Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Quantitative simulation of coherent X-ray scatter measurements on bulk objects

Quantitative simulation of coherent X-ray scatter measurements on bulk objects During the past decade methods for non-destructive identification and imaging of materials within bulk objects have been developed based on the measurement of coherent X-ray scatter. Their applicability to a given medical or industrial problem, however, strongly depends on the individual system design since the key features resolution, sensitivity and spatial resolution are strongly interrelated. In this paper quantitative simulation is presented as a means for system optimization without the requirement for time consuming experiments. By means of a full 3D model of the scatter geometry, which holds for rotationally symmetric collimator arrangements, possible photon scatter paths are evaluated using a Monte Carlo algorithm. This enables simulation of energy resolved scatter patterns based on powder diffraction (PDF) literature data. In addition, the influence of the attenuation caused by the object is taken into account by calculating the transmission spectrum. For quantitative assessment of sensitivity, scatter count rates and thus signal-to-noise ratios are calculated based on a calibration procedure combining the result of a simulation with that of a corresponding measurement. The results of the simulation are shown to be in very good agreement with experimental data. Taking various examples of application as a basis, the usability of the simulation program for the assessment and individual optimization of system performance is demonstrated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of X-Ray Science and Technology IOS Press

Quantitative simulation of coherent X-ray scatter measurements on bulk objects

Loading next page...
 
/lp/ios-press/quantitative-simulation-of-coherent-x-ray-scatter-measurements-on-bulk-UAHK2afQQD

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
IOS Press
Copyright
Copyright © 2004 by IOS Press, Inc
ISSN
0895-3996
eISSN
1095-9114
Publisher site
See Article on Publisher Site

Abstract

During the past decade methods for non-destructive identification and imaging of materials within bulk objects have been developed based on the measurement of coherent X-ray scatter. Their applicability to a given medical or industrial problem, however, strongly depends on the individual system design since the key features resolution, sensitivity and spatial resolution are strongly interrelated. In this paper quantitative simulation is presented as a means for system optimization without the requirement for time consuming experiments. By means of a full 3D model of the scatter geometry, which holds for rotationally symmetric collimator arrangements, possible photon scatter paths are evaluated using a Monte Carlo algorithm. This enables simulation of energy resolved scatter patterns based on powder diffraction (PDF) literature data. In addition, the influence of the attenuation caused by the object is taken into account by calculating the transmission spectrum. For quantitative assessment of sensitivity, scatter count rates and thus signal-to-noise ratios are calculated based on a calibration procedure combining the result of a simulation with that of a corresponding measurement. The results of the simulation are shown to be in very good agreement with experimental data. Taking various examples of application as a basis, the usability of the simulation program for the assessment and individual optimization of system performance is demonstrated.

Journal

Journal of X-Ray Science and TechnologyIOS Press

Published: Jan 1, 2004

There are no references for this article.