology: Two opposites. In Proceedings of the CIRP Design Conference, Cranfield, UK, 30–31 March 2009; p. 293. 22. Wilson, J.O. A Systematic Appraoch to Bio-Inspired Conceptual Design. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2008. 23. Gamage, R.S.D.; Wickramanayake, A.U. Parallels between nature and design teaching through nature studies. Built Environ. Sri Lanka 2005, 5, 1–12. 24. Svendsen, N.; Torben, L.A. How does biologically inspired design cope with multi-functionality? In Proceedings of the International Conference on Engineering Design ICED19, Delft, The Netherlands, 5–8 August 2019; pp. 349–358. 25. Cruz, E.; Raskin, K.; Aujard, F. Biological strategies for adpative building envelopes. In Proceedings of the FACADE 2018 Final Conference of COST TU1403 Adaptive Facades Network, Lucerne, Switzerland, 26–27 November 2018; pp. 223–229. 26. Kuru, A.; Fiorito, F.; Oldfield, P.; Bonser, S.P. Multi-functional biomimetic adaptive façades: Developing a framework. In Proceedings of the FACADE 2018 Final Conference of COST TU1403 Adaptive Facades Network, Lucerne, Switzerland, 26–27 November 2018; pp. 231–240. 27. Fratzl, P.; Dunlop, J.; Weinkamer, R. Materials Design Inspired by Nature: Function through Inner Architecture; RSC Publishing—Royal Society of Chemisstry: Cambridge, UK, 2013. 28. Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263–1334. [CrossRef] 29. Dunlop, J.W.C.; Fratzl, P. Biological composites. Ann. Rev. Mater. Res. 2010, 40, 1–24. [CrossRef] 30. Knippers, J.; Speck, T. Design and construction principles in nature and architecture. Bioinspir. Biomim. 2012, 7, 15002. [CrossRef] [PubMed] 31. Jeronimidis, G.; Atkins, A.G. Mechanics of biological materials and structures: Nature’s lessons for the engineer. Proc. Inst. Mech. Eng. 1995, 209, 221–235. [CrossRef] 32. Burgert, I.; Fratzl, P. Actuation systems in plants as prototypes for bioinspired devices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1541–1557. [CrossRef] Buildings 2020, 10, 114 25 of 28 33. Pedersen Zari, M. Ecosystem processes for biomimetic architectural and urban design. Archit. Sci. Rev. 2014, 58, 106–119. [CrossRef] 34. John, G.; Clements-Croome, D.; Jeronimidis, G. Sustainable building solutions: A review of lessons from the natural world. Build. Environ. 2005, 40, 319–328. [CrossRef] 35. Garcia-Holguera, M.; Clark, O.G.; Sprecher, A.; Gaskin, S. Ecosystem biomimetics for resource use optimization in buildings. Build. Res. Inf. 2016, 44, 263–278. [CrossRef] 36. Appio, F.P.; Achiche, S.; Martini, A. On designers’ use of biomimicry tools during the new product development process: An empirical investigation. Technol. Anal. Strateg. Manag. 2017, 29, 775–789. [CrossRef] 37. Pedersen Zari, M. Biomimetic Approaches To Architectural Design for Increased Sustainability. In Proceedings of the SB07 NZ Sustainable Building Conference, Auckland, New Zealand, 14–16 November 2017. 38. Hastrich, C. The biomimicry design spiral. Biomimicry Newsl. 2006, 4, 5–6. 39. Ahmar, S.E.; Fioravanti, A.; Hanafi, M. A Methodology for Computational Architectural Design Based on Biological Principles. In Proceedings of the 31st eCAADe Conference, Delft, The Netherlands, 18–20 September 2013. 40. Sheta, A.A.A.A. Biomimicry in Environmental Architecture: Exploring the Concept and Methods of the Bio-Inspired Environmental Architecrural Design. 2010. Available online: http://www.cpas-egypt.com/pdf/ Ayat_El-Jawhary/MS.c/MS.c.pdf (accessed on 25 June 2020). 41. Badarnah, L.; Kadri, U. A methodology for the generation of biomimetic design concepts. Archit. Sci. Rev. 2014, 8628, 1–14. [CrossRef] 42. Cohen, Y.H.; Reich, Y.; Greenberg, S. What can we learn from biological systems when applying the law of system completeness? Procedia Eng. 2015, 131, 104–114. [CrossRef] 43. Chakrabarti, A.; Siddharth, L.; Dinakar, M. Idea Inspire 3.0—A tool for analogical design. In Research into Design for Communities; Smart Innovation, Systems and Technologies; 2017; Volume 2, pp. 475–485. Available online: https://link.springer.com/chapter/10.1007%2F978-981-10-3521-0_41 (accessed on 25 June 2020). 44. Goel, A.; Rugaber, S.; Vattam, S. Structure, Behavior and Function of complex systems: The SBF Modeling Language. Artif. Intell. Eng. Des. Anal. Manuf. 2009, 23, 23–25. [CrossRef] 45. Gamage, A.; Hyde, R. A model based on biomimicry to enhance ecologically sustainable design. Archit. Sci. Rev. 2012, 55, 224–235. [CrossRef] 46. Schleicher, S.; Lienhard, J.; Poppinga, S.; Speck, T.; Knippers, J. A methodology for transferring principles of plant movements to elastic systems in architecture. Comput. Des. 2015, 60, 105–117. [CrossRef] 47. Pedersen Zari, M. Ecosystem services analysis for the design of regenerative built environments. Build. Res. Inf. 2012, 40, 54–64. [CrossRef] 48. Lienhard, J.; Schleicher, S.; Poppinga, S.; Masselter, T.; Milwich, M.; Speck, T.; Knippers, J. Flectofin: A hingeless flapping mechanism inspired by nature. Bioinspir. Biomim. 2011, 6, 045001. [CrossRef] 49. Badarnah, L.; Knaack, U. Shading/Energy generating skin inspired from natural systems. In Proceedings of the 2008 World Sustainable Building Conference: SB08, Melbourne, Australia, 21–15 September 2008; pp. 305–312. 50. Goel, A.G.; Mcadams, D.A.; Stone, R.B. (Eds.) Biologically Inspired Design: Computational Methods and Tools; Springer: London, UK, 2014. 51. Martone, P.T.; Boller, M.; Burgert, I.; Dumais, J.; Edwards, J.; Mach, K.; Rowe, N.; Rueggeberg, M.; Seidel, R.; Speck, T. Mechanics without muscle: Biomechanical inspiration from the plant Wworld. Integr. Comp. Biol. 2010, 50, 888–907. [CrossRef] [PubMed] 52. Rowe, N.P.; Speck, T. Hydraulics and mechanics of plants: Novelty, innovation and evolution. In The Evolution of Plant Physiology; Academic, A.R., Poole, I., Eds.; Elsevier: London, UK, 2004; pp. 301–329. 53. Garland, T. Quick guide: Tradeo s. Curr. Biol. 2014, 24, 60–61. [CrossRef] [PubMed] 54. Knaack, U.; Klein, T.; Bilow, M.; Auer, T. Facades: Principles of Construction, 2nd ed.; BIRKHAUSER: Berlin, Germany, 2014. 55. Prieto, A.; Knaack, U.; Auer, T.; Klein, T. Passive cooling & climate responsive façade design: Exploring the limits of passive cooling strategies to improve the performance of commercial buildings in warm climates Energy & Buildings Passive cooling & climate responsive façade design exploring the. Energy Build. 2018, 175, 30–47. 56. Gruber, P. Has biomimetics arrived in architecture? Bioinspir. Biomim. 2012, 7, 010201. [CrossRef] Buildings 2020, 10, 114 26 of 28 57. Fiorito, F.; Sauchelli, M.; Arroyo, D.; Pesenti, M.; Imperadori, M.; Masera, G.; Ranzi, G. Shape morphing solar shadings: A review. Renew. Sustain. Energy Rev. 2016, 55, 863–884. [CrossRef] 58. Palomo, I.; Dujardin, Y.; Midler, E.; Robin, M.; Sanz, M.; Pascual, U. Modeling trade-o s across carbon sequestration, biodiversity conservation, and equity in the distribution of global REDD+ funds. In Proceedings of the National Academy of Sciences, 21 October 2019; Volume 116, pp. 22645–22650. [CrossRef] 59. Speck, T.; Rowe, N. How to become a successful climber–mechanical, anatomical, ultra-structrural and biochemical variations during ontogeny in plants with di erent climbing strategies. In Proceedings of the 5th International PLant Biomechanics Conference, Lausanne, Switzerland, 21–23 May 2007; Volume 1, pp. 103–108. 60. Al-Obaidi, K.M.; Ismail, M.A.; Hussein, H.; Abdul, A.M. Biomimetic building skins: An adaptive approach. Renew. Sustain. Energy Rev. 2017, 79, 1472–1491. [CrossRef] 61. Levitt, J. Physiological basis of stomatal response. In Water and Plant Life; Springer: Berlin/Heidelberg, Germany, 1976; Volume 19. 62. Bertolino, L.T.; Caine, R.S.; Gray, J.E. Impact of stomatal density and morphology on Water-Use eciency in a changing world. Front. Plant Sci. 2019, 10, 1–11. [CrossRef] 63. Ye, H.; Yuan, Z.; Zhang, S. The heat and mass transfer analysis of a leaf. J. Bionic Eng. 2013, 10, 170–176. [CrossRef] 64. Nobel, P.S. Water relations and photosynthesis of a barrel cactus, Ferocactus acanthodes, in the Colorado desert. Oecologia 1977, 27, 117–133. Available online: https://link.springer.com/article/10.1007/BF00345817 (accessed on 25 June 2020). [CrossRef] 65. Decker, M. Emergent Futures: Nanotechnology and emergenct materials in architecture. In Proceedings of the BTES Conference 2013—Tectonics of Teaching Roger Williams University, New Jersey Institite of Technology, Bristol, RI, USA, 11–13 July 2013. 66. Schinegger, K.; Rutzinger, S.; Oberascher, M.; Weber, G. One Ocean: Theme Pavilion EXPO 2012 Yeosu, Residenz Verlag. Available online: http://www.soma-architecture.com/index.php?page=theme_pavilion& parent=2 (accessed on 25 June 2020). 67. Reichert, S.; Menges, A.; Correa, D. Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput. Des. 2015, 60, 50–69. [CrossRef] 68. Menges, A. HygroScope: Meteorosensitive morphology. In Proceedings of the Project Catalogue of the 32nd Annual Conference of the Association for Computer-Aided Design in Architecture ACADIA, San Francisco, CA, USA, 18–21 October 2012. 69. Henrion, W.; Tributsch, H. Optical solar energy adaptations and radiative temperature control of green leaves and tree barks. Sol. Energy Mater. Sol. Cells 2009, 93, 98–107. [CrossRef] 70. Jeronimidis, G. Design and function of structural biological materials. Pergamon Mater. Ser. 2000, 4, 19–29. 71. Schleicher, S. Bio-Inspired Compliant Mechanisms for Architectural Design: Transferring Bending and Folding Principles of Plant Leaves to Flexible Kinetic Structures; University of Stuttgart: Stuttgart, Germany, 2016. 72. Speck, T.; Knippers, J.; Speck, O. Self-X materials and structures in nature and technology: Bio-inspiration as a driving force for technical innovation. Archit. Des. 2015, 85, 34–39. [CrossRef] 73. Vukusic, P.; Sambles, J.R.; Lawrence, C.R.; Wootton, R.J. Quantified interference and di raction in single Morpho butterfly scales. Proc. R. Soc. B Biol. Sci. 1999, 266, 1403–1411. [CrossRef] 74. Yoshioka, S.; Kinoshita, S. Wavelength–selective and anisotropic light–di using scale on the wing of the Morpho butterfly. Proc. R. Soc. Publ. Biol. Sci. 2004, 271, 581–587. [CrossRef] [PubMed] 75. Prum, R.O. Anatomically diverse butterfly scales all produce structural colours by coherent scattering. J. Exp. Biol. 2006, 209, 748–765. [CrossRef] [PubMed] 76. Bui, D.K.; Nguyen, T.N.; Ghazlan, A.; Ngo, N.T. Enhancing building energy eciency by adaptive façade: A computational optimization approach. Appl. Energy 2020, 265, 114797. [CrossRef] 77. Sheikh, W.T.; Asghar, Q. Adaptive biomimetic facades: Enhancing energy eciency of highly glazed buildings. Front. Archit. Res. 2019, 8, 319–331. [CrossRef] 78. Park, B.R.; Hong, J.; Choi, E.J.; Choi, Y.J.; Lee, C. Improvement in energy performance of building envelope incorporating electrochromic windows (ECWs). Energies 2019, 12, 1181. [CrossRef] Buildings 2020, 10, 114 27 of 28 79. Giovannini, L.; Favoino, F.; Pellegrino, A.; Lo Verso, V.R.M.; Serra, V.; Zinzi, M. Thermochromic glazing performance: From component experimental characterisation to whole building performance evaluation. Appl. Energy 2019, 251, 113335. [CrossRef] 80. Svetozarevic, B.; Begle, M.; Jayathissa, P.; Caranovic, S.; Shephard, R.F.; Nagy, Z.; Hischier, I.; Hofer, J.; Schluter, A. Dynamic photovoltaic building envelopes for adaptive energy and comfort management. Nat. Energy 2019, 4, 671–682. [CrossRef] 81. Gao, Y.; Dong, J.; Isabella, O.; Santbergen, R.; Tan, H.; Zeman, M.; Zhang, G. A photovoltaic window with sun-tracking shading elements towards maximum power generation and non-glare daylighting. Appl. Energy 2018, 228, 1454–1472. [CrossRef] 82. Fiorito, F.; Cannavale, A.; Santamouris, M. Development, testing and evaluation savings potentials of photovoltachromic windows in oce buildings. A perspective study for Australian climates. Sol. Energy 2020, 205, 358–371. [CrossRef] 83. Loonen, R.C.G.M.; Favoino, F.; Hensen, J.L.M.; Overend, M. Review of current status, requirements and opportunities for building performance simulation of adaptive facades. J. Build. Perform. Simul. 2016, 1493, 1–19. [CrossRef] 84. Loonen, R. Approaches for Computational Performance Optimization of Innovative Adaptive Façade Concepts; Issue 153 Bouwstenen series of the Department of the Built Environment; Eindhoven University of Technology: Eindhoven, The Netherlands, 2018. 85. Bhushan, B.; Jung, Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 2011, 56, 1–108. [CrossRef] 86. Gorb, S.; Speck, T. Biological and biomimetic materials and surfaces. Beilstein J. Nanotechnol. 2017, 8, 403–407. [CrossRef] 87. Garrett, T.Y.; Huynh, C.; North, G.B. Root contraction helps protect the “Living rock” cactus Ariocarpus fissuratus from lethal high temperatures when growing in rocky soil temperatures when growing in rocky soil 1. Am. J. Bot. 2010, 97, 1951–1960. [CrossRef] 88. Worall, M. Intelligent thermoregulation and homeostasis: Lessons from nature. In Proceedings of the CIB World Congress, Salford, UK, 11–13 May 2010. 89. Badarnah, L. Light Management Lessons from Nature for Building Applications. In Proceedings of the International Conference on Sustainable Design, Engineering and Construction, Tempe, AZ, USA, 18–20 May 2016; Volume 145, pp. 595–602. 90. Helfman, Y.C.; Reich, Y. Biomimetic Design Method for Innovation and Sustainability; Springer: Berlin, Germany, 91. Gruber, P. Transfer of nature to architecture—Analysis of case studies. In Proceedings of the Biological Approaches for Engineering Conference, University of Southampton, Southampton, UK, 17–19 March 2008. 92. Mazzoleni, I. Architecture Follows Nature; Taylor & Francis: Oxfordshire, UK, 2013. 93. Pawlyn, M. Biomimicry in Architecture; RIBA Publishing: London, UK, 2011. 94. Harman, J. The Shark’s Paintbrush: Biomimicry and How Nature Is Inspiring Innovation; Knopf Doubleday Publishing Group: New York, NY, USA, 2013. 95. Kapsali, V. Biomimetics for Designers; Thames and Hudson: London, UK, 2016. 96. Knippers, J.; Nickel, K.G. (Eds.) Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures; Springer International Publishing: Cham, Switzerland, 2016. 97. Pacheco, F.-T.; Labrincha, J.A.; Diamanti, M.V.; Yu, C.P.; Lee, H.K. (Eds.) Biotechnologies and Biomimetics for Civil Engineering; Springer International Publishing: Cham, Switzerland, 2015. 98. Pohl, G.; Nachtigall, W. Biomimetics for Architecture and Design: Nature—Analogies—Technology; Springer: Cham, Switzerland, 2015. [CrossRef] 99. Shi, N.N.; Tsai, C.C.; Camino, F.; Bernard, G.D.; Yu, N.; Wehner, R. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 2015, 349, 298–301. [CrossRef] 100. Bhasin, D.; McAdams, D. The characterization of biological organization, abstraction, and novelty in biomimetic design. Designs 2018, 2, 54. [CrossRef] 101. Field, K.J.; George, R.; Fearn, B.; Quick, W.P.; Davey, M.P. Best of both worlds: Simultaneous high-light and shade-tolerance adaptations within individual leaves of the living stone lithops aucampiae. PLoS ONE 2013, 8, e75671. [CrossRef] Buildings 2020, 10, 114 28 of 28 102. Badarnah, L. Environmental adaptation of buildings through morphological di erentiation. In Proceedings of the 15th Conference on Advanced Building Skins, Bern, Switzerland, 1–2 October 2018. 103. Gibson, A.; Nobel, P. The Cactus Primer; Harvard University Press: Cambridge, MA, USA, 1986. 104. Bar-Cohen, Y. Biomimetics—Using nature to inspire human innovation. Bioinspir. Biomim. 2006, 1, 1–12. [CrossRef] 105. Bhushan, B. Biomimetics: Lessons from nature—An overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1445–1486. [CrossRef] 106. Bhushan, B. Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology; Springer: Berlin/Heidelberg, Germany, 2012. 107. Brownell, B.; Swackhamer, M. Hyper-Natural: Architecture’s New Relationship with Nature; Princeton Architectural Press: New York, NY, USA, 2015. 108. Laver, J.; Cli ord, D.; Vollen, J. High performance masonry wall systems: Principles derived from natural analogues. WIT Trans. Ecol. Environ. 2008, 114, 243–252. 109. Dawson, C.; Vincent, J.F.V.; Rocca, A.M. How pine cones open. Nature 1997, 39, 668. [CrossRef] 110. Mott, K.A.; Gibson, A.C.; Leary, J.W.O. The adaptive significance of amphistomatic leaves. Plant Cell Environ. 1982, 5, 455–460. [CrossRef] 111. Bureau of Meteorology. Climate Statistics for Australian Locations. 2016. Available online: www.bom.gov.au (accessed on 24 June 2020). 112. U.S.D. of Energy. US DoE Documentation. Available online: https://www.environment.gov.au/energy (accessed on 27 June 2020). 113. Casini, M. Active dynamic windows for buildings: A review. Renew. Energy 2018, 119, 923–934. [CrossRef] 114. Formentini, M.; Lenci, S. An innovative building envelope (kinetic façade) with Shape Memory Alloys used as actuators and sensors. Autom. Constr. 2018, 85, 220–231. [CrossRef] 115. Pesenti, M.; Masera, G.; Fiorito, F. Exploration of Adaptive Origami Shading Concepts through Integrated Dynamic Simulations. J. Archit. Eng. 2018, 24, 4018022. [CrossRef] 116. Attia, S. Evaluation of adaptive facades: The case study of Al Bahr Towers in the UAE. QSci. Connect 2017, 6. [CrossRef] 117. Suralkar, R. Solar responsive kinetic facade shading systems inspired by plant mvoements in nature. In Proceedings of the People and Buildings, the oces of Arup UK, Netowkr for Comfort and Energy Use in Buildings, London, UK, 23 September 2011. 118. ABCB. NCC 2019 BCA Volume 1. 2019. Available online: https://ncc.abcb.gov.au/ncc-online/NCC/2019/NCC- 2019-Volume-One (accessed on 24 June 2020). 119. ABCB. NCC 2019 BCA Volume 2. 2019. Available online: https://ncc.abcb.gov.au/ncc-online/NCC/2019/NCC- 2019-Volume-Two (accessed on 24 June 2020). 120. Australian Standards. AS 1668 2 Supplement 1—2002 the Use of Ventilation and Airconditioning in Buildings—Ventilation Design for Indoor Air Contaminant Control. 2016. Available online: https://www. saiglobal.com/PDFTemp/Previews/OSH/as/as1000/1600/N16682S1.pdf (accessed on 24 June 2020). © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Journal

BuildingsMultidisciplinary Digital Publishing Institute

Published: Jun 27, 2020

There are no references for this article.